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1 Introduction 

 
This document outlines the theory and methodology for generating the Visible Infrared 

Imaging Radiometer Suite (VIIRS) Level-2 VNP21 1-km land surface temperature and emissivity 

(LST&E) product using the Temperature Emissivity Separation (TES) algorithm. The VNP21 

product, will include the LST and emissivity for three VIIRS thermal infrared (TIR) bands M14 

(8.55 micron), M15 (10.76 micron), and M16 (12 micron), and will be generated for data from the 

Suomi National Polar-orbiting Partnership (Suomi-NPP) and Joint Polar Satellite System (JPSS) 

platforms. This is version 1.0 of the ATBD and the goal is to maintain a ‘living’ version of this 

document with changes made when necessary. 

1.1 Rationale for the Product 
 

Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying 

a wide variety of Earth surface processes and surface-atmosphere interactions such as 

evapotranspiration, land cover dynamics, and in water vapor retrieval schemes. LST&E have been 

identified as an important Earth System Data Record (ESDR) by NASA and many other 

international organizations (NASA Strategic Roadmap Committee #9, 2005; European Space 

Agency (ESA); Global Climate Observing System (GCOS), 2003; Climate Change Science 

Program (CCSP), 2006; IPCC, 2007; and the EarthTemp network (Merchant 2012). 

The land surface temperature and emissivity (LST&E) are derived from the surface 

radiance that is obtained by atmospherically correcting the at-sensor radiance. LST&E data are 

used for many Earth surface related studies such as surface energy balance modeling (Zhou et al. 

2003b) and land-cover land-use change detection (French et al. 2008), while they are also critical 

for accurately retrieving important climate variables such as air temperature and relative humidity 

(Yao et al. 2011). The LST is an important long-term climate indicator, and a key variable for 

drought monitoring over arid lands (Anderson et al. 2011a; Rhee et al. 2010). The LST is an input 

to ecological models that determine important variables used for water use management such as 

evapotranspiration and soil moisture (Anderson et al. 2011b). Multispectral emissivity retrievals 

are also important for Earth surface studies. For example, emissivity spectral signatures are 

important for geologic studies and mineral mapping studies (Hook et al. 2005; Vaughan et al. 

2005). This is because emissivity features in the TIR region are unique for many different types of 

materials that make up the Earth’s surface, such as quartz, which is ubiquitous in most of the arid 



regions of the world. Emissivities are also used for land use and land cover change mapping since 

vegetation fractions can often be inferred if the background soil is observable (French et al. 2008). 

Accurate knowledge of the surface emissivity is critical for accurately recovering the LST, 

especially over land where emissivity variations can be large both spectrally and spatially. 

Both LST&E determine the total amount of longwave radiation emitted from the Earth's 

surface, and are therefore key variables in many energy balance models that estimate important 

surface biophysical variables such as evapotranspiration and plant-available soil moisture 

(Anderson et al. 2007; Moran 2003) that are ingested into drought monitoring systems such as the 

U.S. The National Integrated Drought Information System (NIDIS). LST&E data are also essential 

for balancing the Earth's surface radiation budget; for example an error of 0.1 in the emissivity 

will result in climate models having errors of up to 7 Wm-2 in their upward longwave radiation 

estimates –a much larger term than the surface radiative forcing due to an increase in greenhouse 

gases (~2-3 Wm-2) (Zhou et al. 2003b). LST&E are also utilized in monitoring land-cover / land- 

use changes (French and Inamdar 2010; French et al. 2008), and in retrieving important climate 

variables such as air temperature and water vapor in atmospheric retrieval schemes (Seemann et 

al. 2003; Yao et al. 2011). 

Since the equation for retrieving LST&E is underdetermined, multiple retrieval methods 

have been developed that are optimized for a particular set of conditions. The simplest and efficient 

of these retrieval methods is the split-window (SW) algorithm, which is used to generate the 

heritage MODIS LST&E products (MOD/MYD11) and the current VIIRS LST Environmental 

Data Record (EDR). In the SW approach, emissivities are assigned according to a land 

classification scheme (Snyder et al. 1998), and atmospheric effects are compensated for by using 

the differential absorption features from two longwave window bands (11-12 µm). This approach 

has been used with much success over oceans to compute sea surface temperatures, and works 

well over densely vegetated areas and water where the assumption of single fixed emissivity is 

valid (Coll et al. 2009a). However, cold biases of 3-5 K are often found over semi-arid and arid 

regions because these regions have much higher emissivity variability (Hulley and Hook 2009a), 

and only one fixed emissivity from the 'barren' land class is assigned to these regions in the split- 

window approach. Recent validation of the VIIRS LST EDR product with ground-based 

measurements showed good accuracy over vegetated and water targets, but large cold biases of up 

to 5 K over arid targets. Performance is further degraded for high atmospheric water vapor content 



conditions where differences up to 15 K have been observed with the MYD11 heritage LST 

products. A further shortcoming in the current VIIRS LST algorithm is that the operational product 

does not produce a dynamically retrieved land surface emissivity product similar to the current 

MODIS MOD11B1 and MOD21 products, and the additional information from the VIIRS M14 

(8.5 µm) thermal infrared band is not utilized in the LST retrieval scheme. 

The second retrieval method is the physics-based Temperature Emissivity Separation 

(TES) algorithm, which uses an emissivity model based on the variability in the surface radiance 

data to dynamically retrieve both LST and spectral emissivity (Gillespie et al. 1998). This approach 

is used to generate the ASTER standard products (AST05, AST08), and also the MODIS MOD21 

product (to be released with Collection 6). The TES algorithm has consistent accuracy over all 

land cover types when combined with a Water Vapor Scaling (WVS) model and dynamically 

retrieves the spectral emissivity (bands 29, 31, and 32 for MODIS) at 1-km resolution. We will 

develop a VIIRS LST&E product based on the TES approach - VNP21. 

Several studies over the past decade have shown that the split-window and TES approaches 

are complementary, with the split-window approach being more stable over heavily vegetated 

regions and the physics-based TES approach working better over semi-arid and arid regions 

(Gottsche and Hulley 2012; Hulley and Hook 2009a; Hulley et al. 2010). By taking advantage of 

this fact, we will also develop a unified VIIRS LST product using a combination of the well- 

established and complementary TES and split-window algorithms (similar to MOD11/MOD21 

approaches). 

1.2 Intended User Community 

LST&E are key variables for explaining the biophysical processes that govern the balances 

of water and energy at the land surface. LST&E data are used in many research areas including 

ecosystem models, climate models, cryospheric research, and atmospheric retrieval schemes. Our 

team has been carefully selected to include expertise in these areas. The descriptions below 

summarize how LST&E data are typically used in these areas. 

1.2.1 Use of LST&E in Climate/Ecosystem Models 
 

Emissivity is a critical parameter in climate models that determine how much thermal 

radiation is emitted back to the atmosphere and space and therefore is needed in surface radiation 

budget calculations, and also to calculate important climate variables such as LST (e.g., Jin and 



Liang 2006; Zhou et al. 2003b). Current climate models represent the land surface emissivity by 

either a constant value or very simple parameterizations due to the limited amount of suitable data. 

Land surface emissivity is prescribed to be unity in the Global Climate Models (GCMs) of the 

Center for Ocean-Land-Atmosphere Studies (COLA) (Kinter et al. 1988), the Chinese Institute of 

Atmospheric Physics (IAP) (Zeng et al. 1989), and the US National Meteorological Center (NMC) 

Medium-Range Forecast (MRF). In the recently developed NCAR Community Land Model 

(CLM3) and its various earlier versions (Bonan et al. 2002; Oleson et al. 2004), the emissivity is 

set as 0.97 for snow, lakes, and glaciers, 0.96 for soil and wetlands, and vegetation is assumed to 

be black body. For a broadband emissivity to correctly reproduce surface energy balance statistics, 

it needs to be weighted both over the spectral surface blackbody radiation and over the downward 

spectral sky radiances and used either as a single value or a separate value for each of these terms. 

This weighting depends on the local surface temperatures and atmospheric composition and 

temperature. Most simply, as the window region dominates the determination of the appropriate 

single broadband emissivity, an average of emissivities over the window region may suffice. 

Climate models use emissivity to determine the net radiative heating of the canopy and 

underlying soil and the upward (emitted and reflected) thermal radiation delivered to the 

atmosphere. The oversimplified representations of emissivity currently used in most models 

introduce significant errors in the simulations of climate. Unlike what has been included in climate 

models up to now, satellite observations indicate large spatial and temporal variations in land 

surface emissivity with surface type, vegetation amount, and soil moisture, especially over deserts 

and semi-deserts (Ogawa 2004; Ogawa et al. 2003). This variability of emissivity can be 

constructed by the appropriate combination of soil and vegetation components. 

Sensitivity tests indicate that models can have an error of 5–20 Wm-2 in their surface energy 

budget for arid and semi-arid regions due to their inadequate treatment of emissivity (Jin and Liang 

2006; Zhou et al. 2003b), a much larger term than the surface radiative forcing from greenhouse 

gases. The provision, through this proposal, of information on emissivity with global spatial 

sampling will be used for optimal estimation of climate model parameters. A climate model, in 

principle, constructs emissivity at each model grid square from four pieces of information: a) the 

emissivity of the underlying soil; b) the emissivity of the surfaces of vegetation (leaves and stems); 

c) the fraction of the surface that is covered by vegetation; and d) the description of the areas and 

spatial distribution of the surfaces of vegetation needed to determine what fraction of surface 



emission will penetrate the canopy. Previously, we have not been able to realistically address these 

factors because of lack of suitable data. The emissivity datasets developed for this project will be 

analyzed with optimal estimation theory that uses the spatial and temporal variations of the 

emissivity data over soil and vegetation to constrain more realistic emissivity schemes for climate 

models. In doing so, land surface emissivity can be linked to other climate model parameters such 

as fractional vegetation cover, leaf area index, snow cover, soil moisture, and soil albedo, as 

explored in Zhou et al. (2003a). The use of more realistic emissivity values will greatly improve 

climate simulations over sparsely vegetated regions as previously demonstrated by various 

sensitivity tests (e.g., Jin and Liang 2006; Zhou et al. 2003b). In particular, both daily mean and 

day-to-night temperature ranges are substantially impacted by the model’s treatment of emissivity. 

1.2.2 Use of LST&E in Cryospheric Research 
 

Surface temperature is a sensitive energy-balance parameter that controls melt and energy 

exchange between the surface and the atmosphere. Surface temperature is also used to monitor 

melt zones on glaciers and can be related to the glacier facies of (Benson 1996), and thus to glacier 

or ice sheet mass balance (Hall et al. 2006). Analysis of the surface temperature of the Greenland 

Ice Sheet and the ice caps on Greenland provides a method to study trends in surface temperature 

as a surrogate for, and enhancement of, air-temperature records, over a period of decades (Comiso 

2006). Maps of LST of the Greenland Ice Sheet have been developed using the MODIS 1-km LST 

standard product, and trends in mean LST have been measured (Hall et al. 2008). Much attention 

has been paid recently to the warming of the Arctic in the context of global warming. Comiso 

(2006) shows that the Arctic region, as a whole, has been warming at a rate of 0.72 ±0.10C per 

decade from 1981–2005 inside the Arctic Circle, though the warming pattern is not uniform. 

Furthermore, various researchers have shown a steady decline in the extent of the Northern 

Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice (Parkinson 

et al. 1999). Increased melt of the margins of the Greenland Ice Sheet has also been reported 

(Abdalati and Steffen 2001). 

