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I. Members of the team 
This Global Food Security-support Analysis Data (GFSAD) Landsat-derived Global Rainfed and 

Irrigated-Cropland Product @ 30-m (LGRIP30) of the World (GFSADLGRIP30WORLD) was 

produced by the following team members. Their specific role is mentioned below: 

 

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute 

(BAERI) co-led (with Prasad) the GFSADLGRIP30WORLD product generation effort. Dr. Telu-

guntla was instrumental in the designing, coding, computing, analyzing, and synthesis of the Land-

sat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30) for the nominal 

year 2015. He was also instrumental in writing the manuscripts, ATBDs, and user documentations. 

 

Dr. Prasad S. Thenkabail, Senior Scientist (ST), United States Geological Survey, is the Princi-

pal Investigator (PI) of the GFSAD project. Dr. Thenkabail was instrumental in developing the 

conceptual framework of the GFSAD project and co-led the (with Pardha) design and development 

of the Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30) for the 

nominal year 2015. He was also instrumental in writing the manuscripts, ATBDs, and user docu-

mentations. 

 

Mr. Adam Oliphant, Geographer, United States Geological Survey (USGS), shared his expertise 

in cloud computing and Machine Learning Algorithm implementation in Google Earth Engine 

(GEE) for LGRIP30 product generation. 

 

Dr. Murali Krishna Gumma, Principal Scientist at the International Crops Research Institute for 

the Semi-Arid Tropics (ICRISAT), helped collect reference data used in the machine learning al-

gorithms and in validation of the LGRIP30 products. 

 

Dr. Itiya Aneece, Research Geographer, United States Geological Survey (USGS), provided val-

uable insights through discussions on the cloud computing aspects and methodological aspects of 

the LGRIP30 products. 

 

Mr. Daniel Foley, Geographer, United States Geological Survey (USGS), provided valuable in-

sights during product development and its validations. 

 

Mr. Richard McCormick, Student developer, helped in development of the croplands.org web-

site and in tiling LGRIP30 products for LP DAAC. 

https://plus.google.com/117927604440673369842
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Summary 
 

This algorithm theoretical basis document (ATBD) presents and discusses the Landsat-derived 

Global Rainfed and Irrigated-area Product @ 30m (LGRIP30) for the nominal year 2015. The 

LGRIP30 product was evaluated for accuracies, errors, and uncertainties. The resulting error ma-

trix showed an overall accuracy of 86.5%. The irrigated class has a producer’s accuracy of 86.7% 

and user’s accuracy of 84.3%. The rainfed class has a producer’s accuracy of 86.3% and user’s 

accuracy of 88.4%.  
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Abstract 
Climate variability and ballooning populations are putting unprecedented pressure on agricultural 

croplands and their water use, which are vital for ensuring global food and water security in the 

twenty-first century. In addition, the COVID-19 pandemic, military conflicts, and changing diets 

have added to looming global food insecurity. Therefore, there is a critical need to produce con-

sistent and accurate global cropland products at fine spatial resolution (e.g., farm-scale, 30m or 

better), which are generated consistently, accurately, and routinely (e.g., every year). In this regard, 

earlier we produced the world’s first Landsat-derived global cropland extent product @ 30m 

(GCEP30) (Thenkabail et al., 2021; download @ LP DAAC) funded by NASA MEaSUREs and 

USGS. The high impact of our previously-funded NASA GFSAD products such as Landsat-derived 

global cropland extent product @30m or  GCEP30, 1km cropland dominance, and 1km irrigated 

versus rainfed is demonstrated by the use of these data by 126 countries during 2018-2021 (97 

countries in 2021 alone, 72 countries in 2022 alone), continued  average downloads every month 

by about 20 countries, publication of 12 key peer-reviewed articles which already have about 1500 

citations in a short time-period (2017-present), and use for a wide range of applications. There-

fore, the overarching goal of this continuity global food security-support analysis data (GFSAD) 

project is to develop comprehensive data and products in support global food and water security 

in the twenty-first Century. This is achieved by developing cropland models, maps, and monitoring 

tools leading to a wide array of products using machine learning algorithms (MLAs), satellite sen-

sor based big-data analytics, and cloud-computing. We focus on producing three distinct Landsat-

derived global cropland products in this new GFSAD project:  

1. Global Rainfed and Irrigated Product @ 30m (LGRIP30).  

2. Global Cropping Intensity Product @ 30m (LGCIP30) & 

3. Global Crop Type Products @ 30m (LGCTY30)  

 

This algorithm theoretical basis document (ATBD) presents and discussed Landsat-derived Global 

Rainfed and Irrigated-area Product @ 30m (LGRIP30) for the nominal year 2015. The LGRIP30 

cropland product was generated using Landsat-8 time-series data, multiple supervised and unsu-

pervised Machine learning algorithms (MLAs) such as random forest, support vector machines, 

decision trees, ISOCLASS clustering, and spectral matching techniques (e.g., Thenkabail et al., 

2021, Oliphant et al., 2019, Teluguntla et al., 2018, 2015, Xiong et al., 2017a, Thenkabail et al., 

2012, 2009, 2007, 2005) as outlined in the methods section, utilizing the Google Earth Engine 

(GEE) and\or other cloud platforms.  

 

All crop products were evaluated for accuracies, errors, and uncertainties using independent da-

taset. The resulting error matrix showed an overall accuracy of 86.5%. The irrigated class has a 

producer’s accuracy of 86.7% (errors of omissions of = 13.3%) and user’s accuracy of 84.3% 

(errors of commissions = 15.7%). The rainfed class has a producer’s accuracy of 86.3% (errors of 

omissions of = 13.7%) and user’s accuracy of 88.4% (errors of commissions = 11.6%). The 

LGRIP30 determined total global net irrigated area (TGNIA) of 1,802,929,008 hectares (or 1.80 

billion hectares or Bha) of croplands of which 1,087,185,109 hectares (1.09 Bha) was rainfed and 

the rest 715,743,899 hectares (0.71 Bha) was irrigated. The data is released through NASA’s Land 

Processes Distributed Active Archive Center (LP DAAC):  

DOI: https://doi.org/10.5067/Community/LGRIP/LGRIP30.00  

The LGRIP30 product can be browsed at full resolution @:  

https://croplandsdev.users.earthengine.app/view/croplands-dev-internal  
  

https://doi.org/10.3133/pp1868
https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/
https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/
https://lpdaac.usgs.gov/products/gfsad1kcdv001/
https://lpdaac.usgs.gov/products/gfsad1kcmv001/
https://lpdaac.usgs.gov/products/gfsad1kcmv001/
https://doi.org/10.5067/Community/LGRIP/LGRIP30.00
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II. Historical Context and Background Information 
The global food and water security scenario in the twenty-first century will be an extraordinarily 

complex one. The population of the world will continue to balloon and reach 9.7 billion by 2050 

and nearly 11-12 billion by 2100 (UN DESA, 2021). In addition, global daily average calorie 

consumption is expected to rise from 2789 kcal/person/day in the year 2000 to 3130 kcal/per-

son/day by the year 2050 (World Bank, 2022, Bodirsky et al., 2015, FAO 2012b). These consump-

tion figures may rise even higher if traditionally low meat consuming nations start increasing meat 

consumption enabled by economic growth. Food habits of people are diversifying considerably 

(e.g., rice, wheat, or maize only to a mix of rice, wheat, maize, pulses, fruits, and vegetables). At 

the same time, about 30 to 50% of the food produced globally is wasted (UNEP, 2021, IME, 2013). 

Added to all these already daunting needs are the food security challenges from the COVID-19 

pandemic, the Russia-Ukraine conflict, and related supply-chain disruptions. COVID-19 lock-

downs and wars are heavily impacting food production and trade mechanisms for all leading 

cropland countries. For example, the 10 largest countries  in terms of cropland area as a percentage 

of the total global net cropland area or GNCA (1.873 Bha), in order of ranking, were: India (179.8 

Mha, 9.6%); United States (167.8 Mha, 8.95%); China (165.2 Mha, 8.82%); Russia (155.8 Mha, 

8.32%); Brazil (64 Mha, 3.42%); Ukraine (43.4 Mha, 2.32%); Canada (42.9 Mha, 2.29%); Argen-

tina (38.4 Mha, 2.05%); Indonesia (37.4 Mha, 2.0%); and Nigeria (35.7 Mha, 1.91%) (Thenkabail 

et al., 2021). These 10 countries have 50% (937 Mha) of the GNCA; four of them (India, United 

States, China, and Russia) alone encompass 670 Mha (36% of the GNCA) (Thenkabail et al., 

2021). Given that twenty-first century food consumption is heavily dependent on the global sup-

ply-chain and all these leading global cropland countries are affected by these disruptions, many 

experts have already warned of the grave consequences of these distressing events and the associ-

ated disruptions to food productions and supply-chains (Glauber and Laborde, 2022). The United 

Nation’s Food and Agriculture Organization has noted the potential grave danger to global food 

supply because of war and pandemic related supply-chain issues. Ukraine and Russia together 

produce nearly 30 percent of the world’s traded wheat with 26 countries getting more than half of 

their wheat from these two countries (Bourne, 2022). Most of the world depends significantly on 

nitrogen and potassium fertilizers from Russia, Ukraine, and Belarus (Glauber and Laborde, 2022). 

So, the recent war in the region creates a dire situation for global food security and for sustainable 

food prices throughout the world. Further, abandonment and conversion of fertile agricultural 

lands (UN DESA, 2021), migration of rural to less productive urban/peri-urban agriculture (UN 

DESA, 2021), climate change related droughts (Teluguntla et al., 2017, Thenkabail and Wu, 2012), 

the need to decrease agri-food system related greenhouse gas emissions (Tubiello et al., 2021, 

Boden et al., 2017, Vermeulen et al., 2012), and the ballooning global population are all exacer-

bating food insecurity. 

 

Additionally, global food and water security challenges are tightly intertwined. In a changing cli-

mate, the quantity and quality of surface and ground water are decreasing. Demands for agricul-

tural and alternative uses (e.g., industrial, ecological) of water are simultaneously increasing. Add-

ing to this complexity, urban migration and climate change related precipitation extremes neces-

sitate new infrastructure to maintain water availability for new cropland. Thus, 30m (field scale 

where 1 pixel = 0.09 hectares) cropland products, including their intensity and irrigation status, 

are needed to monitor change and aid decision-making for issues of global food and water security. 
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GFSAD will make significant contributions to the Earth System Data Records (ESDRs), the Group 

on Earth Observations (GEO) Agriculture and Water Societal Beneficial Areas (GEO Ag. SBAs), 

and the GEO Global Agricultural Monitoring (GEOGLAM). All data will be released through LP 

DAAC, such as, for example, our recent releases 

1. Global cropland extent product @ 30m (GCEP30) 

https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/  

2. Global crop dominance product @ 1 km: 

https://lpdaac.usgs.gov/products/gfsad1kcdv001/ 

3. Global cropland mask product at 1 km: 

https://lpdaac.usgs.gov/products/gfsad1kcmv001/ 

 

All the above studies and products indicate global agricultural land and water in the 21st century 

will be in a constant state of flux (You and Sun, 2022) requiring us to understand, model, map, 

and monitor these changes over space and time rapidly, routinely, and accurately year after year. 

This challenge invariably calls for very comprehensive global food security-support analysis data 

(GFSAD) products at fine spatial resolution representing field-scale (30m or better) routinely and 

accurately covering the entire Earth. Hence, the overarching goal of this project is to produce 

GFSAD models, maps, and monitoring tools using machine learning algorithms (MLAs) on cloud 

computing platforms with the ability to handle multi-satellite, multi-sensor remotely sensed big-

data, leading to a comprehensive set of global cropland products. In this regard, we have developed 

and released the world’s highest resolution Landsat derived global cropland extent product @ 30m 

(GCEP30). This data was released on NASA’s The Land Processes Distributed Active Archive 

Center (LP DAAC) and comprehensive methods, approaches, and results are published in the 

USGS professional paper (Thenkabail et al., 2021) as well as series of journal papers (Gumma et 

al., 2022, Zhang et al., 2022, Xing et al., 2022, Nagaraj et al., 2021, Zohaib et al., 2019, Gumma 

et al., 2019, Oliphant et al., 2019, Teluguntla et al., 2018, 2017, Xiong et al., 2017a, 2017b, Massey 

et al., 2017, 2018, Phalke et al., 2020, Congalton et al., 2017, and Yadav and Congalton, 2018). 

 

However, a comprehensive assessment, modeling, mapping, and monitoring of global food secu-

rity scenario requires multiple cropland products and not limited to cropland extents. As a result, 

we are expanding GFSAD project by adding additional cropland products that include: 

1. Landsat-derived Global rainfed & irrigated product @ 30m (LGRIP30). 

2. Landsat-derived Global cropping intensity product @ 30m (LGCIP30).  

3. Landsat-derived Global crop type product @ 30m (LGCTY30). 

 

This Algorithm Theoretical Basis Document (ATBD) is focused on Landsat-derived Global 

rainfed & irrigated product @ 30m (LGRIP30) (Table 1). In this ATBD document we will 

provide detailed description of the data, methods, approaches, and results of the LPRIP product 

for the year 2015 (LGRIP30-2015). 

  

https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/
https://lpdaac.usgs.gov/products/gfsad1kcdv001/
https://lpdaac.usgs.gov/products/gfsad1kcmv001/
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Table 1. LGRIP30. Global Food Security-support Analysis Data (GFSAD) Project Landsat-de-

rived Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30) of the World (GFSAD-

LGRIP30WORLD) for the nominal year 2015. 