Climate models predict enhanced Arctic warming but they differ in their calculations of 

the magnitude of that warming. The only way to get a comprehensive measurement of surface- 

temperature conditions over the Polar Regions is through satellite remote sensing. Yet errors in 

the most surface temperature algorithms have not been well-established. Limitations include the 



assumed emissivity, effect of cloud cover, and calibration consistency of the longer-term satellite 

record. 

Comparisons of LST products over snow and ice features reveal LST differences in 

homogeneous areas of the Greenland Ice Sheet of >2C under some circumstances. Because there 

are many areas that are within a few degrees of 0C, such as the ice-sheet margin in southern 

Greenland, it is of critical importance to be able to measure surface temperature from satellites 

accurately. Ice for which the mean annual temperature is near the freezing point is highly 

vulnerable to rapid melt. 

1.2.3 Use of LST&E in Atmospheric Retrieval Schemes 
 

The atmospheric constituent retrieval community and numerical weather prediction 

operational centers are expected to benefit from the development of a unified land surface 

emissivity product. The retrieval of vertical profiles of air temperature and water vapor mixing 

ratio in the atmospheric boundary layer over land is sensitive to the assumptions used about the 

infrared emission and reflection from the surface. Even the retrieval of clouds and aerosols over 

land using infrared channels is complicated by uncertainties in the spectral dependence of the land 

surface emission. Moreover, weather models improve their estimates of atmospheric temperature 

and composition by comparisons between observed and model calculated spectral radiances, using 

an appropriate data assimilation (1D-Var) framework. The model generates forward calculation of 

radiances by use of their current best estimate of temperature profiles, atmospheric composition, 

and surface temperature and emissivity. If good prior estimates of infrared emissivity can be 

provided along with their error characterization, what would otherwise be a major source of error 

and bias in the use of the satellite radiances in data assimilation can be minimized. 

 
2 The Algorithm 

 
2.1 Technical Background and Heritage 

The VNP21 algorithm derives its heritage from the ASTER TES algorithm (Gillespie et al. 

1998) and the MODIS MOD21 algorithm (Hulley et al. 2012). ASTER is a five-channel 

multispectral TIR scanner that was launched on NASA’s Terra spacecraft in December 1999 with 

a 90-m spatial resolution and revisit time of 16 days. The VNP21 LST&E products will be 

produced globally over all land cover types, excluding open oceans for all cloud-free pixels. It is 



anticipated that the Level-2 products will be merged to produce weekly, monthly, and seasonal 

products, with the monthly product most likely producing global coverage, depending on cloud 

coverage. The generation of the higher level merged products will be considered a project activity. 

The VNP21 Level 2 products will be initially inter-compared with the standard VLST products to 

identify regions and conditions for divergence between the products, and validation will be 

accomplished using a combination of temperature-based (T-based) and radiance-based (R-based) 

methods over dedicated field sites. 

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral “window” regions: the midwave 

infrared (3.5–5 µm) and the thermal infrared (8–13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the separate 

contribution from each component in a radiometric measurement is an ill-posed problem since 

there will always be more unknowns—N emissivities and a single temperature—than the number 

of measurements, N, available. For VIIRS, we will be solving for one temperature and three 

emissivities (VIIRS TIR bands M14, M15, and M16). To solve the ill-posed problem, an additional 

constraint is needed, independent of the data. There have been numerous theories and approaches 

over the past two decades to solve for this extra degree of freedom. For example, the ASTER 

Temperature Emissivity Working Group (TEWG) analyzed ten different algorithms for solving 

the problem (Gillespie et al. 1999). Most of these relied on a radiative transfer model to correct at- 

sensor radiance to surface radiance and an emissivity model to separate temperature and 

emissivity. Other approaches include the SW algorithm, which extends the sea-surface temperature 

(SST) SW approach to land surfaces, assuming that land emissivities in the window region (10.5– 

12 µm) are stable and well known. However, this assumption leads to unreasonably large errors 

over barren regions where emissivities have large variations both spatially and spectrally. The 

ASTER TEWG finally decided on a hybrid algorithm, termed the TES algorithm, which capitalizes 

on the strengths of previous algorithms with additional features (Gillespie et al. 1998). 

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. TES 

uses an empirical relationship to predict the minimum emissivity that would be observed from a 

given spectral contrast, or minimum-maximum difference (MMD) (Kealy and Hook 1993; 

Matsunaga 1994). The empirical relationship is referred to as the calibration curve and is derived 



from a subset of spectra in the ASTER spectral library (Baldridge et al. 2009). A VIIRS calibration 

curve, applicable to VIIRS TIR bands M14, M15, and M16 is computed. Numerical simulations 

have shown that TES is able to recover temperatures within 1.5 K and emissivities within 0.015 

for a wide range of surfaces and is a well-established physical algorithm that produces seamless 

images with no artificial discontinuities such as might be seen in a land classification type 

algorithm (Gillespie et al. 1998). 

2.2 Algorithm Description 

2.2.1 Atmospheric Correction 
 

2.2.1.1 Thermal Infrared Radiance 

The at-sensor measured radiance in the TIR spectral region (7–14 µm) is a combination of 

three primary terms: the Earth-emitted radiance, reflected downwelling sky irradiance, and 

atmospheric path radiance. The Earth-emitted radiance is a function of temperature and emissivity 

and gets attenuated by the atmosphere on its path to the satellite. The atmosphere also emits 

radiation, some of which reaches the sensor directly as “path radiance,” while some gets radiated 

to the surface (irradiance) and reflected back to the sensor, commonly known as the reflected 

downwelling sky irradiance. Reflected solar radiation in the TIR region is negligible (Figure 1) 

and a much smaller component than the surface-emitted radiance. One effect of the sky irradiance 

is the reduction of the spectral contrast of the emitted radiance, due to Kirchhoff’s law. Assuming 

the spectral variation in emissivity is small (Lambertian assumption), and using Kirchhoff’s law 

to express the hemispherical-directional reflectance as directional emissivity (𝜌𝜆 = 1 − 𝜖𝜆), the 

clear-sky at-sensor radiance can be written as three terms: the Earth-emitted radiance described by 

Planck’s function and reduced by the emissivity factor, 𝜖𝜆; the reflected downwelling irradiance; 

and the path radiance. 

 

𝐿𝜆(𝜃) = [𝜖𝜆𝐵𝜆(𝑇𝑠) + (1 − 𝜖𝜆)𝐿↓ ]𝜏𝜆(𝜃) + 𝐿↑ (𝜃) 
𝜆 𝜆 (1) 



𝜆 

𝜆 

 

Figure 1. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere 

(blue) in the 3–12 µm region. Also shown is the solar irradiance contribution W/m2/µm2. 

Where: 

𝐿𝜆(𝜃) = at-sensor radiance; 

𝜆 = wavelength; 

𝜃 = observation angle; 

𝜖𝜆 = surface emissivity; 

𝑇𝑠 = surface temperature; 

𝐿↓ = downwelling sky irradiance; 

𝜏𝜆(𝜃)  = atmospheric transmittance; 

𝐿↑ (𝜃) = atmospheric path radiance 

𝐵𝜆(𝑇𝑠) = Planck function, described by Planck’s law: 
 

 

 
𝑐1 1 

𝐵𝜆 = 
𝜋𝜆5 (  𝑐2 

) 
exp ( ) − 1 

𝜆𝑇 

(2) 

 
 

𝑐1 = 2𝜋ℎ𝑐2= 3.74∙ 10−16 W∙m2 (1st radiation constant) 

h = 6.63∙ 10−34 W∙s2 (Planck’s constant) 

c2 = h∙c/k = 1.44× 104 µm∙K (2nd radiation constant) 

k = 1.38× 10−23 W∙s∙K-1 (Boltzmann’s constant) 

c = 2.99∙ 108 m∙s-1 (speed of light) 



Figure 2 shows the relative contributions from the surface-emission term, surface radiance, 

and at-sensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and surface 

temperature set to 300 K. Vertical bars show the center placement of the three VIIRS TIR bands 

M14 (~8.55 µm), M15 (~11 µm), and M16 (~12 µm). The reflected downwelling term adds a 

small contribution in the window regions but will become more significant for more humid 

atmospheres. The at-sensor radiance shows large departures from the surface radiance in regions 

where atmospheric absorption from gases such as CO2, H2O, and O3 are high. 

 

Figure 2. Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and 

at-sensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz 

emissivity spectrum, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show 

placements of the VIIRS TIR bands M14 (~8.55 µm), M15 (~11 µm), and M16 (~12 µm). 

Equation (1) gives the at-sensor radiance for a single wavelength,𝜆, while the measurement 

from a sensor is typically measured over a range of wavelengths, or band. The at-sensor radiance 

for a discrete band, 𝑖, is obtained by weighting and normalizing the at-sensor spectral radiance 



calculated by equation (1) with the sensor’s spectral response function for each band, 𝑆𝑟𝜆, as 

follows: 

 

∫ 𝑆𝑟𝜆(i) ∙ 𝐿𝜆(𝜃) ∙ dλ 
𝐿𝑖(𝜃) = 

𝑆𝑟 (i) ∙ dλ 
𝜆 

(3) 

Using equations (1) and (2), the surface radiance for band 𝑖 can be written as a combination 

of two terms: Earth-emitted radiance, and reflected downward irradiance from the sky and 

surroundings: 

𝐿𝑖(𝜃) − 𝐿↑(𝜃) 
𝐿 = 𝜖 𝐵 (𝑇 ) + (1 − 𝜖 )𝐿↓ =  𝑖  
𝑠,𝑖 𝑖  𝑖 𝑠 𝑖 𝑖 𝜏𝑖(𝜃) 

(4) 

The atmospheric parameters, 𝐿↓ , 𝜏𝜆(𝜃), 𝐿↑ (𝜃), are estimated with a radiative transfer 
𝜆 𝜆 

model such as RTTOV discussed in the next section, using input atmospheric fields of air 

temperature, relative humidity, and geopotential height. Figure 3 shows VIIRS spectral response 

functions for bands M14, M15 and M16 plotted for a mid-latitude summer atmosphere. 

 

Figure 3. VIIRS spectral response functions for bands M14 (blue), M15 (red), and M16 (yellow). 
 

2.2.1.2 Emissivity 

The emissivity of an isothermal, homogeneous emitter is defined as the ratio of the actual 

emitted radiance to the radiance emitted from a black body at the same thermodynamic temperature 

(Norman and Becker 1995), 𝜖𝜆= 𝑅𝜆/𝐵𝜆. The emissivity is an intrinsic property of the Earth’s 

surface and is an independent measurement of the surface temperature, which varies with 



irradiance and local atmospheric conditions. The emissivity of most natural Earth surfaces for the 

TIR wavelength ranges between 8 and 12 μm and, for a sensor with spatial scales <100 m, varies 

from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and 

semi-arid areas due to the strong quartz absorption feature (reststrahlen band) between the 8- and 

9.5-μm range, whereas the emissivity of vegetation, water, and ice cover are generally greater than 

0.95 and spectrally flat in the 8–12-μm range. 
 

2.2.1.3 Radiative Transfer Model 

The current choice of radiative transfer model for atmospherically correcting VIIRS TIR 

data is the Radiative Transfer for TOVS (RTTOV). The RTTOV is a very fast radiative transfer 

model for nadir-viewing passive visible, infrared and microwave satellite radiometers, 

spectrometers and interferometers (Saunders et al. 1999). RTTOV is a FORTRAN-90 code for 

simulating satellite radiances, designed to be incorporated within users' applications. RTTOV was 

originally developed at ECMWF in the early 90's for TOVS (Eyre and Woolf 1988). Subsequently 

the original code has gone through several developments (Matricardi et al. 2001; Saunders et al. 