Product Name Short Name Spatial 

resolution 

Temporal 

coverage 

Landsat-derived Global Rainfed and 

Irrigated-Cropland Product @ 30-m 

(LGRIP30) 

GFSADLGRIP30WORLD 30-m Nominal 

2015 

Note: Nominal here means that the Landsat-8 16-day data used to produce the product is for two to three years (2014-

2016), but the product is reported as nominal year 2015.  

 

III. Rationale for Development of the Algorithms 
During the green revolution era (~1950-2010) the world’s population rose from 2.5 billion to about 

7 billion because global food security was mainly ensured through a combination of factors: (a) 

cropland expansion from ~300 million hectares to ~1.8 billion hectares (Potapov et al., 2022, 

Thenkabail et al., 2021), (b) irrigation expansion from ~50 million hectares to ~400 million hec-

tares (Siebert et al., 2015), (c) genetic engineering through high yield, fast growing, short-duration 

crops (Lenaerts et al., 2019), (d) cropland intensification from single to double or triple cropping, 

in some irrigated croplands  (Hu et al., 2020, Wu et al., 2018), (e) heavy inputs such as fertilizer 

and nitrogen application (He et al., 2021), and (f) improvements in land management (e.g., level-

ing, drainage) (Viana et al., 2022).  

 

Ensuring food security for ~9.7 billion people by the year 2050 and ~11 billion people by the year 

2100 sustainably will require a paradigm shift on how our land and water are used for food pro-

duction, referred to as the evergreen revolution, where food security is sustained and assured in 

the years ahead without significant disruption (FAO, 2021a, b; UN DESA, 2021).  Measures to 

achieve this include: (1) increased crop water productivity (more crop per drop; kg/m3) (Foley et 

al., 2019, Rijsberman 2014), (2) improved cropland productivity (more crop per unit of land; 

kg/m2) (Hefferon, 2016), and (3) adaptation to the changing climate (Mekonnen et al., 2021, Tripa-

thi et al., 2016, Gartland and Gartland, 2016). Climate change adaptations include: (i) Climate 

Smart Agriculture (FAO, 2021a, Campbell et al., 2014), (ii) extreme weather agriculture (Wheeler 

and Lobley, 2021,  Gbegbelegbe et al., 2014), (iii) drought tolerant agriculture (Enenkel et al., 

2015), (4) advancing urban and peri-urban agriculture (Badami and Ramankutty 2015, Thebo, et 

al., 2014), (5) avoiding allocation of fertile cropland areas to biofuels or urbanization (van Vliet et 

al., 2017, Tripathi et al., 2016), (6) balancing food crops with dairy, meat, and fish (Forster and 

Radulovich 2015), (7) exploring new sources of food (Forster and Radulovich 2015), (8) reducing 

food waste (FAO, 2021a, Girotto et al, 2015), (9) creating food banks during good years (Fuss et 

al., 2015, Fanzo 2015, Wilkinson 2015), (10) maintaining rich biodiversity (Sukara 2014), (11) 

planning virtual croplands (Würtenberger et al., 2006) and virtual water use (Hanasaki et al., 2010), 

(12) precision farming, (13) accurate and cropland mapping for better crop management (Thenka-

bail et al., 2021, Teluguntla et al., 2017, 2015; Xiong et al., 2017b), (14) using geospatial technol-

ogies for improved planning (Potapov et al., 2022, Platonov et al., 2008, Biradar et al., 2009), (15) 

increasing global cropland use intensity through better allocation of nitrogen (N), other fertilizers, 

and irrigation (Hu et al., 2020, Niedertscheider et al., 2016, Odegard and van der Voet 2014), (16) 

increasing cropland use intensity (Gumma et al., 2016), and (17) adapting to low or zero carbon 

agriculture by measures such as increasing no-till cropland areas (Puigdueta et al., 2021).  
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IV. Importance of mapping global irrigated and rainfed areas  
Importance of mapping irrigated and rainfed croplands cannot be overemphasized. First, both ir-

rigated and rainfed areas are water guzzlers since about 80-90% of all human water use goes to-

wards producing food. Irrigated areas consume blue water. That is the water delivered to farms 

through irrigation systems either from surface water (e.g., lakes, reservoirs, tanks, river diversions) 

or ground water resources (e.g., tube wells, open wells). Rainfed areas consume green water. That 

is water coming from direct precipitation (e.g., rainfall, snowfall, soil moisture). Of the 1.873 bil-

lion hectares of global croplands (Thenkabail et al., 2021), roughly 75% is rainfed and 25% is 

irrigated (Siebert et al., 2013, Thenkabail et al., 2012, 2011, 2009a, Biradar et al., 2009, Teluguntla 

et al., 2015, Portmann et al.,2010). Second, accurate estimates of irrigated and rainfed areas are 

lacking because of lack of finer resolution mapping at global level. Given that croplands consume 

overwhelming proportion of human water use, an accurate estimate of crop water use will require 

accurate estimates of irrigated and rainfed croplands. Third, the productivity of irrigated areas is 

anywhere between 2-5 times higher than rainfed croplands. As a result, 25% global irrigated areas 

produce nearly 40% of the food and the rest 75% of the rainfed croplands produces the rest 60% 

of the food. So, increasing irrigated areas is one solution to increasing global food production for 

the ballooning populations. Nevertheless, it is a complex issue of balancing crop water use, food 

production, and sustainable production systems. Fourth, understanding, mapping, modeling, and 

monitoring irrigated and rainfed areas separately is of great importance to assessing crop water 

productivity, crop productivity, crop water use, and in strategizing food and water security in the 

twenty first century. Rainfed croplands meet about 60% of the food and nutritional needs of the 

World’s population and are backbone of the marginal or subsistence farmers. They are increasingly 

seen as better alternative to irrigated agriculture because of its environmental friendliness and sus-

tainability over long periods of time (Biradar et al., 2009). Given that there is large swatch of 

equipped areas of rainfed croplands that have crop low productivity, opportunities to increase food 

production in these croplands by utilizing modern technologies of genetic engineering, low water 

consuming crops, and shorter crop growing seasons even by a small margin will lead to large 

quantities of food.  

 

In post-second World War era and subsequent de-colonization, there was great thrust is irrigation 

infrastructure development throughout the world, but specifically in Asia. Globally, the irrigated 

landscape remains very dynamic. Although the annual rate of increase of irrigated areas has 

slowed to about 1 %, this still represents an increase of between 2 and 3 million hectares each 

year. There is a smaller corresponding annual loss of irrigated area to salinity and water logging 

as well as abandonment of uneconomic projects.  Countries such as China and India continue to 

build large multi-purpose dam projects that also supply water for irrigation. In sub-Saharan Af-

rica irrigation is perennially seen as having unfulfilled potential. Elsewhere in the world there are 

moratoria on dam building and even the decommissioning of dams in the western USA. In map-

ping rainfed and irrigated areas, we ask some key questions, that include:  

1. How much irrigation or rainfed cropland areas do we have now? 

2. How much do we need in the future to meet food and nutritional security of growing pop-

ulations? 

3. How do we achieve the above through sustainable development and by preserving envi-

ronment and climate balance? 

4. How much blue water and green water does it require, and will this be available, especially 

in a scenario of alternative water demands? 
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5. How does the scenario change in demographic changes where much of the world will be 

urbanized and massive numbers of rural population will move out of agriculture? 

 

1. Producing a coarse-resolution nominal 1-km irrigated and rainfed cropland prod-

uct of the world as a mask for the higher resolution products 
Currently, the highest resolution irrigated and rainfed cropland products derived from remote sens-

ing are at nominal 1-km spatial resolution (Figure 1) derived by fusing several existing products 

and discussed in detail by (Teluguntla et al., 2016, 2015; Table 2).  Many existing products (Table 

2) were carefully analyzed (Teluguntla et al., 2016, 2015) and a synthesis map was produced (Fig-

ure 1). This led to a disaggregated five class global cropland extent map derived at nominal 1-km 

(Figure 1, Table 2) derived primarily based on four major studies: Thenkabail et al. (2009a, 2011), 

Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). These products use SPOT Vegeta-

tion, AVHRR, and several other ancillary data as described in those publications. Class 1 to Class 

5 (Figure 1) are cropland classes, that are dominated by irrigated and rainfed agriculture. However, 

class 4 and Class 5 have ONLY minor or very minor fractions of croplands. Refer to Table 3 for 

cropland statistics of this map. The class 1 “Irrigation major” (Figure 1, Table 3) are irrigated by 

large reservoirs created by large and medium dams, barrages, and even large ground water pump-

ing. The class 2 “Irrigation minor” (Figure 1, Table 3) are areas irrigated by small reservoirs, irri-

gation tanks, open wells, and other minor irrigation. However, it is very hard to draw a strict 

boundary between major and minor irrigation and in places there can be significant mixing. So, 

when major irrigated areas such as the Ganges basin, California’s central valley, Nile basin etc. 

are clearly distinguishable as major irrigation, in other areas major and minor irrigation may inter-

mix. Table 3 provides the proportion of areas (counted as 1-km pixels) occupied by each of these 

classes. A detailed description on how this fusion product of irrigated and rainfed at nominal 1 km 

resolution (e.g., Figure 1) was produced is presented in Teluguntla et al. (2016) and hence won’t 

be repeated here. This cropland mask product was also released on NASA’s LP DAAC: 

https://lpdaac.usgs.gov/products/gfsad1kcmv001/   

 

The 5-class Figure 1 is finally aggregated into 2-class irrigated and rainfed map (Figure 2). Figure 

2 provides the global rainfed and irrigated-area product @ 1000m (GRIP1000) derived using 

SPOT-vegetation, AVHRR, and ancillary data (Teluguntla et al., 2016, Thenkabail et al., 2012, 

2011). GRIP1000 forms a preliminary mask-layer for production of finer resolution irrigated and 

rainfed cropland products. This we do by:  

 

First, starting with GRIP1000 (Figure 1, 2; Teluguntla 2016, 2015) to produce MODIS 250m 

time-series data derived global irrigated and rainfed cropland product of the world (MGRIP250; 

Figure 3, 4, 5, 6, 7).  

 

Second, starting with MGRIP250 (Figure 3, 5, 7) to produce Landsat 30m time-series data de-

rived global irrigated and rainfed cropland product of the world (LGRIP30). The LGRIP30 is the 

product that will be produced during this work.  

 

Coarse-resolution products GRIP1000 (Figure 1, 2) and MGRIP250 (Figure 3, 5, 7) are invaluable 

baseline starting point products in ultimately deriving LGRIP30. To re-iterate, the final goal is to 

produce LGRIP30. But we do that by first starting with GRIP1000, followed by producing an 

interim MGRIP250 and finally producing LGRIP30.  

https://lpdaac.usgs.gov/products/gfsad1kcmv001/
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Table 2. State-of-the art global cropland mapping using satellite remote sensing  

 

Sno Name
*

Institution
**

Sensors
*** Resolution, Nominal Time, Nominal  Classes Reference

(meters) (year)

A. Global cropland products

1 GCEP30 USGS Landsat 7 & 8 30 2021 Croplands Thenkabail et al. (2021)

2 UCL UCDL Multiple 250 2010 Croplands, irrigated, rainfed Waldner et al. (2016)

3 MODIS Cropland SDSU & UMD MODIS 250 2000 Croplands Pitman et al. (2010)

4 GRIPC BU MODIS 500 2005 Croplands, irrigated, rainfed Salmon et al. (2015)

5 GFSADCD1KM USGS AVHRR 1000 2010 Crop dominance, irrigated, rainfed Thenkabail et al. (2012)

6 GFSADCM1KM USGS AVHRR, MODIS, Landsat 1000 2010 Croplands, irrigated, rainfed Teluguntla et al. (2015)

7 GIAM IWMI AVHRR, SPOT VEG 1000-10,000 2000 Croplands, irrigated Thenkabail et al. (2009)

8 GMRCA IWMI AVHRR, SPOT VEG 1000-10,000 2000 Croplands, rainfed Biradar et al. (2009)

9 MIRCA2000 UB 10,000 2000 Croplands. irrigated Portman, Seibert & Doll (2009)

10 SAGE-Crop UW 100,000 2000 Croplands, crop dominance Monfreda, Ramankutty & Foley (2008)

11 SAGE-Agri UW 100,000 2000 Croplands, crop dominance Ramankutty et al.(2008)

B. Global LULC products in which cropland classes exist

12 WorldCover10V2 ESA Sentnel-2 10 2021 LULC Zanaga et al. (2022)

13 WorldCover10V1 ESA Sentnel-2 10 2020 LULC Zanaga et al. (2021), Karra et al. (2021)

14 Globeland30 NGCC Landsat 7 30 2010 LULC Chen et al. (2015)

15 FROM-GLC CAS Landsat 7 30 2000 Croplands Yu et al. (2013)

16 FROMGC CESS Landsat 7 30 Circa 2010 LULC Gong et al. (2013)

17 CGLS-LC100 Copernicus PROBA-V 100 2015 LULC Buchhorn et al.(2020)

18 MODIS-JRC JRC/MARS MODIS, Landsat 250 2009 LULC Vancutsem et al. (2012)

19 Globcover ESA MERIS 300 2005, 2009 LULC Defourny et al. (2009)

20 MCD12Q1 NASA MODIS 500 2004 - now LULC Leroux et al. (2014)

21 GLC BU MODIS 500 LULC Friedal et al. (2010)

22 DISCover USGS AVHRR 1000 1992-93 LULC Loveland et al.(2000)

23 LULC 2000 USGS AVHRR 2000 2000 LULC Soulard et al. (2014)

24 GLC 2000 JRC SPOT 1/112° 2000 LULC Fritz et al. (2010)

Note:

* = GCEP30= Global cropland extent product@30m; UCL = Unified Cropland Layer; GFSADCM1KM= Global Food Security-Support Analysis Data Cropland Mask @ 1-km; 

GRIPC= Global Rainfed, Irrigated, and Paddy Croplands;GFSADCD1KM= Global Food Security-Support Analysis Data Crop Dominance @ 1-km;

 MIRCA2000= Global monthly irrigated and rainfed crop areas around the year 2000; GIAM- Global Irrigated Area Map; GMRCA= Global Map of Rainfed Cropland Areas;

 SAGE= Center for Sustainability and the Global Environment;LULC = land use and land cover: MCD12Q1= MODIS Land Cover Type product;

 FROM-GLC = Fine Resolution Observation and Monitoring of Global Land Cover;FROMGC = Finer Resolution Observation and Monitoring of Global Land Cover 

CGLS= Copernicus Global Land Cover Layers; MODIS-JRC = MODIS Joint Research center; GLC = Global Land Cover.