1999), more recently within the EUMETSAT NWP Satellite Application Facility (SAF), of which 

RTTOV v11 is the latest version. It is actively developed by ECMWF and UKMET. 

A number of satellite sensors are supported from various platforms (https://nwp-

saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/). RTTOV has been 

sufficiently tested and validated and is conveniently fast for full scale retrievals (Matricardi 

2009). Given an atmospheric profile of temperature, water vapor and optionally other trace gases 

(for example ozone and carbon dioxide) together with satellite and solar zenith angles and surface 

temperature, pressure and optionally surface emissivity and reflectance, RTTOV will compute 

the top of atmosphere radiances in each of the channels of the sensor being simulated. Users can 

also specify the selected channels to be simulated. 

Mathematically, in vector notation, given a state vector, x, which describes the 

atmospheric/surface state as a profile and surface variables the radiance vector, y, for all the 

channels required to be simulated is given by (Saunders et al. 1999): 

y = H(x) (5) 

where H is the radiative transfer model, i.e. RTTOV (also referred to as the observation 

operator in data assimilation parlance). This is known as the 'direct' or 'forward' model. 

https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/
https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/


In RTTOV, the transmittances of the atmospheric gases are expressed as a function of 

profile dependent predictors. This parameterization of the transmittances makes the model 

computationally efficient. The RTTOV fast transmittance scheme uses regression coefficients 

derived from accurate Line by Line computations to express the optical depths as a linear 

combination of profile dependent predictors that are functions of temperature, absorber amount, 

pressure and viewing angle (Matricardi and Saunders 1999). The regression coefficients are 

computed using a training set of diverse atmospheric profiles chosen to represent the range of 

variations in temperature and absorber amount found in the atmosphere (Chevallier 2000; 

Matricardi 2008, 2009; Matricardi and Saunders 1999). The selection of the predictors is made 

according to the coefficients file supplied to the program. 

2.2.1.4 Atmospheric Profiles 
 

The general methodology for atmospherically correcting VIIRS TIR data is based on the 

methods that were developed for the ASTER (Palluconi et al. 1999) and MODIS approaches 

(Hulley et al. 2012). 

Currently two options for atmospheric profile sources are available: 1) interpolation of data 

assimilated from NWP models, and 2) retrieved atmospheric geophysical profiles from remote- 

sensing data. The NWP models use current weather conditions, observed from various sources 

(e.g., radiosondes, surface observations, and weather satellites) as input to dynamic mathematical 

models of the atmosphere to predict the weather. Data are typically output in 6-hour increments, 

e.g., 00, 06, 12, and 18 UTC. Examples include the Global Data Assimilation System (GDAS) 

product provided by the National Centers for Environmental Prediction (NCEP) (Kalnay et al. 

1990), the Modern Era Retrospective-analysis for Research and Applications (MERRA) product 

provided by the Goddard Earth Observing System Data Assimilation System Version 5.2.0 

(GEOS-5.2.0) (Bosilovich et al. 2008), and the European Center for Medium-Range Weather 

Forecasting (ECMWF), which is supported by more than 32 European states. Remote-sensing data, 

on the other hand, are available real-time, typically twice-daily and for clear-sky conditions. The 

principles of inverse theory are used to estimate a geophysical state (e.g., atmospheric temperature) 

by measuring the spectral emission and absorption of some known chemical species such as carbon 

dioxide in the thermal infrared region of the electromagnetic spectrum (i.e. the observation). 

Examples of current remote sensing data include the Atmospheric Infrared Sounder (AIRS) 



(Susskind et al. 2003) and Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice and 

Townshend 2002), both on NASA's Aqua satellite launched in 2002. 

The VIIRS TES algorithm uses the MERRA-2 reanalysis data for atmospheric correction. 

The MERRA profiles are first interpolated in time to the VIIRS observation using the [00 06 12 

18] UTC analysis observation hours before ingesting into the RTTOV. 

Table 1: Geophysical data available in the MERRA-2 reanalysis product. Columns under Mandatory specify if 

the variables is needed for determining atmospheric correction parameters. Data are output in 6hr analysis for 

42 pressure levels at 1/2 degree x 2/3 degree spatial resolution (longitude=576, latitude=361). 

 

MERRA Analysis Data (inst6_3d_ana_Np) 

Geophys ical fields Required? Available? Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

nlev nLevel Yes Yes  

p Pressure Yes Yes  

t Temperature Yes Yes  

q Specific Humidty Yes Yes  

sp Surface Pressure Yes Yes  

skt Skin Temperature Yes No T value at the first valid level above 

surface is used. 

t2 Temperature at 2 m Yes No T value at the first valid level above 

surface is used 

q2 Specific Humidty at 2 

m 

Yes No Q value at the first valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

el Elevation Yes No Auxiliary database 

The RTTOV output data are then gridded to the VIIRS swath resolution using a bicubic 

interpolation approach. It should be noted that the data interpolation could potentially introduce 

errors, especially in humid regions where atmospheric water vapor can vary on smaller spatial 

scales than 1°. The propagation of these atmospheric correction errors would result in band- 

dependent surface radiance errors in both spectral shape and magnitude, which in turn could result 

in errors of retrieved Level-2 products such as surface emissivity and temperature. As a result, a 

Water Vapor Scaling (WVS) model is further employed to improve the accuracy of the 



atmospheric correction during atmospheric conditions with high water vapor loadings. The WVS 

approach is discussed in the following section. 

2.2.2 Water Vapor Scaling Method 
 

The accuracy of the TES algorithm is limited by uncertainties in the atmospheric 

correction, which result in a larger apparent emissivity contrast. This intrinsic weakness of the 

TES algorithm has been systemically analyzed by several authors (Coll et al. 2007; Gillespie et al. 

1998; Gustafson et al. 2006; Hulley and Hook 2009b; Li et al. 1999), and its effect is greatest over 

graybody surfaces that have a true spectral contrast that approaches zero. In order to minimize 

atmospheric correction errors, a Water Vapor Scaling (WVS) method has been introduced to 

improve the accuracy of the water vapor atmospheric profiles on a band-by-band basis for each 

observation using an Extended Multi-Channel/Water Vapor Dependent (EMC/WVD) algorithm 

(Tonooka 2005), which is an extension of the Water Vapor Dependent (WVD) algorithm (Francois 

and Ottle 1996). The EMC/WVD equation models the at-surface brightness temperature, given the 

at-sensor brightness temperature, along with an estimate of the total water vapor amount: 

𝑛 

𝑇𝑔,𝑖 = 𝛼𝑖,0 + ∑ 𝛼𝑖,𝑘𝑇𝑘 

𝑘=1 

𝛼𝑖,𝑘 = 𝑝𝑖,𝑘 + 𝑞𝑖,𝑘𝑊 + 𝑟𝑖,𝑘𝑊
2, 

 

(6) 

where: 

𝑖 Band number 

𝑛 Number of bands 

𝑊 Estimate of total precipitable water vapor (cm) 

𝑝, 𝑞, 𝑟 Regression coefficients for each band 

𝑇𝑘 Brightness temperature for band k (K) 

𝑇𝑔,𝑖 Brightness surface temperature for band, 𝑖 

The coefficients of the EMC/WVD equation are determined using a global-based 

simulation model. 

The scaling factor, 𝛾, used for improving a water profile, is based on the assumption that 

the transmissivity, 𝜏𝑖 , can be expressed by the Pierluissi double exponential band model 

formulation. The scaling factor is computed for each gray pixel on a scene using 𝑇𝑔,𝑖 computed 

from equation (4) and 𝜏𝑖 computed using two different 𝛾 values that are selected a priori: 



𝑖 

𝛼 ↑ 𝛾1
𝛼𝑖−𝛾2

𝛼𝑖 

𝜏𝑖(𝜃, 𝛾2)𝛾1 𝑖 𝐵𝑖(𝑇𝑔,𝑖) − 𝐿𝑖(𝜃, 𝛾1)/(1 − 𝜏𝑖(𝜃, 𝛾1)) ln ( ∙ ( ) ) 
𝜏 (𝜃, 𝛾 )𝛾2

𝛼𝑖 𝐿 − 𝐿↑(𝜃, 𝛾 )/(1 − 𝜏 (𝜃, 𝛾 )) 
𝑖 1 𝑖 𝑖 1 𝑖 1 

𝛾𝛼𝑖 = 
ln( 𝜏𝑖(𝜃, 𝛾2)/𝜏𝑖(𝜃, 𝛾1)) 

 

(7) 

 

where: 

𝛼𝑖 Band model parameter 

𝛾1, 𝛾2 Two appropriately chosen 𝛾 values 

𝜏𝑖(𝜃, 𝛾1,2) Transmittance calculated with water vapor profile scaled by 𝛾 

𝐿↑(𝜃, 𝛾1,2) Path radiance calculated with water vapor profile scaled by 𝛾 

Typical values for 𝛾 are 𝛾1 = 1 and 𝛾2 = 0.7. Tonooka (2005) found that the 𝛾 calculated 

by equation (7) will not only reduce biases in the water vapor profile, but will also simultaneously 

reduce errors in the air temperature profiles and/or elevation. Figure 4 shows an example of a 𝛾 

image. 

 

 

 

 
Figure 4. WVS factor 𝜸 computed for a VIIRS scene on 13 January 2014. The image has been interpolated and 

smoothed. 



𝑖 

2.2.2.1 Scaling Atmospheric Parameters 

Once the RTTOV run has completed and the 𝛾 image has been calculated, the atmospheric 

parameters transmittance 𝜏𝑖 and path radiance 𝐿↑ are modified as follows: 

𝛾𝛼𝑖−𝛾2
𝛼𝑖 𝛾1

𝛼𝑖−𝛾𝛼𝑖 
𝜏 (𝜃, 𝛾) = 𝜏 (𝜃, 𝛾 )𝛾1

𝛼𝑖−𝛾2
𝛼𝑖 ∙ 𝜏 (𝜃, 𝛾 )𝛾1

𝛼𝑖−𝛾2
𝛼𝑖

 
𝑖 𝑖 1 𝑖 2 

(8) 

𝐿↑(𝜃, 𝛾) = 𝐿↑(𝜃, 𝛾 ) ∙ 
 1 − 𝜏𝑖(𝜃, 𝛾)

 
𝑖 𝑖 1 1 − 𝜏𝑖(𝜃, 𝛾1) 

 

(9) 

Once the transmittance and path radiance have been adjusted using the scaling factor, the surface 

radiance can be computed using equation (1). 