** = UCDL = Université Catholique de Louvain, Belgium; USGS = United States Geological Survey; BU = Boston University SDSU = South Dakota State University.

UMD = University of Maryland; UB = University of Bonn; IWMI= International Water Management Institute; UW = University of Wisconsin.

NGCC = National Geomatics Center of China;  NASA = National Aeronautics and Space Administration; CAS = Chinese Academy of Sciences.

MARS = Monitoring Agricultural Resources; ESA =  The European Space Agency.

*** = AVHRR = Advanced Very High Resolution radiometer; MODIS = Moderate Resolution Imaging Spectroradiometer; SPOT = Satellite Pour l’Observation de la Terre 

MERIS = Medium-Spectral Resolution, Imaging Spectrometer; Proba-V sensor is a European follow-on to the SPOT VGT mission
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Figure 1. GRIP1000-5class map. A 5-class SPOT-Vegetation, AVHRR, and other ancillary data 

derived global rainfed and irrigated-area product @ 1000m (GRIP1000) developed using multiple-

satellite sensor time-series data and ancillary data as reported in Teluguntla et al. (2016, 2015). 

The proportion of pixels distributed for each class in Shown in Table 3.  

 

Table 3.  GRIP1000-5classes and areas. Cropland area distribution of 5-class global rainfed and 

irrigated-area product @ 1000m (GRIP1000) (Teluguntla et al., 2016, 2015) shown in Figure 1. 

 

 
 

 

 

 1 

 2 

Class# Class Description  Pixels Percent 

# Names 1 km % 
1 1.Croplands, irrigation major  3091988 13 

2 2.Croplands, irrigation minor  4810869 21 

3 3.Croplands, rainfed  11733044 50 

4 4.Croplands, rainfed minor fragments 3858035 16 

5 5.Croplands, rainfed very minor fragments 13700176  

 Class 1 to 4 total 23493936 100.0% 

1= approximately 2.3 billion hectares (class 1 to 4 ) of cropland is estimated. But this is full pixel 

area. Actual area is = sub-pixel area (SPA). The SPA is not estimated here. See Thenkabail et al. 

(2007b) for the methods for calculating SPAs. 
2 = % calculated based on Class 1 to 4.  
3= Class 5 is  very minor cropland fragments 
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Figure 2. GRIP1000-2class map. An aggregated 2-class SPOT-Vegetation, AVHRR and other ancillary data derived global rainfed 

and irrigated-area product @ 1000m (GRIP1000) developed using multiple-satellite sensor time-series data and ancillary data as reported 

in Teluguntla et al. (2016, 2015). This map is derived by aggregating the 5-class map shown in Figure 1. Based on the pixel proportion, 

27% of the pixels are under irrigated areas and the rest 73% are under rainfed areas.   
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2. Producing a coarse-resolution nominal 250-m irrigated and rainfed cropland prod-

uct of the world as a mask for the higher resolution products 
 

Using the 1-km (1 pixel = 100 hectares) global rainfed and irrigated-area product (GRIP1000; 

Figure 1, 2; Teluguntla et al., 2016, 2015; Thenkabail et al., 2012, 2011, Biradar et al., 2009), we 

developed the next higher-level product. This next higher-level product is called the Moderate 

Resolution Imaging Spectroradiometer (MODIS) time-series data derived global rainfed and irri-

gated-area product at 250m (1 pixel = 6.25 hectares) or MGRIP250. These two interim products 

that further led to a Landsat satellite-derived 30 m (1 pixel = 0.09 hectares) global rainfed and 

irrigated-area product at 30m (LGRIP30). We will fist discuss the MGRIP250 that will lead to 

LGRIP30.  

 

At 250m two global cropland products were produced using methods and approaches discussed in 

Teluguntla et al. (2016, 2015), and Thenkabail et al. (2012, 2011, 2010, 2009a, 2007, 2005). These 

products are: 

1. MODIS-derived 11-class global irrigated-area product @ 250m (MGIP250-11 class; Fig-

ure 3) developed using MODIS 250m time-series data for the nominal year 2015. The 

signature of these 11 classes are shown in Figure 4. 

2. MODIS-derived 13-class global rainfed-area product @ 250m (MGRP250-13 class; Fig-

ure 5) developed using MODIS 250m time-series data for the nominal year 201. The sig-

natures of these 13 classes are shown in Figure 6. and 

3. The above two products were merged to produce an aggregated 2-class MODIS-derived 

250m global rainfed and irrigated-area product (MGRIP250-2 class) (Figure 7). 

 

The MGIP250-11 class irrigated area product (Figure 3, 4) has: 

1. Four irrigated single cropland classes of different types. 

2. Four irrigated double cropland classes of different types. 

3. Two continuous irrigated cropland classes of different types; and 

4. One fallow irrigated cropland class. 

 

The MGRP250-13 class rainfed area product (Figure 5, 6) has: 

1. Eight rainfed single cropland classes of different types. 

2. Three rainfed double cropland classes of different types. 

3. One continuous rainfed cropland class; and 

4. One fallow rainfed cropland class. 

 

Each of these classes show where geographically they occur (Figure 3, 5) and what their pheno-

logical signatures during a calendar year (Figure 4, 6). 

 

The MGIP250-11 class irrigated product and the MGRP250-13 rainfed class product were aggre-

gated to produce a simplified 2-calss composite MGRIP250-2 class rainfed and irrigated of the 

world (Figure 7). This MGRIP250 (Figure 7) will form stepping-stone baseline product for 

higher level Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m 

(LGRIP30) of the World (GFSADLGRIP30WORLD).  We will discuss this LRIP30 product of 

the world (GFSADLGRIP30WORLD) thoroughly in this publication.
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Figure 3.  MGIP250-11 class irrigated area product (see signatures of these classes in Figure 4). A MODIS-derived Global irri-

gated-area product @ 250m with 11 classes (MGIP250-11class) developed using MODIS 250m time-series data for the nominal year 

2015.  The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) signatures of 

these 11-classes are shown in Figure 4.
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Figure 4.  MGIP250-11 class irrigated area product signatures (for map of these 11 classes 

see Figure 3). Mean time-series Moderate Resolution Imaging Spectroradiometer (MODIS) nor-

malized difference vegetation index (NDVI) signatures of the 11-classes of global irrigated-area 

product @ 250m (MGIP250-11 class) map shown in Figure 3. 
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Figure 5. MGRP250-13 class rainfed area product (for signatures of these 13 classes see Figure 6). A MODIS-derived 13-class 

Global rainfed-area product @ 250m (MGRP250) developed using MODIS 250m time-series data for the nominal year 2015.  The 

Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) signatures of these 13-clas-

ses are shown in Figure 6.  
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Figure 6.  MGRP250-13 class rainfed area product signatures (for map of these 13 classes 

see Figure 5). Mean time-series Moderate Resolution Imaging Spectroradiometer (MODIS) nor-

malized difference vegetation index (NDVI) signatures of the 13-classes of global rainfed-area 

product @ 250m (MGRP250) map shown in Figure 5.
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Figure 7.  MGRIP250-2 class rainfed and irrigated area product. An Aggregated 2-class MODIS-derived Global rainfed and irri-

gated-area product @ 250m (MGRIP250) developed using MODIS 250m time-series data for the nominal year 2015.  This map is 

produced by aggregating the MODIS-derived global irrigated-area product, MGIP250-11 class product (Figure 3), and MODIS-derived 

global rainfed-area product, MGRP250-13 class product (Figure 5) into MGRIP250-2class simplified rainfed and irrigated area product 

of the world that forms as a baseline starting point for producing the Landsat-derived global rainfed and irrigated area product @ 30 m 

(LGRIP30). 
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3. Lack of irrigated and rainfed cropland maps at high resolution (30m or better) 

product 

There remains considerable uncertainty about the precise extent, area and cropping intensity of 

irrigated and rainfed areas assessments in different parts of the world, due to the dynamics referred 

to above and systematic problems of under and over-reporting in country statistics and\or uncer-

tainties in coarse resolution remote sensing data derived products.  

 

Teluguntla et al. (2015) reviewed various global irrigated and rainfed cropland products that are 

available in the public domain. Thenkabail et al., (2012, 2011, 2009a) and Biradar et al., (2009) 

reported the first remote sensing based global irrigated and rainfed cropland maps and statistics 

through multi-sensor remote sensing data fusion along with secondary data, and in-situ data. This 

led to coarse resolution (1-10 km) global irrigated and rainfed cropland products such as the one 

illustrated in Figure 1. Siebert et al., (2005) produced the first global irrigated area based on coun-

try statistics and GIS techniques. This is known as UN FAO global map of irrigated area (FAO-

GMIA). These products are certainly advance in terms of using remote sensing, national statistics, 

and GIS techniques for mapping irrigated and rainfed cropland mapping at the global scale at 1-

10 km spatial resolution. Nevertheless, these products lacked the field scale high resolution detail 

in mapping irrigated and rainfed croplands that lead to uncertainties on precise location of irrigated 

and rainfed croplands, especially when field sizes were small, or farms were fragmented. It also 

led to cascading errors in higher level products such as crop type mapping, crop water uses assess-

ments, and crop water productivity mapping and modeling. 

 

The main motivation to develop the Landsat-derived Global Rainfed and Irrigated-Cropland Product 

@ 30-m (LGRIP30) of the World (GFSADLGRIP30WORLD) was to: 

1. Produce the global highest known resolution (1 pixel = 30 m or 0.09 hectares per pixel) 

global irrigated and rainfed cropland maps using Landsat time-series data. 

2. Develop methods and techniques of mapping LGRIP30 that involve twenty-first century 

remote sensing involving big data analytics, machine learning, cloud computing, and ar-

tificial intelligence.  

3. Enable the use of LGRIP30 for accurate assessment of crop water use, crop productivity, 

and crop water productivity. 

4. Facilitate production of cropland products that are of great importance for food and water 

security assessments, modelling, mapping, and monitoring. 
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V. Algorithm Description 

 

1. Preparing the area for the study 

First step in global irrigated and rainfed cropland mapping is to establish global cropland areas. 

We have described in great details methods and approaches to Landsat derived global cropland 

extent product (GCEP30; Thenkabail et al., 2021) and published this data on NASA’s LP DAAC 

(https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/).   

The GCEP30 product established that there is 1.8 billion hectares of global croplands, the spatial 

distribution of it is shown in Figure 8. Once the GCEP30 is produced (Figure 8), we need to 

identify which of these croplands are irrigated and which are rainfed. The process of doing this 

is described in detail in series of sub-sections below. 

 

2. Definitions 

Cropland mapping definitions using remote sensing were based on discussions in several global 

food security support analysis data (GFSAD) project workshops captured (Thenkabail et al., 

2021). Key to effective mapping is a precise and clear definition of what will be mapped. It is 

the first and primary step, with different definitions leading to different products.  

 

For example, irrigated areas are defined and understood differently in different applications and 

contexts. One can define them as areas which receive irrigation at least once during their crop 

growing period. Alternatively, they can be defined as areas which receive irrigation to meet at 

least half of their crop water requirements during the growing season.  

 

One other definition can be that these are areas that are irrigated throughout the growing season. 

In each of these cases, the irrigated area extent mapped will vary. Similarly, croplands can be 

defined as all agricultural areas irrespective of type of crops grown or they may be limited to 

food crops (and not the fodder crops or plantation crops). So, it is obvious that having a clear 

understanding of the definitions of what we map is extremely important for the integrity of the 

products developed.  

 

We defined cropland products as follows: 

• Minimum mapping unit 

The minimum mapping unit of a particular crop is an area of 3 by 3 (0.81 hectares) Landsat pixels 

identified as having the same crop type (Congalton (2015)). 

 

• Cropland extent 

All cultivated plants harvested for food, feed, and fiber, including plantations (e.g., orchards, 

vineyards, coffee, tea, rubber). 

 

• What is a cropland pixel? What is an irrigated pixel? 

In a 30mx30m pixel area (0.09 hectares), croplands are either cropped or left fallow. The 

croplands are either equipped for irrigation (e.g., within a command area of surface water irriga-

tion system or has assess to extracted ground water) or not equipped for irrigation (left for rain-

fed). 

 

 

https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/
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• Irrigated areas:  

Irrigated areas are cropland areas that are irrigated during the crop growing season through arti-

ficial application of water to meet the crop water demand requirements, partially or fully. Irri-

gated areas are those areas which are irrigated one or more times during crop growing season. 

Some irrigated areas are watered throughout the growing season and others only when there is 

deficit water for optimal crop growth.  