2.2.2.2 Calculating the EMC/WVD Coefficients 

The EMC/WVD coefficients, ( p, q, r ) in Eq. (6) are determined using a global simulation 

model with input atmospheric parameters from SeeBor V5.0 database provided by the University 

of Wisconsin-Madison (Hook et al. 2013). The SeeBor data consists of 15704 global profiles of 

uniformly distributed global atmospheric soundings temperature, moisture, and ozone at 101 

pressure levels for clear sky conditions, acquired both day and night in order to capture the full- 

scale natural atmospheric variability. These profiles are taken from NOAA-88, an ECMWF 60L 

training set , TIGR-3, ozonesondes from 8 NOAA Climate Monitoring and Diagnostics Laboratory 

(CMDL) sites, and radiosondes from 2004 in the Sahara desert. The Seebor data are curated with 

the following quality criteria: for clear sky conditions, the relative humidity (RH) value of the 

profiles must be less than 99 % at each level below the 250 hPa pressure level. It also is required 

that the original top of sounding pressure be no greater than 30 hPa for temperature and moisture 

profiles and 10 hPa for ozone, and for each profile in the data set a physically based 

characterization of the surface skin temperature and surface emissivity are assigned. As the 

radiosondes may drift towards water body, we further filter the data containing at least 50% of the 

records on the land. This resulted into the sample size to 9136 data points. When classified based 

upon the local sun-rise and sun-set times the day and night profiles are nearly equally distributed 

in counts at 4990 and 4142 respectively. Figure 5 shows the distribution of the surface temperature 

with the total precipitable water (tpw) in cm for the profiles used in the simulation. 

Figure 6 shows the global distribution of the profile locations, which have been indicated 

as the day/night profiles based upon the sun-rise/sun-set time at the time of the profile recordings. 



In order to perform the simulations, we consider the emissivity spectra from the ASTER 

spectral library consisting of 102 samples that includes a variety of materials such as water, 

snow/ice, vegetation, rocks, soils, and sands. The emissivity of the samples cover a broad range of 

emissivities with even distribution ranging from ~0.6 to 1. The selected spectra are then convolved 

to the VIIRS’s spectral response function (3 bands: M14, M15, and M16) in order to perform the 

simulation. A total of 931,872 simulations (9136 profiles x 102 samples) are simulated with the 

RTTOV radiative transfer model for the set of 11 Gaussian view angles (between 0-70), and for 

the three VIIRS TIR bands. Using the simulated at-sensor Tk , and at-surface Tg calculated 
 

brightness temperatures, and an estimate of the total precipitable water vapor, the best fit 

coefficients in Eq. (3) are found by using a linear least squares method, and dependent on four 

independent variables: day/night case, view angle, minimum band emissivity in intervals of 0.05, 

and precipitable water vapor. Simulations show that for all of these cases the RMSE error for the 

simulation was less than 1 K. Finally, a four-dimensional look-up table (LUT) is produced 

consisting of the regression coefficients for the three TIR bands and the four independent variables. 

The EMC/WVD LUT is then used on a pixel-by-pixel basis for calculating the Tg (and γ), given 

estimates of the view angle, emissivity, and PWV. Note that the EMC/WVD coefficients are 

mapped to all VIIRS pixels in a granule through bi-cubic interpolation of the coefficients derived 

from the four factors: day/night case, view angle, minimum band emissivity, and precipitable water 

vapor. ASTER GED v3 emissivities are first spectrally adjusted to VIIRS TIR bands and 

interpolated onto the VIIRS granule, and then the minimum band emissivity is calculated at each 

VIIRS pixel in order to assign the correct coefficients. Bi-cubic interpolation assures smooth 

transitions in the EMC/WVD coefficients across the pixels. Table 2 shows the band model 

parameter coefficients used in equation (7) to calculate the water vapor scaling factor. 



 
 

 

Figure 5. TPW Vs Skin Temperature plot showing the wide distribution of input profiles. 
 
 
 

 

 
Figure 6. Global SeeBor database showing station locations for day and night sondes. 

 
 

Table 2. VIIRS band model parameters in equation (6). 
 

Band Parameter 

M14 1.4522 

M15 1.8103 

M16 1.8056 
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2.2.3 TES Algorithm 
 

TES combines the NEM, the ratio, and the MMD algorithm to retrieve temperature and a 

full emissivity spectrum. The NEM algorithm is used to estimate temperature and iteratively 

remove the sky irradiance, from which an emissivity spectrum is calculated, and then ratioed to 

their mean value in the ratio algorithm. At this point, only the shape of the emissivity spectrum is 

preserved, but not the amplitude. In order to compute an accurate temperature, the correct 

amplitude is then found by relating the minimum emissivity to the spectral contrast (MMD). Once 

the correct emissivities are found, a final temperature can be calculated with the maximum 

emissivity value. Additional improvements involve a refinement of 𝜖𝑚𝑎𝑥 in the NEM module and 

refining the correction for sky irradiance using the 𝜀𝑚𝑖𝑛-MMD final emissivity and temperature 

values. Finally, a quality assurance (QA) data image is produced that partly depends on outputs 

from TES such as convergence, final 𝜖𝑚𝑎𝑥, atmospheric humidity, and proximity to clouds. More 

detailed discussion of QA is included later in this document. 

Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, assuming 

well-calibrated, accurate radiometric measurements (Gillespie et al. 1998). 

2.2.3.1 TES Data Inputs 

Inputs to the TES algorithm are the surface radiance, 𝐿𝑠,𝑖, given by equation (4) (at-sensor 

radiance corrected for transmittance and path radiance), and downwelling sky irradiance term, 𝐿↓ 

, which is computed from the atmospheric correction algorithm using a radiative transfer model 

such as RTTOV. Both the surface radiance and sky irradiance will be output as a separate product. 

The surface radiance is primarily used as a diagnostic tool for monitoring changes in Earth’s 

surface composition. Before the surface radiance is estimated using equation (4), the accuracy of 

the atmospheric parameters, 𝐿↓ , 𝜏𝜆(𝜃), 𝐿↑ (𝜃), is improved upon using a WVS method (Tonooka 
𝜆 𝜆 

2005) on a band-by-band basis for each observation using an extended multi-channel/water vapor 

dependent (EMC/WVD) algorithm. 

2.2.3.2 TES Limitations 

As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. Currently, the largest source 

of uncertainty for ASTER data is the residual effect of incomplete atmospheric correction. 



𝜆 

Measurement accuracy and precision contribute to a lesser degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

“apparent” MMD, which is overestimated due to residual sensor noise and incomplete atmospheric 

correction. A threshold classifier was introduced by the TEWG to partly solve this problem over 

graybody surfaces. Instead of using the calibration curve to estimate 𝜀𝑚𝑖𝑛 from MMD, a value of 

𝜀𝑚𝑖𝑛= 0.983 was automatically assigned when the spectral contrast or MMD in emissivity was 

smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this caused artificial 

step discontinuities in emissivity between vegetated and arid areas. 

At the request of users, two parameter changes were made to the ASTER TES algorithm 

on 1 August 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images, which users could not 

tolerate in their analyses. The consequence of removing the threshold classifier was a smoother 

appearance for all images but at the cost of TES underestimating the emissivity of graybody scenes, 

such as water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second parameter 

change removed the iterative correction for reflected downwelling radiation, which also frequently 

failed due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using only the first 

iteration resulted in improved spectral shape and performance of TES. 

2.2.3.3 TES Processing Flow 

Figure 7 shows the processing flow diagram for the generation of the cloud masks, land- 

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 8 shows 

a more detailed processing flow of the TES algorithm itself. Each of the steps will be presented in 

sufficient detail in the following section, allowing users to regenerate the code. TES uses input 

image data of surface radiance, 𝐿𝑠,𝑖, and sky irradiance, 𝐿↓ , to solve the TIR radiative transfer 

equation. The output images will consists of three emissivity images (𝜖𝑖) corresponding to VIIRS 

bands M14, M15, M16, and one surface temperature image (T). 



 

 

Figure 7. Flow diagram showing all steps in the retrieval process in generating the VIIRS VNP21 LST&E product 

starting with TIR at-sensor radiances and progressing through atmospheric correction, cloud detection, and 

the TES algorithm. 
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Figure 8. Flow diagram of the TES algorithm in its entirety, including the NEM, RATIO, and MMD modules. 

Details are included in the text, including information about the refinement of 𝝐𝒎𝒂𝒙. 
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2.2.3.4 NEM Module 

The NEM builds upon the model emissivity algorithm (Lyon 1965) by allowing the initial 

𝜖𝑚𝑎𝑥 value to be consistent for all wavelengths. The role of NEM is to compute the surface kinetic 

temperature, T, and a correct shape for the emissivity spectrum. An initial value of 0.99 is set for 

𝜖𝑚𝑎𝑥, which is typical for most vegetated surfaces, snow, and water. For geologic materials such 

as rocks and sand, 𝜖𝑚𝑎𝑥 values are set lower than this, typically 0.96, and this value remains fixed. 

For all other surface types, a modification to the original NEM allows for optimization of 𝜖𝑚𝑎𝑥 

using an empirically based process. For the majority of materials in the ASTER spectral library, a 

typical range for 𝜖𝑚𝑎𝑥 is 0.94 < 𝜖𝑚𝑎𝑥 < 1.0. Therefore, for a material at 300 K, the maximum errors 

that NEM temperatures should have are ~±1.5 K, assuming the reflected sky irradiance has been 

estimated correctly. 

2.2.3.5 Subtracting Downwelling Sky Irradiance 

Generally the effects of sky irradiance are small with typical corrections of <1 K (Gillespie 

et al. 1998). However, the contribution becomes larger for pixels with low emissivity (high 

reflectance) or in humid conditions when the sky is warmer than the surface. Over graybody 

surfaces (water and vegetation), the effects are small because of their low reflectivity in all bands. 

The first step of the NEM module is to estimate ground-emitted radiance, which is found by 

subtracting the reflected sky irradiance from the surface radiance term: 

𝑅𝑖 = 𝐿′ − (1 − 𝜖𝑚𝑎𝑥) 𝐿↓ 
𝑠,𝑖 𝜆 (10) 

The NEM temperature, which we call 𝑇𝑁𝐸𝑀, is then estimated by inverting the Planck function for 

each band using 𝜖𝑚𝑎𝑥 and the ground-emitted radiance and then taking the maximum of those 

temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects. 

−1 
𝑐2 𝑐1𝜖𝑚𝑎𝑥 

𝑇𝑖 = 
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(𝑙𝑛 ( 
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(11) 

𝑇𝑁𝐸𝑀 = max(𝑇𝑖) (12) 

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by 𝑇𝑁𝐸𝑀: 

𝜖′ = 
 𝑅𝑖  

𝑖 𝐵𝑖(𝑇𝑁𝐸𝑀) 
(13) 



The new emissivity spectrum is then used to re-calculate 𝑅′ = 𝐿′ − (1 − 𝜖′) 𝐿↓ , and the process 
𝑖 𝑠,𝑖 𝑖 𝜆 

is repeated until convergence, which is determined if the change in 𝑅𝑖 between steps is less than a 

set threshold, 𝑡2, which is set as the radiance equivalent to NEΔT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of 𝑅𝑖 versus iteration, 𝑐, increases such that ∆2𝑅′/∆𝑐2 > 𝑡1, where 𝑡1 is 

also set to radiance equivalent of NEΔT for the sensor (~0.05 K for VIIRS). In this case, correction 

is not possible, TES is aborted, and NEM values of 𝜖𝑖 and 𝑇𝑁𝐸𝑀 are reported in the QA data plane, 

along with an error flag. TES is also aborted and an error flag recorded if, for any iteration, the 

values of 𝜖𝑖 fall out of reasonable limits, set to 0.5 < 𝜖𝑖 < 1.0. See Figure 8 for a detailed 

description of these steps. 