 

Irrigation sources can be varied and includes water drawn from surface and ground water reser-

voirs. Surface irrigation sources include major-medium-small reservoirs created by dams or bar-

riers diverting water from the river systems. Ground water sources include open wells and tube-

wells drawing water from deep acquirers.  

 

• Rainfed areas:  

Rainfed areas are the cropland areas with no artificial irrigation whatsoever and are completely 

precipitation dependent.  

 

Precipitation includes moisture retained in soils prior to cropping season from snowfall\rainfall 

and direct rainfall on the croplands during the crop growing season. 

 

• Cropping intensity 

Number of cropping cycles on a piece of croplands within a 12-month period. Cropping intensity 

can be single, double, triple, or continuous (e.g., plantations). 

 

• Crop types 

All crops grown in irrigated and rainfed croplands are considered. Major world crops, that occupy 

about 70% of the cropland areas globally, include Wheat, Corn, Rice, Barley, Soybeans, Pulses, 

Cotton, Potatoes, sorghum, and sugarcane. 

 

Specific to this ATBD, irrigated and rainfed cropland mapped are defined above and approach 

to mapping them using Landsat 30m remote sensing data is discussed below. 

 

3. Reference training and validation data 
First, we used an excellent distribution of ~112,000 global irrigated and rainfed cropland field-

data samples (Figure 9) available with us to train, test, and validate the products.  These data are 

from multiple sources (Figure 9) such as: (a) sub-meter to 5 m very high-resolution imagery 

(VHRI), (b) other map sources obtained from our partners or from literature, and (c) through 

numerous field visits to many countries by various people during 2003-2017 timeframe.  

 

Further, during this project, we established 16,435 samples (Figure 10, 11; Table 4) for training 

and testing and 10,477 for validation (Figure 12; Table 4). Of the 16,435 samples for training 

and testing, there were 7,544 irrigated samples (Figure 10; Table 4) and 8,891 rainfed samples 

(Figure 11; Table 4). Of the 10,477 samples for validation, there were 4,810 irrigated samples 

and 5,667 rainfed samples (Figure 12; Table 4).  

 

These samples are distinctly distributed around the world: (a) Figure 10 shows distribution of 

irrigated area samples, (b) Figure 11 shows distribution of rainfed area samples, and (c) Figure 
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12 shows validation samples for irrigated and rainfed croplands. Table 4 provides the number of 

samples distributed in each of the 13 agro-ecological zones (AEZs) (Figure 13). The initial 74 

AEZs (Thenkabail et al., 2021) were simplified to 13 AEZs. 

 

These extensive sample data (Figure 9-12, Table 4) were sourced from many state-of-the-art 

datasets such as the USDA CDL, AAFC, European Monitoring agricultural resources, CGIAR 

through their Consortium for Spatial Information, and numerous other sources. When these data 

were gathered from sub-meter to 5-m very high-resolution data, they have information on 

croplands versus non-croplands. The ground data samples had information such as croplands, 

non-croplands, crop watering methods (irrigated or rainfed), and crop types.  

 

Figures 10 and 11 illustrate the samples collected in this study from ground surveys, sub-meter 

to 5-m very high spatial resolution imagery (VHRI) providing irrigated and rainfed cropland 

locations. These samples (Figure 10 and 11) were used only for training and testing machine 

learning algorithms (MLAs) when producing the Landsat-derived Global Rainfed and Irrigated-

Cropland Product @ 30-m (LGRIP30).  Figure 12 shows samples used only for validation the 

LGRIP30. 

 

Table 4 shows the sample distribution in each of the 13 AEZs for irrigated and rainfed crops. The 

nature of the samples distributed in Figure 9 through 11 are illustrated taking some ground data 

for (a) rainfed areas (top half of Figure 14), (b) irrigated areas (bottom half of Figure 14). The 

nature of the samples distributed in Figure 9 through 11 were also illustrated taking some sub-

meter to 5-m very high-resolution imagery for: (c) irrigated areas (Figure 15), and (d) rainfed 

areas (Figure 16). 

 

4. Image Stratification 

The world was segmented into 13 zones (Figure 13b) from original 74 AEZs (Figure 13a) or a 

combination of some of the zones together to process the data and produce Landsat-derived 

global rainfed & irrigated product @ 30m (LGRIP30). The 74 AEZs are well described in 

Thenkabail et al., 2021. The 13 zones were derived from 74 zones inorder to simplify processing 

mechanism. 
 

5. Data Fusion, Data Integration, and Analysis Ready Data Cube (ARD-Cubes) 

Landsat 8 time-series surface reflectance product that is already available on the Google Earth 

Engine (GEE) (Gorelick et., 2017) was the primary data used in the study. Data for every 16 days 

from January 1, 2014, through December 31, 2016, was used in processing. In total 10 bands 

(blue, green, red, NIR, SWIR1, SWIR2, TIR, EVI, NDWI, NDVI) of data were processed. All 

Landsat-8 images were cloud masked using CFMask in GEE (Foga et al. 2017). Other 30m res-

olution bands such as the Shuttle Radar Topography Mission (SRTM) elevation and slope, soils 

(SoilGrids250m WRB; Poggio et al. 2021), and local information were added to data cubes for 

each AEZ as needed to best help separate classes. These Landsat analysis ready data cubes (ARD-

cubes, e.g., Figure 17) were composed on a cloud platform like GEE (Thenkabail et al., 2021, 

Oliphant, 2019, Phalke et al., 2020, Xiong et al., 2017a) to help seamlessly code and compute 

using MLAs.  
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Figure 8. GCEP30. The Landsat-derived Global cropland extent product @ 30m (GCEP30) (Thenkabail et al., 2021).
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Figure 9. Ground data on croplands including irrigation and rainfed. Distribution of Reference data gathered from multiple sources 

either through ground data or through sub-meter to 5-m very high-resolution imagery data (Thenkabail et al., 2021, Congalton et al., 

2017). These data have both croplands versus non-croplands as well as rainfed croplands versus irrigated croplands. Detailed descrip-

tion of these data is provided in Thenkabail et al., 2021. Of these data 19,171 samples, well spread-out throughout the world were used 

in validating the Landsat 30m derived on global cropland extent product (GCEP30) and the process is described by Thenkabail et al. 

(2021) and Congalton et al., 2017. The validation data are also made available through NASA’s LP DAAC (Congalton et al., 2017). 
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Figure 10. Reference irrigated samples for training and testing. Distribution of Reference training and testing data for irrigated 

croplands gathered from multiple sources that include ground surveys, published National, regional, and global maps along with inter-

pretations using sub-meter to 5-meter very high-resolution imagery, by interpreting and finalizing. There are 7,544 samples. These 

samples were NOT used in validation. 
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Figure 11. Reference rainfed samples for training and testing. Distribution of Reference training and testing data for rainfed 

croplands gathered from multiple sources that include ground surveys, published National, regional, and global maps along with inter-

pretations using sub-meter to 5-meter very high-resolution imagery, by interpreting and finalizing. These are 8,891 samples. These 

samples were NOT used in validation. 
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Figure 12. Reference irrigated and rainfed samples for validation. Distribution of Reference validation data used in accuracy as-

sessments of Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30).  There were 10,477 samples   of 

which 5,667 were rainfed and 4,810 were irrigated.
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Table 4.  Distribution of reference training, testing, and validation samples used in the 13 

agroecological zones (AEZs). Zone wise ground reference data /samples collected for the product 

training and validation.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zone No Zone Name

# Name Irrigated Rainfed Total Irrigated Rainfed Total

1 United States 520 882 1402 337 575 912

2 Canada 99 372 471 63 240 303

3 Central America 699 739 1438 439 475 914

4 South America 654 730 1384 426 434 860

5 Africa 928 1581 2509 590 1015 1605

6 Europe 1003 1248 2251 653 807 1460

7 Russia 88 283 371 57 189 246

8 Central Asia 180 285 465 116 187 303

9 Middle East& WestAsia 313 91 404 206 60 266

10 SouthAsia-AFG-Iran 1750 1173 2923 1135 756 1891

11 China&Korea 520 253 773 320 142 462

12 SouthEastAsia 568 537 1105 328 332 660

13 Australia-NewZealand 222 717 939 140 455 595

Global Total 7544 8891 16435 4810 5667 10477

Ground data

Training samples Validation samples
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Figure 13a 

 
Figure 13b. 

 

Figure 13. Agroecological zones (AEZs) of the world. The world is divided into 74 AEZs as 

shown in top figure (Thenkabail et al., 2021). Those 74 were reduced to 13 zones for ease of 

work as shown in bottom Figure. Throughout rest of the paper, we will discuss the process of 

developing Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m 

(LGRIP30). First LGRIP30 products were produced for each of the 13 zones and were then com-

bined to produce a single global LGRIP30 product. 
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Figure 14. Ground reference data samples of rainfed and irrigated crops. These data were 

gathered from various sources and compiled into database (Figure 9-12). These data were used 

both in training and testing Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 

30-m (LGRIP30) during product development phase.  
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Figure 15. Ground reference data samples highlighting irrigated areas. These data were 

gathered from sub-meter to 5-m very high-resolution imagery. The sample location of these data 

is shown in Figure 10. Only a few samples from Figure 10 are illustrated here. These data were 

used both in training and testing Landsat-derived Global Rainfed and Irrigated-Cropland Product 

@ 30-m (LGRIP30) during product development phase. 
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Figure 16. Ground reference data samples highlighting rainfed areas. These data were 

gathered from sub-meter to 5-m very high-resolution imagery. The sample location of these 

data is shown in Figure 11. Only a few samples from Figure 11 are illustrated here. These data 

were used both in training and testing Landsat-derived Global Rainfed and Irrigated-Cropland 

Product @ 30-m (LGRIP30) during product development phase. 
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Figure 17. Analysis ready Landsat 30m data cubes (ARD30-cubes). The ARD30-cubes were 

developed for each of the 13 zones, classified, classes identified, and the final Landsat-derived 

Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30) was produced.   

 

f. Landsat 30m derived on global cropland extent product (GCEP30) 

In order to produce Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m 

(LGRIP30), first we produced two coarser resolution products: 

1. An aggregated 2-class SPOT-Vegetation, AVHRR and other ancillary data derived 

global rainfed and irrigated-area product @ 1000m (GRIP1000) (Figure 2); and 

2. An Aggregated 2-class MODIS-derived Global rainfed and irrigated-area product @ 

250m (MGRIP250) (Figure 7). 

In addition, Landsat 30m derived global cropland extent product (GCEP30) that provides 

croplands versus non-croplands (Figure 8) was produced as description is detailed in USGS pro-

fessional paper (Thenkabail et al., 2021) and will not be repeated here. The GCEP30 product 

(Figure 8) is also made available for download in NASA’s LP DAAC (Thenkabail et al., 2021): 

https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/ 

 

 

 

https://lpdaac.usgs.gov/news/release-of-gfsad-30-meter-cropland-extent-products/
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VI. Methodology for mapping Landsat 30m derived global rainfed 

and irrigated area product (LGRIP30) 
A. Overview on irrigated and rainfed cropland mapping 

The irrigated and rainfed cropland mapping methods using remote sensing data have matured 

over the years as evidenced by growing body of scientific literature (Gumma et al., 2022, Zhang 

et al., 2022, Xing et al., 2022, Thenkabail et al., 2021, Nagaraj et al., 2021, Zohaib et al., 2019, 

Teluguntla et al., 2017, Friedl et al., 2002; Hansen et al., 2002; Loveland et al., 2000; Ozdogan 

and Woodcock, 2006; Thenkabail et al., 2009a; Thenkabail et al., 2009b; Wardlow and Egbert, 

2008; Wardlow et al., 2006; Wardlow et al., 2007; Xiao et al., 2006). Satellite images offer the 

most objective data to map irrigated and rainfed cropland areas by adopting several methods and 

approaches. These include detecting irrigation structures and command areas, National maps that 

provide base maps delineating irrigated command areas or show boundaries of irrigated and rain-

fed areas, ground data (e.g., Figures 14), very high spatial resolution imagery (VHRI, e.g., Figure 

15, 16), and distinct spectral characteristics (e.g., irrigated areas often have 2 or 3 crops annually 

that can easily be detected in time-series spectral reflectivity or NDVI temporal-plots).  

 

We begin separating irrigated areas from rainfed areas starting with the Landsat-derived global 

cropland extent product at 30m (GCEP30) (Figure 8; Thenkabail et al., 2021). Methodology of 

classifying and class identification of GCEP30 (Figure 8; Thenkabail et al., 2021) into irrigated 

and rainfed is series of steps described in sub-sections below. It begins with: 

1. utilizing the GCEP30 base map (Figure 8; Thenkabail et al. 2021) to start with. 

2. studying in each of the distinct agroecological zones of the world (AEZs, Figure 13a, b), 

by creating ARD30 cubes, (e.g., Figure 17) for each or a combination of the AEZs. 

3. creating knowledgebase (e.g., Figure 18, 19) to separate irrigated areas from rainfed ar-

eas utilizing reference data (e.g., Figures 9-11, Figures 14-16). 

4. classifying ARD30 cubes (e.g., Figure 17) for each of the AEZs (Figure 13a, b) using 

methods (Figure 20-25) described in sub-sections below. 

5. identifying classes based on spectral information (e.g., Figures 18-26), ground data (e.g., 

Figure 9-11, 14), and image interpretations (Figures 15-16), labeling them and then fi-

nalizing irrigated and rainfed classes (e.g., Figure 27-31). 

Detailed methodology leverages on our earlier work of global cropland extent product @ 30 m 

(Thenkabail et al., 2021, Xiong et al., 2017a,b, Teluguntla et al., 2017) and global irrigated and 

rained area cropland products also by our team (Thenkabail et al., 2016, Teluguntla et al., 2015; 

Thenkabail et al., 2012, 2011, 2010, 2009a, 2007, Gumma et al. 2022). Leveraging on that, spe-

cific methodological steps are described below in this algorithm theoretical basis document or 

ATBD (Teluguntla et al., 2023a). Another LGRIP30 manuscript is currently in preparation (Tel-

uguntla et al., 2023b). Methods adopted in this LGRIP30 are as discussed below (Page 33-57): 

 

B. Machine learning (ML) classification methods: Supervised pixel-based 

In machine learning we start with inputs and outputs and that produces a formula which is called 

machine learning model. There are two categories of machine learning models: pixel based and 

object-based models. Supervised and unsupervised are two pixel-based approaches, in supervised 

learning you know what outputs are called labels. In unsupervised learning you are asking model 

to tell the output groups are to explore analysis. We have used Radom Forest (RF), Support vector 

machines (SVM) supervised approaches and an unsupervised classification approach called ISO-

CLASS-clustering (Lillesand et al., 2014) which detects the similar inputs. 
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Figure 18. Irrigated versus rainfed cropland class separation knowledgebase. Illustration of 

Landsat-derived Enhanced Vegetation Index (EVI) time-series box-plot profiles for irrigated and 

rainfed croplands samples in an agroecological zone. 

 

 
Figure 19. Irrigation versus rainfed cropland separation knowledgebase. Illustration of 

Landsat-derived Normalized Difference Vegetation Index (NDVI) time series profiles for irri-

gated and rainfed croplands in an agroecological zone. 
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B1. Random Forests (RF) supervised classification 

Random forest (RF) machine learning algorithm (MLA) is a pixel-based supervised classification 

that uses multiple decision trees to assign classification labels and is generally immune to data 

noise and overfitting and is extremely useful in classifying remote sensing data (Figure 20). RF 

classifiers can successfully handle high data dimensionality and typically achieve higher accura-

cies in comparison with other approaches such as maximum likelihood, single decision trees 

(Belgiu and Drăguţ, 2016; Lawrence et al., 2006; Na et al., 2010). Random Forest classifiers 

construct multiple de-correlated random decision trees that are bootstrapped and aggregated to 

classify a dataset by using the mode of predictions from all decision trees (Breiman, 2001). The 

RF classifier is more robust than single decision tree (Chan and Paelinckx, 2008) and easier to 

be implemented than many other advanced classifiers such as Support Vector Mission (SVM) 

(Pelletier et al., 2016). Additionally, RF classifiers provide a quantitative measurement of each 

variable’s contribution to the classification output, which is useful in evaluating the importance 

of each variable.  

 

Random Forest classifiers have several parameters including number of classification trees, num-

ber of variables used in each classification tree, and minimum leaf population. When the number 

of trees increases, the overall accuracy of classification increases without overfitting (Breiman, 

2001). While training sample imbalance can affect the RF classification output by over-fitting 

the majority class (Breiman, 2001; Chen et al., 2004), various methods such as down sampling 

the majority class can provide immunity against over-fitting (Sun et al., 2007). The optimized 

parameter values were selected by selecting the training samples (Table 4), running the RF algo-

rithm, and testing the classification output for overall, producer’s and user’s accuracies in error 

matrix. The goal is to obtain not just the high overall accuracies, but also a good balance of 

producer’s accuracies (or least errors of omissions) and user’s accuracies (or least errors of com-

missions). It is not just the high number of training samples of a class that help attain optimal 

accuracies, but the purity (e.g., pure cropland samples instead of mixed) of the samples as well. 

 

All supervised pixel-based classifications rely heavily on the input training samples. To discrim-

inate croplands under various environments and conditions, two criteria are very important:  

1. RF classifications need to take place in AEZs or RAEZs (e.g., Figure 13a, b), and  

2. The sample size (Table 4) of the initial training dataset for the RF classifier needs to be large, 

especially in complex regions.  

 

All samples were selected to represent a 90-m x 90-m polygon (Table 4). The number of itera-

tions required for the training sample selection is a function of the complexity of the area. If the 

classification results were not satisfactory, we increased the training samples till we attained sat-

isfactory classification results. Once that was achieved, accuracy assessments were performed 

using the independent validation data (Table 4). A product was accepted as final only when the 

overall, producer’s and user’s accuracies were adequately high (typically above 80%). 
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Figure 20. Overview of methodology for irrigated vs. rainfed cropland mapping using Ran-

dom Forest. This study used a pixel-based supervised Random Forest machine learning algo-

rithm for classification and executed on Google Earth Engine cloud-computing platform. 

  

B2. Support vector machines (SVM) 

A support-vector machine (SVM) is especially attractive when sample sizes are smaller. It can 

achieve good classification accuracy when only a few samples exist (Mountrakis et al., 2011), 

but the samples must be accurate and pure in contrast, RF ensemble decision trees require as 

large a sample size as possible to ensure the ensemble process has many trees from which to 

make best decisions for a class, which is problematic when obtaining large and well-distributed 

samples in a resource-constrained environment.  

 

In this project, the sample size for irrigated cropland versus rainfed cropland was large, accurate, 

and well distributed, making RF an ideal classifier; however, RF still results in overfitting irri-

gated areas in many places, leading to large areas of rainfed croplands being classified as irrigated. 

Further refinement of the training data and incorporating additional MLAs was used to optimize 

both irrigated and rainfed cropland class accuracy.  

 

Furthermore, despite the best efforts, the results of pixel-based classifications (RF, SVM), in 

practice, inevitably include “salt and pepper” noise and disjointed farm fragments. A 3x3 pixel 

median value smoother (nearest neighbour) was used to change the classification of isolated mis-

classified pixels. 
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The typical process of pixel-based MLAs used in this study involved the following key steps 

(e.g., Figure 20 illustrated for the random forest): 

1. Start with a known AEZ or a combination of these AEZs (Error! Reference source not f

ound. b).  

2. Create high quality image ARD30 cubes over AEZs or AEZ combinations (Error! Ref-

erence source not found.). 

3. Choose appropriate reference-training data (Table 4, Figure 9-11).  

4. Generate a knowledge base to separate irrigated cropland from non-irrigated cropland 

(rainfed) (e.g., Figure 18-19). 

5. Create pixel-based supervised MLAs such as RF and SVMs in the GEE cloud. Overview 

of this approach shown in Figure 20. 

6. Run pixel-based MLAs (Figure 20) using the ARD30 cube (e.g., Figure 17) in the GEE 

cloud for each AEZ or AEZ combinations (Figure 13a, b). 

7. Evaluate irrigated versus rainfed classes to ensure accurate classification using reference 

data (Figure 9-11), ancillary data (e.g., from other maps from National or regional or 

global systems through collaborators or published work). 

8. Perform error matrices for accuracies using validation data (Figure 12, Table 4). 

9. If classification accuracies are not sufficiently high, further evaluate the reference-training 

data and subtract samples that cause problems or add additional samples to improve the 

classification accuracies. 

10. Reiterate steps 4 to 9. 

11. Optimize classification results of RF and SVM by removing any overfitting issues. 

Stop when adequate overall, producer’s, and user’s accuracies are achieved. Overall, supervised 

classification are powerful tools, yet lacked the accuracies achieved in unsupervised classifica-

tions and hence we primarily deployed unsupervised classifications as discussed below. 

 

C. Machine learning (ML) pixel-based unsupervised classification methods:  

In this research, primarily, Irrigated and rainfed croplands were separated based on four methods 

(Lu et al., 2021, Teluguntla et al., 2017, 2015; Thenkabail et al., 2012, 2009a, 2007, 2005) as 

below:  

1. ISOCLASS clustering to classify images (Thenkabail et al., 2011, 2009a) (e.g., 

Figure 21). 

2. Quantitative spectral matching techniques (SMTs) as main class identification 

and labeling method (Lu et al., 2021, Teluguntla et al., 2017, Thenkabail et al., 

2007) (e.g., Figure 22-23).  

3. Other class identification and labeling methods: (a) Decision trees (DTs) (Lin et 

al., 2022, Thenkabail et al., 2009a) (e.g., Figure 24b); (b) Space time spiral curves 

or STSCs (Thenkabail et al., 2005) (e.g., Figure 24c); and  

4. Class aggregation and refinement leading to final consolidation of classes using 

methods SMTs, DTs, and STSCs along with reference data (Figure 9-11). 

 

C1. ISOCLASS clustering 

ISODATA is an iterative Self-Organizing Data Analysis Technique. It uses spectral distance 

between image pixels in feature space to classify pixels into a specified number of unique spec-

tral groups. The ISODATA method uses minimum spectral distance to assign a cluster for each 

candidate pixel. The process begins with a specified number of arbitrary clusters means or the 



  38  
 

means of existing signatures, and then it processes repetitively, so that those means shift to the 

means of the clusters in the data.  

To perform ISODATA clustering Three parameters are considered.  

1. N – maximum number of clusters to be considered. Since each cluster is the basis for a 

class, this number becomes the maximum number of classes to be formed. The ISO-

DATA process begins by determining N arbitrary cluster means. Some clusters with too 

few pixels can be eliminated, leaving less than N clusters. 

2. T – a convergence threshold, which is the maximum percentage of pixels whose class 

values are allowed to be unchanged between iterations. 

3. M – maximum number of iterations to be performed 

 

The Landsat-derived global cropland extent product @ 30m (GCEP30) (Figure 8, Thenkabail et 

al., 2021) formed the baseline for this product. The goal is to use GCEP30 as baseline to deter-

mine which of these croplands are irrigated and which are rainfed. The goal is to identify irrigated 

and rainfed classes within each AEZ (Figure 13a) or by taking a combination of AEZs (e.g., 

Figure 13b) depending on complexity or ease of analysis. Further, within these AEZs, we ana-

lyzed irrigated and rainfed areas by taking the coarse resolution mask of irrigated and rainfed 

areas (Figure 7) as a starting block. Then we develop ARD30 cubes (e.g., Figure 17) of irrigated 

and rainfed mask areas (Figure 7) on the Google Earth Engine (GEE) for each of the AEZs (Fig-

ure 13a) or combination of AEZs (Figure 13b). For example, we created ARD30 cubes of irri-

gated mask (Figure 21, top-right) for AEZ zones 48-52 (Figure 21, top-left) and used ISOCLASS 

clustering algorithm on ERDAS Imagine classifying this data-cube into 100 classes (Figure 21, 

bottom-left). The NDVI time-series signatures of these 100-classes is shown in Figure 21, bot-

tom-right. When classifying it is good to have as many classes as possible (e.g., 100) to give us 

an opportunity to identify and label as many unique classes as possible. 

 

C2. Quantitative spectral matching techniques (SMTs) 

Once the classes (e.g., 100 classes in Figure 21) are obtained through classification, then class 

identification and labeling process begins. The primary and powerful means of class identifica-

tion and labeling is by using SMTs. The SMTs (Teluguntla et al, 2017, Thenkabail et al., 2011) 

are innovative methods of identifying and labeling classes (Thenkabail et al., 2009a) that was 

first proposed for remote sensing image classification and class identification and labeling by 

(Thenkabail et al. 2007). For each Landsat 30-m derived class, we looked through its character-

istics over time using MODIS time-series data (e.g., Figure 21). The time-series of NDVI or other 

metrics (Teluguntla et al., 2017, Thenkabail et al., 2005, 2007a) are analogous to spectra, where 

time is substituted for wavelength. The principle in SMT is to match the shape, or the magnitude 

or both to an ideal or target spectrum (pure class or “end-member”).  

 

We will use the following quantitative SMTs (Thenkabail et al., 2007):  

(a) Spectral Correlation Similarity (SCS)-a shape measure.  

(b) Spectral Similarity Value (SSV)-a shape and magnitude measure.  

(c) Euclidian Distance Similarity (EDS)-a distance measure; and  

(d) Modified Spectral Angle Similarity (MSAS)-a hyper angle measure. 
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Figure 21. ISOCLASS clustering by classifying the image. The irrigated area mask of AEZ 

48-52 (top-left) were classified using ARD30 cube (top right). That lead to 100 classes (bottom 

left), the signature of which is shown in bottom right. 

 

C2.1. Generating class spectra:  

Here we illustrate class spectra generated for AEZ 48-52 (Figure 21, top-left). All Landsat data-

cubes (Figure 21, top-right) are composed on the Google Earth Engine (GEE) cloud using meth-

ods and approaches as in Thenkabail et al. (2021). These data-cubes are composed for the irri-

gated and rainfed mask areas (Figure 7) overlaid on cropland extent product (Figure 8). Classifi-

cation is performed using ISOCLASS clustering algorithm (Thenkabail et al., 2011, 2009a) lead-

ing to 100 classes (Figure 21, bottom-left).  

 

The time-series NDVI signatures of these classes are shown in Figure 21, bottom right. In more 

local applications, it is common to use field-plot data to identify and label class spectra. However, 

at the global scale this is not possible due to the enormous resources required to cover vast areas 

to identify and label classes. Therefore, we used spectral matching techniques to match similar 

classes by matching class spectra with ideal or target spectra (e.g., Figure 22-23) and then identify 

and label the classes (Thenkabail et al., 2007) as we will illustrate below.  
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C2.2 Ideal spectral data bank:  

The term “ideal or target” spectrum refers to time-series spectral reflectivity or NDVI gener-

ated for classes for which we have precise location specific ground knowledge. We have initial 

~112,000 samples on croplands and non-croplands (Figure 9) of which several thousands have 

irrigated or rainfed data as well. In addition, we have gathered an additional 27,396 samples of 

irrigated versus rainfed (Figure 10, 11, 12 and Table 4). Illustrations of some of these samples 

are shown in Figure 14-16. These signatures are synthesized and aggregated to generate a few 

hundred signatures (with each signature having a large sample size) that will constitute an ideal-

spectral data bank of irrigated areas (ISDB IA) (e.g., Figure 22, Top-left). The ideal spectra are 

established by exact knowledge of the crop during field visit (ground data) or by using data 

sourced from reliable sources such as agricultural extension officers or reliable maps. Once the 

knowledge is clear, time-series satellite images are used to generate ISDB. Figure 22, top-left, it 

is labeled irrigated, surface water, double crop (IR, SW, DC) based on ground data. 