2.2.3.6 Refinement of 𝝐𝒎𝒂𝒙 

Most pixels at VIIRS resolution (750 m) will contain a mixed cover type consisting of 

vegetation and soil, rock and water. The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial 𝜖𝑚𝑎𝑥 = 0.99 may be set to high and refinement of 𝜖𝑚𝑎𝑥 is necessary to 

improve accuracy of 𝑇𝑁𝐸𝑀. The optimal value for 𝜖𝑚𝑎𝑥 minimizes the variance, 𝜈, of the NEM 

calculated emissivities, 𝜖𝑖. The optimization of 𝜖𝑚𝑎𝑥 is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for 𝜖𝑚𝑎𝑥= 0.99 is 

less than an empirically determined threshold (e.g., 𝑉1 = 1.7 × 10−4 for ASTER ) (Gillespie et al. 

1998). If the variance is greater than 𝑉1, then the pixel is assumed to predominately consist of 

either rock or soil. For this case, 𝜖𝑚𝑎𝑥 is reset to 0.96, which is a good first guess for most rocks 

and soils in the ASTER spectral library, which typically fall between the 0.94 and 0.99 range. For 

VIIRS the 𝜖𝑚𝑎𝑥 values is set to 0.97, a typical value for bare surfaces in the 12 µm range. If the 

first condition is met, and the pixel is a near-graybody, then values for 𝜖𝑚𝑎𝑥 of 0.92, 0.95, 0.97, 

and 0.99 are used to compute the variance for each corresponding NEM emissivity spectrum. A 

plot of variance 𝜈 versus each 𝜖𝑚𝑎𝑥 value results in an upward-facing parabola with the optimal 

𝜖𝑚𝑎𝑥 value determined by the minimum of the parabola curve in the range 0.9 < 𝜖𝑚𝑎𝑥 < 1.0. This 

minimum is set to a new 𝜖𝑚𝑎𝑥value, and the NEM module is executed again to compute a new 

𝑇𝑁𝐸𝑀. Further tests are used to see if a reliable solution can be found for the refined 𝜖𝑚𝑎𝑥. If the 

parabola is too flat, or too steep, then refinement is aborted and the original 𝜖𝑚𝑎𝑥 value is used. 



The steepness condition is met if the first derivative (slope of 𝜈 vs. 𝜖𝑚𝑎𝑥) is greater than a set 

threshold (e.g., 𝑉2 = 1.0 × 10−3 for ASTER) and the flatness conditions is met if the second 

derivative is less than a set threshold (e.g., 𝑉3 = 1.0 × 10−3 for ASTER). Finally, if the minimum 

𝜖𝑚𝑎𝑥 corresponds to a very low 𝜈, then the spectrum is essentially flat (graybody) and the original 

𝜖𝑚𝑎𝑥 = 0.99 is used. This condition is met if 𝜈𝑚𝑖𝑛 < 𝑉4 (e.g., 𝑉2 = 1.0 × 10−4). 

2.2.3.7 Ratio Module 

In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

𝛽𝑖 spectrum as follows: 
 

𝜖𝑖 
𝛽𝑖 = 

𝜖 
 (14) 

Typical ranges for the 𝛽𝑖 emissivities are 0.75 < 𝛽𝑖 < 1.32, given that typical emissivities range 

from 0.7 to 1.0. Errors in the 𝛽𝑖 spectrum due to incorrect NEM temperatures are systematic. 

2.2.3.8 MMD Module 

In the MMD module, the 𝛽𝑖 emissivities are scaled to an actual emissivity spectrum using 

information from the spectral contrast or MMD of the 𝛽𝑖 spectrum. The MMD can then be related 

to the minimum emissivity, 𝜖𝑚𝑖𝑛, in the spectrum using an empirical relationship determined from 

lab measurements of a variety of different spectra, including rocks, soils, vegetation, water, and 

snow/ice. From 𝜖𝑚𝑖𝑛, the actual emissivity spectrum can be found by re-scaling the 𝛽𝑖 spectrum. 

First, the MMD of the 𝛽𝑖 spectrum is found by: 

𝑀𝑀𝐷 = max(𝛽𝑖) − min(𝛽𝑖) (15) 

Then MMD can be related to 𝜖𝑚𝑖𝑛 using a power-law relationship: 
 

𝜖𝑚𝑖𝑛 = 𝛼1 − 𝛼2𝑀𝑀𝐷𝛼3 , (16) 

where 𝛼𝑗 are coefficients that are obtained by regression using lab measurements. 

The relationship between MMD and 𝜖𝑚𝑖𝑛 is physically reasonable and is 

determined using a set of laboratory spectra in the ASTER spectral library v2.0 (Baldridge et al. 

2009) and referred to as the calibration curve. The original ASTER regression coefficients were 

determined from a set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and 

snow supplied by J.W. Salisbury from Johns Hopkins University. One question that needed to be 

answered was whether using a smaller or larger subset of this original set of spectra changed the 

results in any manner. Establishing a reliable MMD vs. 𝜖𝑚𝑖𝑛 relationship with a subset of spectral 

representing all types of surfaces is a critical assumption for the calibration curve. This assumption 



was tested using various combinations and numbers of different spectra (e.g., Australian rocks, 

airborne data, and a subset of 31 spectra from Salisbury), and all yielded very similar results to the 

original 86 spectra. 

For VIIRS, the original 86 spectra were updated to include additional sand spectra used to 

validate the North American ASTER Land Surface Emissivity Database (NAALSED) (Hulley and 

Hook 2009b) and additional spectra for vegetation from the MODIS spectral library and ASTER 

spectral library v2.0, giving a total of 150 spectra. The data were convolved to the three VIIRS 

TIR bands and 𝜖𝑚𝑖𝑛 and 𝛽𝑖 spectra calculated using equation (20) for each sample. The MMD for 

each spectrum was then calculated from the 𝛽𝑖 spectra and regressed to the 𝜖𝑚𝑖𝑛 values. The 

relationship follows a simple power law given by equation (22), with regression coefficients 𝛼1= 

0.997, 𝛼2 = 0.7050, and 𝛼3 = 0.7430 (graybody), and as 𝛼1= 0.9864, 𝛼2 = 0.7711, and 𝛼3 = 

0.8335 (desert). Figure 9 shows the power-law relationship between MMD and 𝜖𝑚𝑖𝑛 using the 

150 lab spectra. 

 

Figure 9. VIIRS calibration curve of minimum emissivity vs. MMD. The lab data (crosses) are computed from 

150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, vegetation, and ice). 

 
 

The TES emissivities are then calculated by re-scaling the 𝛽𝑖 emissivities: 
 

𝜖𝑇𝐸𝑆 = 𝛽 (
 𝜖𝑚𝑖𝑛  

) 
𝑖 𝑖  min(𝛽𝑖) 

 

(17) 



 

  
 

 

 

 

 
 

Figure 10. Clockwise from top left: VIIRS land surface emissivity for band M14 (8.55 µm); band M15 (10.76 µm), 

surface temperature (K) and band M15 emissivity (12 µm); output from the TES algorithm over northeast Africa 

on 13 January 2014. 

An example VNP21 emissivity output image for band M14 (8.55 µm) is shown in Figure 

10 for one VIIRS granule on 13 January 2015 over the Sahara desert. Bare areas generally have 

emissivity <0.85, while graybody surfaces have higher emissivities, >0.95. Corresponding VNP21 

surface temperature output image is shown in Figure 10. 

Note that, for pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of 

MMD calculated from TES is compromised and approaches a value that depends on measurement 

error and residual errors from incomplete atmospheric correction. For ASTER, which has a NEΔT 

of 0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was 

explored to correct the apparent MMD using Monte Carlo simulations. For VIIRS (NEΔT of 0.05 

K), we expect measurement errors to be minimal and atmospheric effects to be the largest 

contribution to MMD errors. A further problem for graybody surfaces is a loss of precision for low 

MMD values. This is due to the shape of the power-law curve of 𝜖𝑚𝑖𝑛 vs. MMD at low MMD 



𝜆 

𝑚𝑎𝑥 

values, where small changes in MMD can lead to large changes in 𝜖𝑚𝑖𝑛. To address these issues, 

the ASTER TEWG initially proposed a threshold classifier for graybody surfaces. 

If MMD < 0.03, the value of 𝜖𝑚𝑖𝑛 in equation (22) was set to 0.983, a value typical for 

water and most vegetated surfaces. However, this classification was later abandoned as it 

introduced large step discontinuities in most images (e.g., from vegetation to mixed-cover types). 

The consequence of removing the threshold classifier was that, over graybody surfaces, errors in 

emissivity could range from 0.01 to 0.05 (0.5 K to 3 K) due to measurement error and residuals 

errors from atmospheric correction (Gustafson et al. 2006; Hulley and Hook 2009b). For VNP21, 

we use original TES without classification and the WVS method to correct the atmospheric 

parameters on a pixel-by-pixel basis. 

For bare surfaces (rocks, soils, and sand), the error in NEM-calculated T may be as much 

as 2–3 K, assuming a surface at 340 K due to the fixed assumption of 𝜖𝑚𝑎𝑥 = 0.96. This error can 

be corrected by recalculating T using the TES retrieved maximum emissivity, 𝜖𝑇𝐸𝑆 , and the 

atmospherically corrected radiances, 𝑅𝑖. The maximum emissivity used as correction for reflected 

𝐿↓ will be minimal. 
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(18) 

In the original ASTER TES algorithm, a final correction is made for sky irradiance using 

the TES temperature and emissivities; however, this was later removed, as correction was minimal 

and influenced by atmospheric correction errors. This additional correction is not used for the 

VNP21 algorithm. 

2.2.3.9 Atmospheric Effects 

The accuracy of the atmospheric correction technique used to estimate the surface radiance 

relies on the accuracy of the variables input to the radiative transfer model (e.g., air temperature, 

relative humidity, and ozone). These atmospheric errors tend to be highly correlated from band to 

band, since each channel has a characteristic absorbing feature. As a result, the effect on TES 

output is usually relatively small, but if these errors are uncorrelated from band to band then much 

larger errors can occur, particularly for graybodies, where small changes in MMD can significantly 

alter the shape of the emissivity spectrum. For example, over water bodies, errors in emissivity of 



up to 3% (0.03) have been found due to uncompensated atmospheric effects (Hulley and Hook 

2009b; Tonooka and Palluconi 2005). 

One method for improving the accuracy of the surface radiance product is to apply the 

WVS method (Tonooka 2005). Using 183 ASTER scenes over lakes, rivers, and sea surfaces, it 

was found that using the WVS method instead of the standard atmospheric correction improved 

estimates of surface temperature from 3 to 8 K in regions of high humidity (Tonooka 2005). These 

are substantial errors when considering that the required accuracy of the TES algorithm is ~1 K 

(Gillespie et al. 1998). This will also be demonstrated in the latter part of this document. 

 
3 VIIRS and MODIS LST&E continuity 

 
LST data are acknowledged as a key Environmental Data Records (EDRs) by the NASA 

Earth Science Division, and an Essential Climate Variable (ECV) by the Global Climate Observing 

System (GCOS). As such, it is critical that LST data are produced with high accuracy and 

precision, but more importantly, that they are produced with consistent algorithms across different 

sensor platforms in order to maintain a continuous and well characterized data record. This is 

especially important for the VIIRS LST product on Suomi-NPP, which bridges the gap between 

NASA's EOS satellites and the next generation JPSS platforms. A long, stable record of LST is 

critical for monitoring climate trends, reducing systematic biases in land surface models, and is 

particularly useful for model evaluation in regions where few in situ measurements of surface air 

temperatures exist. 