 

C2.3 Matching class spectra with ideal spectra: 

Any classes that are identical in class spectra (Figure 21, bottom-right) are grouped (e.g., three 

classes in Figure 22, top-right; these are similar classes in terms of shape and magnitude gathered 

from 100 classes in Figure 21, bottom-right), and then matched with the ideal spectra (Figure 22, 

bottom-left). Since the 3 class spectra (Figure 22, top-right) match perfectly with ideal spectra 

(Figure 22, bottom-left), they are merged into one single class and then matched with the ideal 

spectra (Figure 22, bottom-right). The most powerful and lucid of all the SMTs in land cover or 

cropland studies is the SCS R2-value (Teluguntla et al., 2017, Thenkabail et al., 2007) which is a 

shape measure that typically produces values between 0 and 1. The greater the SCS R2-values, 

the greater the similarity between class spectra and target spectra. The SCS R2-values of Figure 

22, bottom-right is 0.98. As a result of the very high SCS R2-values, the three classes (Figure 22 

top-right) that were matched with ideal spectral (Figure 22, bottom-left) and combined (Figure 

22, bottom-right) were labeled same as ideal spectra: irrigated, surface water, double crop (IR, 

SW, DC).  Figure 22 illustrates combining, identifying, and labeling classes: irrigated, surface 

water, single crop (IR, SW, SC). The process is repeated for all 100 classes (Figure 21, bottom-

right). Once all classes are identified and labeled, they are further verified by using the reference 

data (Figure 9-11) and\or by verifying the class labels with other local maps and any other avail-

able information (e.g., local country partners). 

 

C2.4 Other class identification and labeling process 

The class spectra (Figure 22) also are identified using other methods like decision-trees (DTs) 

which involves writing a set of rules to separate irrigated areas from rainfed areas (e.g., Figure 

24b) based on spectral band reflectivity of various bands or their transformed data such as NDVI. 

We have mapped irrigated areas using these methods in several publications (Gumma et al., 2016, 

Thenkabail et al., 2009a, Wu et al., 2014). Further, we have found space-time spiral-curves 

(STSCs; Figure 24c; Thenkabail et al., 2005) that uses time-series satellite data during the crop 

growing season to clearly and distinctly separate irrigated and rainfed croplands based on the 

trajectory in two-dimensional (e.g., Figure 24c) or multi-dimensional feature space.  

 

The first part of the DT algorithms involve knowledge-capture to understand and map agricul-

tural cropland dynamics by: (a) identifying croplands versus non-croplands and crop type\domi-

nance based on spectral matching techniques, decision trees tassel cap bi-spectral plots, and very 
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high resolution imagery; (b) determining watering method (e.g., irrigated or rainfed) based on 

temporal characteristics (e.g., NDVI),  crop water requirement (water use by crops), secondary 

data (elevation, precipitation, temperature), and irrigation structure (e.g., canals and wells); (c) 

establishing croplands that are large scale (i.e., contiguous) versus small scale (i.e., fragmented); 

(d) characterizing cropping intensities (single, double, triple, and continuous cropping); (e) in-

terpreting MODIS NDVI Temporal bi-spectral Plots to Identify and Label Classes; and (f) using 

in-situ data from very high resolution imagery, field-plot data, and national statistics. The second 

part of the method establishes accuracy of the knowledge-captured agricultural map and statistics 

by comparison with national statistics, field-plot data, and very high-resolution imagery. The 

third part of the method makes use of the captured knowledge to code and map cropland dynam-

ics through an automated algorithm. The fourth part of the method compares the agricultural 

cropland map derived using an automated algorithm (classified data) with that derived based on 

knowledge capture (reference map). The fifth part of the method applies the tested algorithm on 

an independent data set of the same area to automatically classify and identify agricultural 

cropland classes. The sixth part of the method assesses accuracy and validates the classes derived 

from independent dataset using an automated algorithm. 

 

The space-time spiral curves (ST-SCs) (Figure 25) are introduced as an innovative approach to 

represent and track near continuous changes in class behavior over time and space. The dynamics 

of two classes (irrigated and rainfed are shown in a 2-dimentional feature space using Landsat 

class reflectivity in Figure 25. Each class, irrigated and rainfed, have their own territory and 

mostly move around within it throughout the year. In Figure 25 the rainfed class is in brightness 

territory, and irrigated class in greenness territory.  The ST-SCs depict change over time depend-

ing on their growth and vigor. The classes shown in Figure 24 rarely overlap one another, provid-

ing an excellent opportunity to separate classes on most dates. SC-STs tell us when (what time 

of the year) the two classes have similar spectra and when (what time of the year) they are most 

separable.  

 

Irrigated areas often have 2-3 crops grown on same cropland areas annually which can be de-

tected using NDVI time-series plot (Figure 19) when compared to a single crop grown annually 

in a rainfed cropland area (e.g., Figure 19). This is overwhelmingly true in much of the world’s 

croplands. Also, irrigated areas have higher NDVI magnitude during much of a growing season 

when compared with rainfed croplands (e.g., Figure 19). This is also true in much of the croplands 

of the world. These two indicators play a key major role in distinguishing irrigated croplands 

from rainfed croplands. Other methods like RF (Oliphant et al., 2019, Xiong et al., 2017b, Conrad 

et al., 2016) are also used in separating irrigated areas from rainfed areas.  

 

Based on this process, the 100 classes (Figure 21) were reduced to 35 unique classes (Figure 26). 

Note that all these 35 classes are from the irrigated mask. Of the 35 classes in the irrigated area 

mask, 31 remain as irrigated, remaining 4 classes were identified as rainfed.  

 

Adopting same methods and approaches described for irrigated area mask, rainfed area mask 

(Figure 27) was also classified, classes identified, and labeled. The initial 60 classes for AEZ 48-

52, for the rainfed mask (Figure 27, bottom-left) were classified into 60 classes and from which 

23 unique aggregated classes were identified (Figure 27). Of the 23 classes in the rainfed area 

mask, 18 remain as rainfed remaining 5 were identified as irrigated (Figure 27).
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Figure 22. Spectral matching technique (SMT) for identifying and labelling classes from the irrigated area mask. The SMTs 

involve matching class spectra with ideal spectra. The class spectra are the time-series NDVI or spectral reflectivity profiles of the 

classes from the irrigated mask (e.g., 100 classes generated in Figure 21). Ideal spectra are the spectra in the knowledge-bank for which 

precise knowledge is known. For example, for irrigated (IR), surface water (SW), double crop (DC) the spectral signature in the signature 

bank in AEZ zones 48-52 is as in top-left (22a). Three similar classes (22b) from the 100 class spectra (Figure 21) were matched with 

the ideal spectra (22c). Since the three class spectra match well, they were combined and matched with idea spectra (22d).  For quanti-

tative methods refer to Thenkabail et al. 2007a. 
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Figure 23. Spectral matching technique (SMT) for identifying and labelling classes from the irrigated area mask. The SMTs 

involve matching class spectra with ideal spectra. The class spectra are the time-series NDVI or spectral reflectivity profiles of the 

classes from irrigated mask (Figure 20). Ideal spectra are the spectra in the knowledge-bank for which precise knowledge is known. For 

example, irrigated (IR), surface water (SW), single crop (SC) the spectral signature in the signature bank in AEZ zones 48-52 is as in 

top-left (23a). Four similar classes (23b) from the 100 class spectra (Figure 21) were matched with the ideal spectra (23c). Since the 

three class spectra match well, they were combined and matched with idea spectra (23d).  For quantitative methods refer to Thenkabail 

et al. 2007a. 
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Figure 24. Irrigated versus rainfed cropland class identification approaches. There are various approaches to identifying and label-

ing classes. This includes: (a) quantitative spectral matching techniques (SMTs) (Figure 22 and 23), (b) decision trees (DTs), and (c) 

space-time spiral curves (STSCs).
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Figure 25. Space-time spectral curves (ST SCs). The NIR and red spectral reflectance of irri-

gated and rainfed area classes can be plotted to see how they transverse in time. The dates shown 

are Julian dates in a calendar year. This plot is for the Ganges basin in India. Such plots can be 

developed for any classes to see how they transverse in time. Over space, in different parts of the 

world, these will transverse differently but often having distinct separability amongst irrigated 

and rainfed classes at least during some dates of the calendar year. 

 

 

 



  46  
 

 

 
Figure 26. Grouping classes from the irrigated area mask. Based on the methods and approaches described above, all similar clas-

ses were grouped together and labeled. Here we illustrate 100 classes reduced to 35 similar classes. Of the 35 classes in the irrigated 

area mask, 31 remain as irrigated, remaining 4 classes were identified as rainfed. 
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Figure 27. Grouping classes from the rainfed area mask. Adopting same methods and approaches described for irrigated area 

mask, this rainfed area mask for AEZ 48-52 were classified into 60 classes and from which 23 unique aggregated classes were identi-

fied. Of the 23 classes in the rainfed area mask, 18 remain as rainfed remaining 5 were identified as irrigated. 
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C3.0 Aggregating classes 

The classes were identified, labeled and grouped in the irrigated area mask (Figure 26) and the 

rainfed area mask (Figure 27).  

There were 35 unique classes that were identified in the irrigated area mask of AEZ 48-52. Of 

these 35 classes, 31 classes (classes 1-27, 32-25) were identified as irrigated and the rest 4 classes 

(classes 28-31) were identified as rainfed. Aggregated 35-classes are shown Figure 28.  

There were 23 unique classes that were identified in the rainfed area mask of AEZ 48-52. Of 

these 23 Classes, 18-classes (Classes 1-16, 22-23) were identified as rainfed and the rest 5 classes 

(Classes 17-21) were identified as irrigated. Aggregated 23-classes are shown Figure 29. 

 

C3.1 Level I irrigated and rainfed classes 

Once the irrigated and rainfed classes are all identified in the irrigated mask (Figure 28) and 

Rainfed mask (Figure 29), our next goal is to create Level I irrigated area product for the AEZ 

48-52.  

Since there are 31 irrigated area classes in the irrigated area mask (Figure 28) and there are 5 

irrigated area classes in the rainfed mask (Figure 29), we derive for AEZ 48-52: 

Level I 36-class irrigated area product (Figure 30) 

Since there are 4 rainfed area classes in the irrigated area mask (Figure 28) and there are 18 

rainfed area classes in the rainfed mask (Figure 29), we derive for AEZ 48-52: 

Level I 22-class rainfed area product (Figure 31) 

 

When we put all the irrigated and rainfed area classes of Level I (Figure 30 and 31) together, we 

get for AEZ 48-52:  

Level I 58-class Landsat-derived global rainfed and irrigated area product @ 30m (LGRIP30-

AEZ 48-52) as shown in Figure 32. 

 

C3.2  Level II irrigated and rainfed classes 

The level II 4-class irrigated area product (Figure 33) is derived by aggregating the 36-class 

irrigated area product (Figure 30). The Level II 5-class rainfed area product (Figure 34) derived 

by aggregating the 22-class rainfed area product (Figure 31). The two Level II products (Figure 

33 and 34) are combined to form  the AEZ 48-52: 

Level II 9-class Landsat-derived global rainfed and irrigated area product @ 30m (LGRIP30-

AEZ 48-52) as shown in Figure 35. 

 

C3.3 Level III irrigated and rainfed classes 

The 9-class Level II LGRIP30-AEZ 48-52 classes (Figure 35) were aggregated to derive: 

Level III 2-class Landsat-derived global rainfed and irrigated area product @ 30m (LGRIP30-

AEZ 48-52) as shown in Figure 36. The process described above for to create, Level II LGRIP30-

AEZ 48-52 was repeated for all AEZs to finally derived the: 

Landsat-derived global rainfed and irrigated area product @ 30m (LGRIP30) for the entire world 

(Figure 37). 

 

C4.0   Programming codes 

The codes and models related to this work is provided a zip files.
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Figure 28. Aggregated 35-classes from irrigated area mask in AEZ 48-52. There were 35 unique classes that were identified in the 

irrigated area mask of AEZ 48-52. Of these 35 classes, 31 classes (classes 1-27, 32-35) were identified as irrigated and the rest 4 clas-

ses (classes 28-31) were identified as rainfed. 
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Figure 29. Aggregated 23-classes from rainfed area mask in AEZ 48-52. There were 23 unique classes that were identified in the 

rainfed area mask of AEZ 48-52. Of these 23 Classes, 18-classes (Classes 1-16, 22-23) were identified as rainfed and the rest 5 classes 

(Classes 17-21) were identified as irrigated. 
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Figure 30. Level I 36-class irrigated area map @30m for AEZ 48-52. The 36-class level I irrigated area classes were derived from 

31 irrigated area classes out of total 35 classes from irrigated mask (Figure 28) and 5 irrigated area classes out of total 23 classes from 

rainfed mask (Figure 29). 
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Figure 31. Level I 22-class rainfed area map @30m for AEZ 48-52. The 22-class level I rainfed area classes were derived from 18 

rainfed area classes out of total 23 classes from rainfed mask (Figure 29) and 4 irrigated area classes out of total 35 classes from irri-

gated area mask (Figure 28). 
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Figure 32. Level I 58-class Landsat-derived global rainfed and irrigated area map @ 30m for AEZ 48-52 (LGRIP30-AEZ48-

52). The 58-class level I LGRIP30-AEZ48-52 was derived by combining the Level I 36-class irrigated area product (Figure 30) and 

Level I 22-class rainfed area product (Figure 31). 
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Figure 33. Level II 4 class Landsat-derived irrigated area map@30m. This 4-class Level II irrigated area map for AEZ 48-52 were 

derived by combining classes from Level I 36-class irrigated area map (Figure 30). 
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Figure 34. Level II 5 class Landsat-derived rainfed area map @30m. This 5-class Level II rainfed area map for AEZ 48-52 were 

derived by combining classes from Level I 22-class rainfed area map (Figure 31) 
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Figure 35. Level II 9-class Landsat-derived rainfed and irrigated area map@30m. The 9-class level II Landsat-derived 30m rain-

fed and irrigated area classes for AEZ 48-52 were derived by combining the 4-class Level II irrigated area map (Figure 33) with 5-

class Level II rainfed area map. 
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Figure 36. Level III 2-class Landsat-derived rainfed and irrigated-area map @ 30m. The 2-class level II Landsat-derived 30m 

rainfed and irrigated area classes for AEZ 48-52 were derived by aggregating classes from Level II 9-class rainfed and irrigated area 

map (Figure 35). 
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VII. Results 
 

The Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30) of the 

World (GFSADLGRIP30WORLD) resulted in multiple global irrigated and rainfed cropland 

products. This includes, maps, areas, statistics of various nature. We will discuss these in the 

following sections and sub-sections. 

 

A. Global irrigated and rainfed cropland maps at 30m 

The Landsat-derived Global Rainfed and Irrigated-Cropland Product @ 30-m (LGRIP30) for the 

nominal year 2015 is shown in Figure 37. The map shows spatial distribution of the global irri-

gated (green) and rainfed (yellow) areas across all the countries of the World.  

 

Spatial distribution of LGRIP30 is illustrated for few places of the world in Figure 38 through 

44. Figure 38 shows distribution of irrigated and rainfed areas over the state of Nebraska, USA, 

which has highest irrigated areas along with the state of California (Figure 39). Distribution of 

irrigated and rainfed areas are also illustrated for Italy (Figure 40), Uganda (Figure 41), Nigeria 

(Figure 42), parts of India (Figure 43), and Australia (Figure 44). In the images shown (Figure 

38-44) rainfed areas dominate in Nigeria and Australia, irrigated areas dominate in India. In 

France and Uganda both irrigated and rainfed areas have almost equal presence. The full resolu-

tion view of LGRIP30 map can be viewed at:  

www.usgs.gov/apps/croplands (navigate to LGRIP30 within this site) 

or  

www.croplands.org (navigate to LGRIP30 within this site) 

 

B. Accuracies 

Accuracy assessments of LGRIP30 (Figure 37) were performed using 10,477 validation samples 

(Figure 11, Table 4), of which 5,667 were rainfed samples and the rest 4,810 were irrigated sam-

ples. The resulting error matrix (Table 5) showed an overall accuracy (Congalton and Green, 

2009) of 86.5%. The irrigated class has a producer’s accuracy of 86.7% (errors of omissions of 

= 13.3%) and user’s accuracy of 84.3% (errors of commissions = 15.7%). The rainfed class has 

a producer’s accuracy of 86.3% (errors of omissions of = 13.7%) and user’s accuracy of 88.4% 

(errors of commissions = 11.6%). For the 13 AEZs (Figure 13b) the LGRIP30 (Figure 37) 

showed overall accuracies to vary between 79.2 to 94.4% (Table 6). In the 13 AEZ’s, the irrigated 

class producer’s accuracies varied between 77.9 to 95% (errors of omissions of = 5 to 21.1%) 

and user’s accuracies vary between 76.9 to 94.3% (errors of commissions = 5.7-23.1%) (Table 

6). In the 13 AEZ’s, the rainfed class producer’s accuracies varied between 77.6 to 98.5% (errors 

of omissions of = 1.5 to 22.4%) and user’s accuracies vary between 82 to 95.5 % (errors of 

commissions = 4.5-18%) (Table 6). These results clearly indicate robust and high degree of ac-

curacies in both irrigated and rainfed cropland mapping. 

 

Producer’s accuracies of irrigated areas and rainfed areas of all the countries in the world is 

shown in Figure 45 and 46, respectively. User’s accuracies of irrigated areas and rainfed areas of 

all the countries in the world is shown in Figure 47 and 48, respectively. The overall accuracies 

of the LGRIP30 map are shown in Figure 49. 

http://www.usgs.gov/apps/croplands
http://www.croplands.org/
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Figure 37. LGRIP30 product. The Landsat-derived Global rainfed & irrigated product @ 30m (LGRIP30) for the nominal year 2015. 

This product provides global rainfed and irrigated areas at 30m. View this product at: www.usgs.gov/apps/croplands (navigate to 

LGRIP30 within this site). The product is tiles 1 degree by 1 degree and released through NASA’s LP DAAC.  

 

 

http://www.usgs.gov/apps/croplands
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Figure 38. LGRIP30 zoom-in to Nebraska, USA. Landsat-derived Global rainfed & irrigated 

product @ 30m (LGRIP30) for the nominal year 2015. Zoom in views of Nebraska, USA. 

 

 
Figure 39. LGRIP30 zoom-in to California, USA. Landsat-derived Global rainfed & irrigated 

product @ 30m (LGRIP30) for the nominal year 2015. California, USA. 
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Figure 40. LGRIP30 zoom-in to France. Landsat-derived Global rainfed & irrigated product 

@ 30m (LGRIP30) for the nominal year 2015. France. 

 

 

 
Figure 41. LGRIP30 zoom-in to Uganda. Landsat-derived Global rainfed & irrigated product 

@ 30m (LGRIP30) for the nominal year 2015. Uganda. 
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Figure 42. LGRIP30 zoom-in to Nigeria. Landsat-derived Global rainfed & irrigated product 

@ 30m (LGRIP30) for the nominal year 2015. Nigeria. 

 

 
Figure 43. LGRIP30 zoom-in to Parts of India. Landsat-derived Global rainfed & irrigated 

product @ 30m (LGRIP30) for the nominal year 2015. Ganges, India. 
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Figure 44. LGRIP30 zoom-in to Australia. Landsat-derived Global rainfed & irrigated product 

@ 30m (LGRIP30) for the nominal year 2015. Australia. 

 

Table 5. LGRIP30 accuracy error matrix of the world. Global accuracy assessment error 

matrix showing the overall accuracies, user’s accuracies, and producer’s accuracies. Number of 

validation samples, N = 10477. 

 Reference Data     

Class  Irrigated Rainfed Row total  
Commission 

error 

Irrigated 4171 774 4945 15.7% 

Rainfed 639 4893 5532 11.6% 

Column total  4810 5667 10477   

Omission error 13.3% 13.7%     

Producer accuracy 86.7% 86.3%     

User accuracy 84.3% 88.4%     

Overall accuracy       86.5% 
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Table 6. LGRIP30 accuracy error matrix of the world for each of the 13 zones. These accu-

racies of the LGRIP30 product are mapped in Figure 45-49. 

 
  Producers Accuracy Users Accuracy  Overall accuracy 

Zone# Zone Irrigated  Rainfed  Irrigated  Rainfed    

# Name % % % % % 

1 United States of America 84.6 85.2 77.0 90.4 85.0 

2 Canada 82.5 97.5 89.7 95.5 94.4 

3 Central America 77.9 87.8 85.5 81.1 83.0 

4 South America 80.3 87.3 86.1 81.9 83.8 

5 Africa 87.3 86.4 78.9 92.1 86.7 

6 Europe 82.4 87.0 83.7 85.9 84.9 

7 Russia 78.9 94.2 80.4 93.7 90.7 

8 Central Asia 92.2 95.7 93.0 95.2 94.4 

9 Middle east & West Asia 92.2 80.0 94.1 75.0 89.5 

10 South Asia 93.7 77.4 86.1 89.0 87.1 

11 China, Japan, & Korea 95.0 74.6 89.4 86.9 88.7 

12 Southeast Asia 83.2 75.3 76.9 82.0 79.2 

13 Australia &New Zealand 82.1 98.5 94.3 94.7 94.6 
 Global 86.7 86.3 84.3 88.4 86.5 
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Figure 45. Producer’s accuracies for LGRIP30 irrigated areas. Map showing producer’s ac-

curacies of irrigated croplands in Landsat derived global rainfed and irrigated cropland product 

at 30-m resolution (LGRIP30) for all 13 zones. Note that errors of omission (%) = 100 − pro-

ducer’s accuracy (%).  

 

 
Figure 46. Producer’s accuracies for LGRIP30 rainfed areas. Map showing producer’s ac-

curacies of rainfed croplands in Landsat derived global rainfed and irrigated cropland product at 

30-m resolution (LGRIP30) for all 13 zones. Note that errors of omission (%) = 100 − producer’s 

accuracy (%). 
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Figure 47. User’s accuracies for LGRIP30 irrigated areas. Map showing user’s accuracies of 

irrigated croplands in Landsat derived global rainfed and irrigated cropland product at 30-m res-

olution (LGRIP30) for all 13 zones. Note that errors of commission (%) = 100 − user’s accuracy 

(%). 

 

 
Figure 48. User’s accuracies for LGRIP30 rainfed areas. Map showing user’s accuracies of 

rainfed croplands in Landsat derived global rainfed and irrigated cropland product at 30-m reso-

lution (LGRIP30) for all 13 zones. Note that errors of commission (%) = 100 − user’s accuracy 

(%). 
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Figure 49. Overall accuracies for LGRIP30. Map showing overall accuracies of each zone for 

nominal-year 2015. Accuracies derived from Landsat derived global rainfed and irrigated 

cropland product at 30-m resolution (LGRIP30).  

 

C. Areas 

Our area calculations have two important note to consider in terms of irrigated areas. When we 

mean irrigated areas, they imply: 1. net irrigated areas (NIAs) and 2. equipped irrigated areas 

(EIAs). This study does not report gross irrigated area (GIA) or annualized irrigated areas.  

 

The LGRIP30 (Figure 37) has a total global net irrigated area (TGNIA) of 1,802,929,008 hectares 

(or 1.80 billion hectares or Bha) of croplands (Table 7) of which 1,087,185,109 hectares (1.09 

Bha) was rainfed and the rest 715,743,899 hectares (0.71 Bha) was irrigated (Table 7). Thereby, 

overall, of the 1.8 Bha of croplands 60.3% is rainfed and 39.7% is irrigated (Figure 24) (we will 

refer to this as 60% irrigated and 40% rainfed throughout. In earlier Landsat-derived global 

cropland extent product at 30 m (GCEP30) Thenkabail et al., (2021) reported global cropland of 

1.873 Bha (Figure 8). Even though Figure 8, forms the basemap from which LGRIP30 (Figure 

37) is derived, the areas found non-croplands in GCEP30 (Figure 8) were dropped. Also, some 

of the croplands missing in GCEP30 (Figure 8) were included in LGRIP30 (Figure 37). So, 

LGRIP30 had both subtraction and addition to GCEP30 (Figure8) leading to a LGRIP30 area of 

1.8 Bha with 40% irrigated and 60% rainfed (Figure 37).  

 

The global net irrigated areas (GNIA) reported in our study (715 Mha) is substantially higher 

compared to previous studies which report GNIA that varied between 307-450 Mha (Puy et al., 

2020, Salmon et al., 2015, Siebert et al., 2013, 2001, FAO, 2012b, FAO, 2015, Thenkabail et al. 

2012, 2011, 2009a). This is not surprising. Indeed, in a recent study by Puy et al., (2020) sug-

gested that the amount of irrigated land could in fact increase to as high as 1.8 billion hectares 

by 2050. They suggested in the paper that “Policymakers should acknowledge that irrigated ar-

eas can grow much more than previously thought in order to avoid underestimating potential 

environmental costs”. Puy et al. (2020) clearly demonstrate that the current models underestimate 

irrigated areas. Rosa et al. (2020) showed that up to 35% of the current rainfed areas have poten-

tial for irrigation expansion in a climate change scenario of temperature warming between 1.5-3 
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degree Celsius. Our results show that this irrigation expansion is already happening at a rapid 

phase. In an increasingly changing climate, complete dependance on precipitation which has 

wide variability is becoming unsustainable and some supplemental irrigation in the least is nec-

essary to ensure optimal productivity and\or to sustain any productivity at all in rainfed croplands. 

Further, most of lower irrigated areas reported in the range around 307-450 Mha estimates were 

for the 2000-2005 period (Salmon et al., 2015, Thenkabail et al., 2011, 2009a). These estimates 

were 307-311 Mha for 2000-2008 period (Siebert et al., 2015, FAO, 2012b, Siebert and Döll, 

2001, 2010, Siebert at al., 2013), 314 Mha for 2005 by Salmon et al. (2015), and 399 Mha by 

Thenkabail et al. (2011, 2009a) for nominal 2000.   

 

Significantly, higher irrigated areas reported in this study are due to following reasons: 

1.Definition of irrigated area: we have defined irrigated areas as those that use artificial use of 

water even one or more times during the crop growing season from any source (e.g., major irri-

gation, minor irrigation, surface water, ground water, open well, deep acquirer wells, river pump-

ing, diver diversions, tanks or any other source). In a climate extreme of floods and droughts and 

lesser reliability in timely rainfall, some supplemental irrigation has become a norm. So, these 

irrigated areas are swiftly increasing when we consider supplemental irrigation. 