The current operational NOAA VIIRS LST EDR utilizes a split-window algorithm that 

relies on previously-generated emissivity dependent coefficients, and therefore does not produce 

a dynamically varying and multi-spectral land surface emissivity product. Furthermore, this 

algorithm deviates from the generalized split-window used in its MODIS counterpart (MOD11), 

resulting in a discontinuity in the current MODIS/VIIRS LST time series as previously reported 

by Guillevic et al. [18], who showed biases between the products of up to 4 K over arid regions 

and differences of up to 15 K for warm and moist atmospheric conditions. In addressing these 

issues, one of the main objectives of this study was to present an alternative physics-based 

algorithm (TES) for generation of the NASA VIIRS LST&E EDR in order to provide continuity 

with its MODIS TES counterpart (MOD21, Collection 6) [20]. 



As a demonstration of this, we show results of LST differences derived from two different 

approaches - the TES (present study) and the Split-Window (heritage) algorithms using MODIS 

Aqua/VIIRS Simultaneous Nadir Overpasses (SNOs) identified using the same matchup tool 

methodology as defined by Guillevic et al. [18]. Four months of data (Jan, Feb, and Aug Sep 2012) 

were used over the southwestern USA with a wide range of environmental conditions 

(temperatures from 260 - 340 K, precipitable water vapor from 0 - 5 cm), and including all land 

cover types identified in the IGBP classification. 

Figure 11 shows LST differences between MODIS and VIIRS for the TES approach (top 

left), and split-window approaches (top right). Corresponding VIIRS retrieved LST and 

precipitable water vapor (PWV) extracted from MERRA-2 are also shown in the bottom panels. 

The LST differences between the VIIRS and MODIS TES approach are small and in general less 

than 0.5 K, with no dependence on environmental conditions or cover type, while the SW product 

differences are as high as 20 K over parts of the Sonoran and Mojave desert, for example. These 

large LST differences in the SW products are directly associated with high PWV and LST values 

as previously discussed in Guillevic et al. [18] which introduce large uncertainty in the VIIRS SW 

algorithm. This is because a single set of coefficients in the VIIRS SW algorithm are not able to 

capture and are not fully representative of extreme conditions such as these that introduce large 

nonlinearities in the Planck function. 

Figure 12 shows histograms of LST differences between the VIIRS and MODIS products 

for a full set of 4 months of MODIS/VIIRS SNO’s over CONUS during Jan, Feb, Aug, and Sep 

2012, and show almost negligible bias (0.3 K) for the TES approach as opposed to a large positive 

bias in the SW approach (2 K). Larger differences of up to 3 K RMSE are found during the summer 

months (Aug, Sep) for the split-window products due to warmer and more humid conditions, while 

the TES results are unchanged. Discarding algorithmic differences, other sources of LST 

differences include view angle configuration differences, calibration, and differences in cloud 

masking between MODIS and VIIRS sensors. 

Figure 13 shows VIIRS minus MODIS LST RMSE for the split-window algorithms and 

TES algorithm calculated from 4 months of MODIS and VIIRS SNO’s over CONUS during Jan, 

Feb, Aug, and Sep 2012. LST differences were grouped according to standard IGBP classification. 

Note large differences in the split-window results especially for arid and semi-arid classes 

(shrublands, bare), while TES results are consistent and less than 1 K across all cover types. 



 
 

  
 

 

 

Figure 11. Differences between the VIIRS and MODIS LST products in K using the TES algorithm (top left) and 

the split-window algorithm (top right). Corresponding VIIRS LST (bottom left) and MERRA-2 precipitable water 

vapor in cm (bottom right) are also shown. The granule overpass is on 11 August 2012 UTC 2040. 

Quantification of LST&E retrieval uncertainty was estimated using the Temperature 

Emissivity Uncertainty Simulator (TEUSim) developed by Hulley et al. [25]. TEUSim was 

developed to quantify the effects of algorithmic, atmospheric, and measurement uncertainties on 

the retrieval of LST and emissivity from a number of sensors including MODIS VIIRS, ASTER, 

and Landsat TIR data. The uncertainties are estimated with radiative transfer simulations 



(MODTRAN 5.2) using 382 global radiosonde profiles [68] and 155 surface emissivity spectra 

[59] as input for a range of viewing angle configurations and surface temperatures for each profile. 

To estimate the total LST&E uncertainty a random error of 20% was assigned to the water vapor 

profiles, and 2 K to the air temperature profiles. The VIIRS IDPS split-window algorithm, MOD11 

generalized split-window algorithm, and MODIS/VIIRS TES algorithm were then used to 

retrieved LST from the simulated radiances. Emissivity spectra were assigned according to IGBP 

to assign the appropriate coefficients for the split-window algorithms. Figure 14 shows LST 

differences between MODIS and VIIRS vs total column water vapor and LST for the split-window 

algorithms (top), and TES algorithm (bottom). Differences in formulation, coefficient generation, 

and emissivity assignment result in large differences between the current MODIS and VIIRS split- 

window LST products of up to 15 K for warm and humid conditions, while the TES algorithm 

differences are at the <0.5 K level since a consistent algorithm was used to retrieve LST&E from 

the 3 MODIS/VIIRS TIR bands. 

 
 

 

 

Figure 12. (Top) Histogram demonstrating the differences between VIIRS and MODIS LST products for all 

observations over continental USA (CONUS) during Jan, Feb, Aug, and Sep 2012 for two different algorithms: 

TES and split-window. The TES algorithm is currently used to produce the NASA LST&E products for MODIS 

and VIIRS (MOD21 and VNP21), while the split-window algorithm is used in the to produce the heritage MOD11 

product(s) and the NOAA VLST product. (Bottom) same as above except only data for summer time (Aug, Sep). 



 
 

 

 

Figure 13. VIIRS minus MODIS LST RMSE for the split-window algorithms (top) and TES algorithm (bottom) 

calculated from 4 months of MODIS and VIIRS SNO’s over CONUS during Jan, Feb, Aug, and Sep 2012. LST 

differences were grouped according to standard IGBP classification. Note large differences in the split-window 

results especially for arid and semi-arid classes (shrublands, bare), while TES results are consistent and less 

than 1 K across all cover types. 



 
 

 
 
 

Figure 14. LST differences between MODIS and VIIRS vs total column water vapor and LST for the split-window 

algorithms (top), and TES algorithm (bottom). Differences in formulation, coefficient generation, and emissivity 

assignment result in large differences between the current MODIS and VIIRS split-window LST products. 



4 Validation and Product Accuracy 

 
Two methods have been established for validating VIIRS LST data: a conventional T- 

based method and an R-based method (Wan and Li 2008). The T-based method requires ground 

measurements over thermally homogenous sites concurrent with the satellite overpass, while the 

R-based method relies on a radiative closure simulation in a clear atmospheric window region to 

estimate the LST from top of atmosphere (TOA) observed brightness temperatures, assuming the 

emissivity is known from ground measurements. The T-based method is the preferred method, but 

it requires accurate in-situ measurements that are only available from a small number of thermally 

homogeneous sites concurrently with the satellite overpass. The R-based method is not a true 

validation in the classical sense, but it does not require simultaneous in-situ measurements and is 

therefore easier to implement both day and night over a larger number of global sites; however, it 

is susceptible to errors in the atmospheric correction and emissivity uncertainties. The MOD11_L2 

LST product has been validated with a combination of T-based and R-based methods over more 

than 19 types of thermally homogenous surfaces including lakes (Hook et al. 2007), dedicated field 

campaign sites over agricultural fields and forests (Coll et al. 2005), playas and grasslands (Wan 

et al. 2004; Wan 2008), and for a range of different seasons and years. LST errors are generally 

within ±1 K for all sites under stable atmospheric conditions except semi-arid and arid areas, which 

had errors of up to 5 K (Wan and Li 2008). 

Validation of emissivity data from space ideally requires a site that is homogeneous in 

emissivity at the scale of the imagery, allowing several image pixels to be validated over the target 

site. The nine sand dune validation sites chosen for the ASTER study and planned for use with the 

VNP21 product are: Great Sands National Park, Colorado; White Sands National Monument, New 

Mexico; Kelso Dunes, California; Algodones Dunes, California; Stovepipe Wells Dunes, 

California; Coral Pink Sand Dunes, Utah; Little Sahara Dunes, Utah; Killpecker Dunes, Wyoming; 

and Moses Lake Basalt Dunes, Washington. R-based validation of the VNP21 product is currently 

underway over these nine pseudo-invariant sites in southwestern United States, and the Lake 

Tahoe and Salton Sea cal/val sites. 

Summarizing, for the VNP21 product we plan to use in-situ data from a variety of ground 

sites covering the majority of different land-cover types defined in the International Geosphere- 



Biosphere Programme (IGBP). The sites will consist of water, vegetation (forest, grassland, and 

crops), and barren areas (Table 3). 

Table 3. The core set of global validation sites according to IGBP class to be used for validation and calibration 

of the VIIRS VNP21 land surface temperature and emissivity product. 

 

IGBP Class Sites 

0 Water Tahoe, Salton Sea, CA 

1,2 Needle-leaf forest Krasnoyarsk, Russia; Tharandt, Germany; Fairhope, Alaska 

3,4,5  Broad-leaf/mixed forest Chang Baisan, China; Hainich, Germany; Hilo, Hawaii 

6,7 Open/closed shrublands Desert Rock, NV; Stovepipe Wells, CA 

8,9,10 Savannas/Grasslands Boulder, CO; Fort Peck, MT 

12 Croplands Bondville, IL; Penn State, PA; Sioux Falls, SD; Goodwin Creek, MS 

16 Barren Algodones Dunes, CA; Great Sands, CO; White Sands, NM; Kelso Dunes, CA; Namib 
Desert, Namibia; Kalahari Desert, Botswana 

4.1 Water Sites 

For water surfaces, we will use the Lake Tahoe, California/Nevada, and Salton Sea, CA, 

automated validation sites where measurements of skin temperature have been made every two 

minutes and are used to validate the mid and thermal infrared data and products from ASTER and 

MODIS (Hook et al. 2007). Water targets are ideal for cal/val activities because they are thermally 

homogeneous and the emissivity is generally well known. A further advantage of Tahoe site is that 

the lake is located at high altitude, which minimizes atmospheric correction errors, and is large 

enough to validate sensors from pixel ranges of tens of meters to several kilometers. 

Figure 15 shows emissivity spectra over the Salton Sea, showing the effects of applying 

the WVS atmospheric correction method on the shape of the emissivity spectrum when compared 

to using the standard (STD) correction method without WVS. The emissivity spectrum of water is 

high (~0.98) and flat and the results in Figure 11 show a dramatic improvement in emissivity 

accuracy in both magnitude (up to 0.06 for ASTER band 11, and 0.09 for MODIS band 29) and 

spectral shape when using the WVS as opposed to the STD method. Because of the humid day, 

where MOD07 precipitable water vapor (PWV) values were around 4 cm over the water, the 

spectral contrast of the STD emissivity results are overestimated for ASTER and MODIS data. 

However, when applying the WVS method, the ASTER emissivity spectra fall within 0.015 of the 



lab-measured spectrum, while MODIS emissivity spectra are within 0.005 at all wavelengths. 

Differences between the 3- and 5-band TES algorithm applied to ASTER data were small. 

Figure 16 shows the LST validation results for the two inland water validation sites using 

a total of 31 matched-up VIIRS overpasses in 2014. The results show that VNP21 LST retrievals 

are in good agreement with in situ radiometer LSTs at both sites with a mean bias of 0.50 K, R2 of 

0.98 and RMSE of 1.41 K. In the figure, validation points for Lake Tahoe are shown with red 

points, and validation points for the Salton Sea site are shown with blue points. From the figure 

we can see that the Salton Sea site generally has higher lake temperatures (up to 307 K) than Lake 

Tahoe (less than ~295 K) for this set of observations. 

 

 

Figure 15. Emissivity spectra comparisons on June 15, 2000 over the Salton Sea between ASTER (3-band), 

ASTER (5-band), and MODTES, using the TES algorithm along with lab spectra of water from the ASTER 

spectral library. Results from the WVS method and the STD atmospheric correction are also shown. An 

estimate of the PWV from the MOD07 atmospheric product indicates very high humidity on this day. 



 

 

Figure 16. Scatterplot of VNP21 retrieved LST vs JPL radiometer LST at the inland water validation sites. 

 
4.2 Vegetated Sites 

For vegetated surfaces (forest, grassland, savanna, and crops), we will use a combination 

of data from the Surface Radiation Budget Network (SURFRAD), FLUXNET, and NOAA-CRN 

sites. For SURFRAD, we will use a set of six sites established in 1993 for the continuous, long- 

term measurements of the surface radiation budget over the United States through the support of 

NOAA’s Office of Global Programs (http://www.srrb.noaa.gov/surfrad/). The six sites (Bondville, 

IL; Boulder, CO; Fort Peck, MT; Goodwin Creek, MS; Penn State, PA; and Sioux Falls, SD) are 

situated in large, flat agricultural areas consisting of crops and grasslands and have previously been 

used to assess the MODIS and ASTER LST&E products with some success (Augustine et al. 2000; 

Wang and Liang 2009). From FLUXNET and the Carbon Europe Integrated Project 

(http://www.carboeurope.org/), we will include an additional four sites to cover the broadleaf and 

needleleaf forest biomes (e.g., Hainich and Tharandt, Germany; Chang Baisan, China; 

Krasnoyarsk, Russia), using data from the FLUXNET as well as data from the EOS Land 

Validation Core sites (http://landval.gsfc.nasa.gov/coresite_gen.html). Furthermore, the U.S. 

Climate Reference Network (USCRN) has been established to monitor present and future long- 

term climate data records (http://www.ncdc.noaa.gov/crn/). The network consists of 114 stations 

in the continental United States and is monitored by NOAA’s National Climatic Data Center 

(NCDC). Initially, we plan to use the Fairhope, Alaska, and Hilo, Hawaii, sites from this network. 

http://www.srrb.noaa.gov/surfrad/
http://www.carboeurope.org/
http://landval.gsfc.nasa.gov/coresite_gen.html
http://www.ncdc.noaa.gov/crn/


4.3 Pseudo-invariant Sand Dune Sites 
 

For LST and emissivity validation over arid regions, we will use a set of nine pseudo- 

invariant, homogeneous sand dune sites in the southwestern United States (Hulley et al. 2009a) 

that were used for validating ASTER and MODIS products, and two sites over large sand dune 

seas in the Namib and Kalahari deserts in Southern Africa (Hulley et al. 2009b) used for validating 

AIRS. The emissivity and mineralogy of samples collected at these sites have been well 

characterized and are described by Hulley et al. (2009a). 

Pseudo-invariant ground sites such as playas, salt flats, and claypans have been 

increasingly recognized as optimal targets for the long-term validation and calibration of visible, 

shortwave, and thermal infrared data (Bannari et al. 2005; Cosnefroy et al. 1996; de Vries et al. 

2007; Teillet et al. 1998). We have found that large sand dune fields are particularly useful for the 

validation of TIR emissivity data (Hulley and Hook 2009a). Sand dunes have consistent and 

homogeneous mineralogy and physical properties over long time periods. They do not collect 

water for long periods as playas and pans might, and drying of the surface does not lead to cracks 

and fissures, typical in any site with a large clay component, which could raise the emissivity due 

to cavity radiation effects (Mushkin and Gillespie 2005). Furthermore, the mineralogy and 

composition of sand samples collected in the field can be accurately determined in the laboratory 

using reflectance and x-ray diffraction (XRD) measurements. In general, the dune sites should be 

spatially uniform and any temporal variability due to changes in soil moisture and vegetation cover 

should be minimal. Ideally, the surface should always be dry, since any water on the surface can 

increase the emissivity by up to 0.16 (16%) in the 8.2–9.2-μm range depending on the type of soil 

(Mira et al. 2007). 

4.3.1 Emissivity Validation 
 

Seasonal changes in vegetation cover, aeolian processes such as wind erosion, deposition 

and transport, and daily variations in surface soil moisture from precipitation, dew, and snowmelt 

are the primary factors that could potentially affect the temporal stability and spatial uniformity of 

the dune sites. Field observations during the spring and early summer of 2008 revealed that the 

major portion of the dune sites was bare, with the exception of Kelso and Little Sahara, which 

contained sparse desert grasses and reeds on the outer perimeter of the dune field and in some 

interdunal areas. Nonetheless, this does not mean the other seven dune sites did not have vegetation 



in the past, since 2000. The presence of soil moisture would result in a significant increase in TIR 

emissivity at the dune sites, caused by the water film on the sand particles decreasing its reflectivity 

(Mira et al. 2007; Ogawa et al. 2006), particularly for VIIRS band M14 in the quartz Reststrahlen 

band. However, given that the majority of dune validation sites are aeolian (high winds), at high 

altitude (low humidity), and in semi-arid regions (high skin temperatures), the lifetime of soil 

moisture in the first few micrometers of the surface skin layer as measured in the TIR is most 

likely small due to large sensible heat fluxes and, therefore, high evaporation rates, in addition to 

rapid infiltration. Consequently, we hypothesize that it would most likely take a very recent 

precipitation event to have any noticeable effect on remote-sensing observations of TIR emissivity 

over these types of areas. 

Figure 17 shows emissivity spectra from sand dune samples collected at ten sand dune sites 

in the southwestern United States. The spectra cover a wide range of emissivities in the TIR region. 

These sites will be the core sites used to validate the emissivity (as well as LST) products from 

VIIRS. 

 

Figure 17. Laboratory-measured emissivity spectra of sand samples collected at ten pseudo-invariant sand 

dune validation sites in the southwestern United States. The sites cover a wide range of emissivities in the TIR 

region. 



4.3.2 Emissivity comparison with ASTER GED 
 

For the assessment of the VNP21 retrieved emissivity product, we inter-compare the 

VNP21 retrievals with emissivity spectra derived from ASTER GEDv3 (Hulley et al. 2015). The 

ASTER GED is a global emissivity dataset developed using millions of cloud free ASTER 

retrieved emissivity data over a 9-year period (2000-2008), and aggregated and mosaicked to 

produce a gridded global map. Recently, version 3 of the dataset has been made available that 

provides an average surface emissivity at the five ASTER TIR wavelengths (8.3, 8.6, 9.1, 10.6, 

and 11.3 µm) and in two different resolutions - 3 arc sec (~100 m) and 30 arc sec (~1 km). 

ASTER GEDv3 has been extensively validated in the past over mostly arid and semi-arid regions 

with an average absolute band error of ~1% (Hulley et al. 2015; Hulley et al. 2009a). 

Figure 18 shows a comparison between ASTER GED emissivity and emissivity retrieved 

from the VNP21 algorithm at the band M14 for a VIIRS granule over the southwestern USA on 

19 June 2014 UTC 2050. As shown in this figure, the entire region is spatially heterogeneous 

with emissivites ranging from 0.7 over quartz sands of the Algodones dunes to near 1 over water 

targets such as the Salton Sea and dense vegetation. Overall, the spatial patterns of emissivity 

variability between the ASTER GED and VNP21 retrieved emissivity compare well. The 

corresponding emissivity difference image and histogram plot showing the differences between 

the two emissivity fields (VNP21 – ASTER GED) are shown in the bottom panels of the figure. 

The emissivity difference histogram has a uni-modal peak with mean and standard deviation of 

0.008 and 0.012, respectively. The ~1% bias is within the uncertainty estimated from the ASTER 

adjustment method, and the retrieval accuracy of the TES algorithm. Note that, a few granules 

were selected in each month for comparison so that the comparisons were not biased towards a 

particular season, or temperature range. The mean difference between VNP21 and ASTER GED 

for each band is negligible and at the 0.1% level (RMSE = ~0.01). This highlights the 

consistency between the VNP21 and ASTER GED emissivity spectra for the three TIR bands. 

Figure 19 shows a comparison between VNP21 retrieved emissivity and corresponding 

ASTER GED v3 emissivity spectra. A total of 30 collocation samples during 2014 have been 

made available for the inter-comparison in clear-sky conditions at each site. At least two cloud 

free samples were selected from every month in the year for the comparison. Figure 19 shows a 

comparison between the mean emissivity spectra for the three VIIRS TIR bands and 

corresponding emissivity spectra from the ASTER GED at the sand dunes sites. The error bars 



represent the temporal variability of the emissivity values. The original five band ASTER GED 

emissivity spectra were spectrally adjusted to the three VIIRS TIR bands as described earlier. In 

general, there is a very good agreement in the spectral shape and absolute value between the 

VNP21 retrieval and the ASTER GED adjusted emissivity spectra at the four assessment sites 

with mean differences ranging from 0.01-0.02 in band M14 (8.55 μm). The mean emissivity 

differences between the VNP21 and the ASTER GED for band M15 (10.76 μm) and M16 (12.01 

μm), are less than 0.01. 



  
 

 

Figure 18. The emissivity maps from the VNP21 retrieval (top left) and the ASTER GED (top right) at the VIIRS 

band M14 (8.55 µm). Corresponding emissivity difference map (bottom left) and the histogram of their 

differences (bottom right) are also shown. The ASTER GED emissivity is adjusted to the VIIRS M14 band (~8.55 

µm) for comparison. The granule overpass is on 19 June 2014 UTC 2050. 



 
 

Figure 19. Emissivity spectra comparison between VNP21 retrieved emissivity and the ASTER GED v3 

emissivities that were spectrally and spatially adjusted to match VIIRS at 4 pseudo-invariant sand dune sites. 

 
 

4.3.3 LST Validation 
 

For LST validation over the sand dune sites, we will use a recently established R-based 

validation method (Coll et al. 2009b; Wan and Li 2008). The advantage of this method is that it 

does not require in-situ measurements, but instead relies on atmospheric profiles of temperature 

and water vapor over the site and an accurate estimation of the emissivity. The R-based method is 

based on a ‘radiative closure simulation’ with input surface emissivity spectra from either lab or 

field measurements, atmospheric profiles from an external source (e.g., model or radiosonde), and 

the retrieved LST product as input. A radiative transfer model is used to forward model these 

parameters to simulate at-sensor BTs in a clear window region of the atmosphere (11–12 µm). The 



input LST product is then adjusted in 2-K steps until two calculated at-sensor BTs bracket the 

observed BT value. An estimate of the ‘true’ temperature ( 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 ) is then found by 

interpolation between the two calculated BTs, the observed BT, and the initial retrieved LST used 

in the simulation. The LST error, or uncertainty in the LST retrieval is simply found by taking the 

difference between the retrieved LST product and the estimate of 𝐿𝑆𝑇𝑅−𝑏𝑎𝑠𝑒𝑑. This method has 

been successfully applied to MODIS LST products in previous studies (Coll et al. 2009a; Wan and 

Li 2008; Wan 2008). For VIIRS data, band M15 (10.78–11.28 µm) is typically used for the 

simulation since it is the least sensitive to atmospheric absorption in the longwave region. The 

advantage of the R-based method is that it can be applied to a large number of global sites where 

the emissivity is known (e.g., from field measurements) and during night- and daytime 

observations to define the diurnal temperature range. 

The archive of all North American VIIRS data, as defined by the bounding box 22° to 71° 

N and 55° to 169° W, is used in this process for each pseudo-invariant site. Each scene is tested to 

see if it contained the location of interest. Scenes that did not contain the point of interest were 

eliminated, as were scenes in which the point was located either along scene margins (the first or 

last row or column of pixels) or whose viewing angle exceeded 40°. Finally, scenes in which the 

pixel of interest was cloudy, or had greater than three neighboring pixels that were cloudy, were 

eliminated. Any scene remaining at this point was used for determination of LST. LST data were 

derived either directly from the VLST product or calculated locally using the algorithm for the 

VNP21 product. Following LST retrieval, atmospheric profiles over the pseudo-invariant site were 

obtained from either the MERRA model. Together with the original land surface temperature from 

VLST, these values were then used as input to RTTOV to calculate the Top Of Atmosphere 

Radiance. 

Wan and Li (2008) proposed a quality check to assess the suitability of the atmospheric 

profiles by looking at differences between observed and calculated BTs in two nearby window 

regions with different absorption features. For example, the quality check for VIIRS bands M14 

and M15 at 11 and 12 µm is: 

𝛿(𝑇11 − 𝑇12) = (𝑇𝑜𝑏𝑠 − 𝑇𝑜𝑏𝑠) − (𝑇𝑐𝑎𝑙𝑐 − 𝑇𝑐𝑎𝑙𝑐) 
11 12 11 12 (19) 

where: 𝑇𝑜𝑏𝑠 and 𝑇𝑜𝑏𝑠 are the observed brightness temperatures at 11 and 12 µm respectively, and 
11 12 

𝑇𝑐𝑎𝑙𝑐 and 𝑇𝑐𝑎𝑙𝑐 are the calculated brightness temperatures from the R-based simulation at 11 and 
11 12 

12 µm respectively. If 𝛿(𝑇11 − 𝑇12) is close to zero, then the assumption is that the atmospheric 



temperature and water vapor profiles are accurately representing the true atmospheric conditions 

at the time of the observation, granted the emissivity is already well known. Because water vapor 

absorption is higher in the 12-µm region, negative residual values of 𝛿(𝑇11 − 𝑇12) imply the R- 

based profiles are overestimating the atmospheric effect, while positives values imply an 

underestimation of atmospheric effects. A simple threshold can be applied to filter out any 

unsuitable candidate profiles for validation (±0.5 K) 

Figure 20 shows error histograms of VIIRS retrieved LST for NASA VNP21 (red) and 

NOAA VLST (black dashed) using the R-based LST as truth for three pseudo-invariant sites and 

2 vegetated sites using all clear-sky VIIRS overpasses from 2012-2015. The results show that the 

VLST split-window algorithm underestimates the LST with a cold bias of 3–5 K at all bare sites 

while VNP21 biases are at the <1.5 K level, with lower RMSE’s. The reason for the VLST cold 

bias is that the emissivity for barren surfaces is assigned one value that is fixed (~0.96 for M15 

band). This causes large LST errors over bare sites where the mineralogy results in emissivities 

lower than that fixed value. The VNP21 algorithm, on the other hand, physically retrieves the 

spectral emissivity for the three VIIRS TIR bands along with the LST, and this results in more 

accurate LST results, particularly over bare regions where emissivity variations can be large, both 

spatially and spectrally. The results at the two vegetated sites (Texas Grass, Redwood) are similar 

for both products with negligible bias and RMSE’s at the 1 K level. Table 4 shows a summary of 

the LST validation statistics at the five sites. 

 
 

Table 4. R-based LST validation statistics from three pseudo-invariant sand dune sites and two vegetated sites 

using all VNP21 and VLST LST retrievals from 2012-2015. 

 

 VNP21 Bias (K) VLST Bias (K)  VNP21 RMSE (K) VLST RMSE (K) 

Algodones dunes 0.39 -2.9 1.4 3.5 

Kelso -1.5 1.9 1.9 4.8 

Little Sahara -1.21 3.9 1.5 4.1 

Redwood National Park 0.21 0.03 1.1 1.2 

Texas Grassland -0.23 -0.29 1.1 1.4 



A) Algodones dunes B) Redwood National Park 

 
 
 
 
 
 

C) Kelso dunes 

 
 
 
 
 
 

D) Texas Grassland 

 
 
 
 
 
 

E) Little Sahara 

 

 



Figure 20. An example of the R-based LST validation method applied to the VNP21 (VTES) and NOAA VLST 

LST products over 3 pseudo-invariant sand dune sites (Algodones, Kelso, Little Sahara) and two vegetated 

sites (Redwood, Texas Grass) using all data during 2012. NCEP profiles and lab-measured emissivities from 

samples collected at the sites were used for the R-based calculations. 

 
 

5 Data Formats 

 
5.1 Format 

VNP21 data will be available in Netcdf/HDF5 Scientific Data Sets (SDSs) format with 

output variables summarized in Table 5. 

Table 5. The Scientific Data Sets (SDSs) in the VNP21 product. 

 
SDS Long Name Data type Units Valid 

Range 
Fill 
Value 

Scale 
Factor 

Offset 

LST Land Surface 
Temperature 

uint16 K 7500- 
65535 

0 0.02 0.0 

QC Quality control for 
LST and emissivity 

uint16 n/a 0-65535 0 n/a n/a 

Emis_M14 Band M14 
emissivity 

uint8 n/a 1-255 0 0.002 0.49 

Emis_M15 Band M15 
emissivity 

uint8 n/a 1-255 0 0.002 0.49 

Emis_M16 Band M16 
emissivity 

uint8 n/a 1-255 0 0.002 0.49 

LST_err Land Surface 
Temperature error 

uint8 K 1-255 0 0.04 0.0 

Emis_M14_err Band M14 
emissivity error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis_M15_err Band M15 
emissivity error 

uint16 n/a 0-65535 0 0.0001 0.0 

Emis_M16_err Band M16 
emissivity error 

uint16 n/a 0-65535 0 0.0001 0.0 

View_angle VIIRS view angle 
for current pixel 

uint8 Deg 0-180 0 0.5 0.0 

NDVI Normalized 
Difference 
Vegetation Index 

uint16 n/a 0-65535 0 0.0001 0.0 

PWV Precipitable Water 
Vapor 

uint16 cm 0-65535 0 0.001 0.0 

Oceanpix Ocean-land mask uint8 n/a 1-255 0 n/a n/a 



𝜆 

5.2 QA Metadata 

The T and 𝜖 products will need to be assessed using a set of quality control (QC) flags. 

These QC flags will involve automatic tests processed internally for each pixel and will depend on 

various retrieval conditions such as whether the pixel is over land or ocean surface, the atmospheric 

water vapor content (dry, moist, very humid, etc.), and cloud cover. The data quality attributes will 

be set automatically according to parameters set on data conditions during algorithm processing 

and will be assigned as either “good”, “unreliable,” or “bad.” Quality. Estimates of the accuracy 

and precision of the T and 𝜖 product will be reported in a separate data plane. At each step in the 

TES algorithm, a variety of performance information will be output, which will give the user a 

summary of algorithm statistics in a spatial context. This type of information will be useful for 

determining surface type, atmospheric conditions, and overall performance of TES. 

The architecture of the VIIRS T and 𝜖 QA data plane will closely resemble that of the 

MOD21 product. A value of 0 in the QC bit flags means good, cloud free data quality and no 

further analysis of the QC bits is necessary. Users may use data of 'unreliable quality' (bits 1&0 = 

01), but caution should be taken since either the retrieved emissivity is suspect (emissivity in both 

longwave bands M14 and M15 < 0.95 indicating possible cloud), the pixel is within 2 pixels of 

nearby detected cloud, the pixel had transmissivity less than 0.4 indicating possible cloud or high 

humidity resulting in higher uncertainty in the TES retrieval. A value of 11 for bits 1&0 indicates 

that the pixel was not produced due to it being an ocean pixel, poorly calibrated radiance data 

based on the L1B uncertainty index flag, or the TES algorithm failed to converge (usually due to 

undetected cloud, but rare). It will consist of header information followed by a 16-bit QA data 

plane. The structure of the QA data plane will consist of the following primary fields, which are 

detailed in Table 6: 

1. Mandatory QA flags describing if the data is produced or not, quality, and cloud. 

2. Data quality: Good, missing, fairly or poorly calibrated. 

3. Cloud Flag: Cloud mask characteristics 

4. Number of iterations needed to remove reflected downwelling sky irradiance. 
 

5. Atmospheric opacity test for humid scenes, using 𝐿↓ /𝐿′ test. 

6. MMD regime: MMD < 0.3 (near-graybody) or MMD > 0.3 (likely bare). 

7. Estimated emissivity accuracy 



8. Estimated LST accuracy 

 

 

Table 6. Bit flags defined in the QC_Day and QC_Night SDS in the VNP21A2 product. (Note: Bit 0 is the least 

significant bit). 

 

Bits Long Name Description 

1&0 Mandatory QA 
flags 

00 = Pixel produced, good quality, no further 
QA info necessary 

01 = Pixel produced but unreliable quality. 
Either one or more of the following conditions 
are met: emissivity in both bands 14 and 15 < 
0.95, retrieval affected by nearby cloud, low 
transmissivity due to high water vapor loading 
(<0.4). Recommend more detailed analysis of 
other QC information 

10 = Pixel not produced due to cloud 

11 = Pixel not produced due to reasons other 
than cloud (e.g. ocean pixel, poorly calibrated 
input radiance, TES algorithm divergence flag) 

3 & 2 Data quality flag 00 = Good data quality of L1B bands 29, 31, 32 

01 = Missing pixel 

10 = Fairly calibrated 

11 = Poorly calibrated, TES processing skipped 

5 & 4 Cloud flag 00 = Cloud free pixel 

01 = Thin cirrus 

10 = Pixel within 2 pixels of nearest cloud 
(~2km) 

11 = Cloud pixel 

7 & 6 TES Iterations (k) 00 = 7 (Slow convergence) 

01 = 6 (Nominal) 

10 = 5 (Nominal) 

11 = <5 (Fast) 

9 & 8 Atmospheric 

Opacity 𝐿↓ /𝐿′ 
𝜆 

00 = 0.3 (Warm, humid air; or cold land) 

01 = 0.2 - 0.3 (Nominal value) 



  10 = 0.1 - 0.2 (Nominal value) 

11 = <0.1 (Dry, or high altitude pixel) 

11 & 10 Min-Max 
Difference (MMD). 
Difference between 
minimum and 
maximum 
emissivity for bands 
M14, M15, M16 

00 = >0.15 (Most silicate rocks) 

01 = 0.1 - 0.15 (Rocks, sand, some soils) 

10 = 0.03 - 0.1 (Mostly soils, mixed pixel) 

11 = <0.03 (Vegetation, snow, water, ice) 

13 & 12 Emissivity accuracy 00 = >0.017 (Poor performance) 

01 = 0.015 - 0.017 (Marginal performance) 

10 = 0.013 - 0.015 (Good performance) 

11 = <0.013 (Excellent performance) 

15 & 14 LST accuracy 00 = >2.5 K (Poor performance) 

01 = 1.5 - 2.5 K (Marginal performance) 

10 = 1 - 1.5 K (Good performance) 

11 = <1 K (Excellent performance) 
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