 

2. Technological advances in water delivery to agriculture: In much of the world technologi-

cal advances has created greater and greater irrigation facility. For example, most farmers these 

days use some form of irrigation either by pumping water directly from rivers or from open wells 

or from deep acquirer wells. In India, for example, between 1950 and 2010, the number of drilled 

tube wells increased from 1 million to nearly 30 million (World Bank, 2020). The number of 

deep tube wells in the country saw surge from 1.46 million to 2.6 million in just between 2006-

07 and 2013-14 (Business Standard, 2017). Overwhelming proportion of tube-wells are used for 

irrigation. However, most of these go unaccounted from irrigated agricultural areas.  

 

3. Equipped area for irrigation: our irrigated areas consider all irrigated areas equipped for 

irrigation as irrigated areas even when part of those are not irrigated at times (or left fallows). 

For example, significant pasture\hay are included in irrigated areas in few countries.  

 

4. Climate factor: In an increasingly changing climate, purely rainfall dependent agriculture is 

reducing swiftly. Even when rainfall amount is normal, it’s timeliness in delivery varies. Crops 

need water in timely manner and when rainfall fails to follow a pattern during the growing season, 

plants will need water from irrigation and hence supplemental irrigation is greatly increasing, 

primarily through pumping from open wells, tube-wells, and directly from rivers. 
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C1. Areas by countries 

Table 7 provides irrigated and rainfed cropland areas for all the countries in the world. The Table 

7 shows countries with ranking based on irrigated areas. Of the 1,802,929,008 hectares total 

global net cropland areas (TGNCAs), 1,087,185,109 hectares (1.09 Bha) was total global net 

rainfed areas (TGNRAs) and the rest 715,743,899 hectares (0.71 Bha) was total global net irri-

gated areas (TGNIAs). 

 

The top 10 TGNIAs of the world were (Table 7): India (132.5 million hectares or Mha, 18.5% of 

TGNIA of 715 Mha), China (131.8 Mha; 18.4%), USA (42.3 Mha; 5.9%), Russia (33.3 Mha; 

4.6%), Ukraine (30.4 Mha; 4.2%), Turkey (19.5 Mha; 2.7%), Pakistan (19.1 Mha; 2.7%), Mexico 

(16.3 Mha; 2.3%), Spain (15.3 Mha; 2.1%), and France (13.5 Mha; 1.9%). These 10 countries 

have 64 percent of TGNIAs of the world. India and China together have 37% of the TGNIAs. 

India with population of 1.39 billion and China with population of 1.41 billion have large, irri-

gated areas to feed their large populations. Also, these are ancient countries with continuous 

civilizations of over 7000 years of sustained populations and agricultural development. It is im-

portant to note that significant proportion of the irrigated areas in countries like India and China 

have two or three crops annually as weather allows for crop growth throughout the year for much 

of these two countries. Modern Nations like USA, much of irrigated infrastructure was built dur-

ing the nineteenth Century. It is obvious from the irrigated area statistics (Table 7) that many 

countries of the world have significant irrigated areas. In comparison to other studies (Salmon et 

al., 2015, Siebert et al., 2013, 2001, FAO, 2012b, FAO, 2015, Thenkabail et al. 2012, 2011, 

2009a) there is significant increase in irrigated areas in several countries throughout the world. 

 

The top 10 TGNRAs countries of the world were (Table 7): USA (125.9 Mha, 11.6% of 1.087 

Bha), Russia (121.7 Mha, 11.2%), India (46.8 Mha; 4.3%), Brazil (46.2 Mha; 4.2%), Canada 

(42.6 Mha; 3.9%), China (32.1 Mha; 2.9%), Nigeria (30.8 Mha; 2.8%), Australia (30.5 Mha; 

2.8%), Argentina (29.4 Mha; 2.7%), and Indonesia (26.4 Mha; 2.4%). These 10 countries have 

49 percent of TGNRAs of the world. USA and Russia together have 23% of the TGNRAs. Both 

USA and Russia have vast stretches of highly productive croplands that can only grow one crop 

a year as weather conditions restrict crop during rest of the year. Overwhelming proportion of 

these croplands do not require irrigation. However, significant proportion of these croplands may 

require supplemental irrigation in years ahead as a result of changing climate and climate ex-

tremes. 

 

As Puy et al., (2020) imply the irrigated cropland expansion maybe substantially underestimated. 

Indeed, in a changing climate assured cropland may not be possible is a significant proportion of 

the existing rainfed croplands. Further additional food and nutritional demands of ballooning 

populations will demand cropland intensification where currently rainfed croplands may need to 

grow a second crop assisted by partial or full irrigation. 
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Table 7. LGRIP30-derived net irrigated areas (NIAs) and net rainfed areas (NRAs) of all the 

countries of the world1,2. 

 

Sno Zone# ADM0_CODE
1

ADM0_NAME
1

Irr-rank
2

LGRIP30-Irrigated
3

LGRIP30-Rainfed
3

LGRIP30-Total
3

# # # Name # Ha Ha Ha

1 10 115 India 1 132,542,113 46,767,434 179,309,548

2 11 147295 China 2 131,778,217 32,118,339 163,896,556

3 1 259 USA 3 42,323,364 125,881,360 168,204,724

4 7 204 Russian Federation 4 33,276,856 121,651,518 154,928,374

5 6 254 Ukraine 5 30,408,208 12,621,600 43,029,808

6 9 249 Turkey 6 19,547,992 8,872,795 28,420,787

7 10 188 Pakistan 7 19,127,578 7,492,682 26,620,261

8 3 162 Mexico 8 16,324,519 17,865,405 34,189,923

9 6 229 Spain 9 15,355,735 12,856,514 28,212,249

10 6 85 France 10 13,519,701 18,132,629 31,652,330

11 12 240 Thailand 11 13,516,805 12,175,398 25,692,203

12 4 37 Brazil
4 12 13,135,572 46,424,651 59,560,223

13 9 118 Iraq 13 11,537,570 350,703 11,888,273

14 6 198 Poland 14 10,649,360 8,344,592 18,993,952

15 12 116 Indonesia 15 10,015,594 26,434,913 36,450,507

16 10 23 Bangladesh 16 9,359,234 481,359 9,840,593

17 12 171 Myanmar 17 8,939,549 4,979,478 13,919,026

18 6 93 Germany 18 8,237,645 11,544,787 19,782,432

19 10 117 Iran  (Islamic Republic of) 19 8,042,545 24,326,809 32,369,353

20 12 264 Viet Nam 20 7,725,984 2,812,147 10,538,131

21 9 238 Syrian Arab Republic 21 6,533,081 26,030 6,559,111

22 6 203 Romania 22 5,649,424 7,872,839 13,522,263

23 8 261 Uzbekistan 23 5,558,757 2,208,708 7,767,466

24 5 133 Kenya 24 5,224,532 3,555,088 8,779,620

25 5 257 United Republic of Tanzania 25 5,222,179 14,829,772 20,051,951

26 6 122 Italy 26 5,117,951 11,865,176 16,983,127

27 4 12 Argentina
4 27 4,869,367 29,397,914 34,267,281

28 5 169 Morocco 28 4,765,248 3,700,828 8,466,076

29 5 4 Algeria 29 4,703,703 3,469,561 8,173,264

30 13 17 Australia
5 30 4,557,947 30,547,846 35,105,792

31 5 40765 Egypt 31 4,249,590 452,604 4,702,194

32 6 26 Belarus 32 4,229,552 6,251,613 10,481,165

33 9 19 Azerbaijan 33 4,191,284 537,190 4,728,475

34 12 44 Cambodia 34 4,183,465 3,416,139 7,599,604

35 5 227 South Africa 35 4,080,443 13,234,658 17,315,100

36 5 79 Ethiopia 36 4,045,941 19,538,956 23,584,897

37 12 196 Philippines 37 3,004,488 3,205,429 6,209,917

38 8 132 Kazakhstan
5 38 2,928,290 22,956,732 25,885,023

39 5 253 Uganda 39 2,606,349 3,977,090 6,583,440

40 9 215 Saudi Arabia 40 2,571,745 107,236 2,678,981

41 8 250 Turkmenistan 41 2,543,481 1,177,884 3,721,366

42 11 67 Dem People's Rep of Korea 42 2,474,461 789,101 3,263,562

43 5 248 Tunisia 43 2,437,781 2,363,821 4,801,602

44 11 126 Japan 44 2,333,268 1,196,752 3,530,020

45 6 41 Bulgaria 45 2,277,087 3,534,067 5,811,154

46 5 6 Sudan 46 2,108,841 18,463,778 20,572,619

47 6 256 U.K. of Great Britain and Northern Ireland47 1,989,605 13,712,814 15,702,419

48 6 97 Greece 48 1,986,543 2,292,069 4,278,613

49 4 194 Paraguay 49 1,940,790 7,037,188 8,977,978

50 6 65 Czech Republic 50 1,891,452 2,799,278 4,690,730

51 6 177 Netherlands 51 1,825,597 440,542 2,266,139

52 6 113 Hungary 52 1,820,245 5,442,207 7,262,452

53 9 269 Yemen 53 1,750,354 412,147 2,162,501

54 10 175 Nepal 54 1,718,874 224,783 1,943,657

55 12 153 Malaysia 55 1,656,305 8,683,545 10,339,850
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Sno Zone# ADM0_CODE
1

ADM0_NAME
1

Irr-rank
2

LGRIP30-Irrigated
3

LGRIP30-Rainfed
3

LGRIP30-Total
3

# # # Name # Ha Ha Ha

56 10 1 Afghanistan 56 1,566,341 6,572,877 8,139,219

57 6 165 Moldova, Republic of 57 1,516,954 1,345,832 2,862,786

58 6 69 Denmark 58 1,491,313 1,848,808 3,340,121

59 4 260 Uruguay 59 1,441,529 10,557,482 11,999,011

60 9 92 Georgia 60 1,287,736 357,602 1,645,338

61 6 2648 Serbia 61 1,279,949 3,775,592 5,055,541

62 4 51 Chile 62 1,274,174 4,700,924 5,975,098

63 6 147 Lithuania 63 1,269,120 2,686,098 3,955,218

64 6 223 Slovakia 64 1,219,444 1,227,596 2,447,040

65 11 202 Republic of Korea 65 1,162,164 263,476 1,425,640

66 12 139 Lao People's Democratic Republic66 1,087,528 1,246,341 2,333,869

67 10 231 Sri Lanka 67 1,085,920 351,863 1,437,783

68 2 46 Canada 68 1,038,976 42,594,426 43,633,402

69 5 182 Nigeria 69 915,851 30,752,427 31,668,278

70 6 18 Austria 70 913,384 1,769,040 2,682,424

71 5 68 Democratic Republic of the Congo71 897,222 11,613,284 12,510,506

72 5 145 Libya 72 893,336 920,194 1,813,530

73 6 199 Portugal 73 881,055 3,343,981 4,225,036

74 6 236 Sweden 74 871,700 2,542,384 3,414,083

75 13 179 New Zealand 75 821,896 7,298,127 8,120,023

76 5 152 Malawi 76 816,280 3,796,667 4,612,947

77 8 239 Tajikistan 77 744,781 365,886 1,110,668

78 5 270 Zambia 78 730,337 6,583,386 7,313,723

79 8 138 Kyrgyzstan 79 675,227 1,445,769 2,120,997

80 5 66 CÃ t́e d'Ivoire 80 626,745 5,484,524 6,111,269

81 9 121 Israel 81 624,292 3,238 627,530

82 4 33 Bolivia 82 609,476 2,898,338 3,507,814

83 3 103 Guatemala 83 603,023 3,838,157 4,441,180

84 3 63 Cuba 84 600,717 3,607,739 4,208,456

85 5 205 Rwanda 85 499,148 831,933 1,331,081

86 6 84 Finland 86 498,882 1,352,878 1,851,761

87 3 180 Nicaragua 87 492,821 4,417,631 4,910,453

88 9 130 Jordan 88 456,531 11,553 468,083

89 6 140 Latvia 89 450,665 2,169,877 2,620,542

90 5 271 Zimbabwe 90 449,584 9,748,437 10,198,021

91 9 64 Cyprus 91 449,492 52,005 501,497

92 6 62 Croatia 92 446,805 1,894,516 2,341,321

93 3 61 Costa Rica 93 440,799 1,648,444 2,089,242

94 3 111 Honduras 94 425,723 2,813,125 3,238,848

95 11 147296 Taiwan 95 421,802 109,157 530,959

96 5 94 Ghana 96 410,828 2,858,865 3,269,694

97 5 155 Mali 97 353,258 10,011,477 10,364,735

98 6 241 The former Yugoslav Republic of Macedonia98 348,699 487,029 835,728

99 3 191 Panama 99 340,175 1,758,764 2,098,939

100 9 13 Armenia 100 330,652 255,125 585,777

101 6 78 Estonia 101 325,914 1,056,137 1,382,050

102 3 72 Dominican Republic 102 305,205 1,682,026 1,987,231

103 4 263 Venezuela 103 303,055 6,881,570 7,184,625

104 5 170 Mozambique 104 299,985 6,004,906 6,304,891

105 5 150 Madagascar 105 277,448 3,068,635 3,346,083

106 4 195 Peru 106 256,558 1,513,123 1,769,681

107 5 243 Togo 107 241,842 1,657,732 1,899,573

108 9 141 Lebanon 108 218,842 23,912 242,754

109 9 255 United Arab Emirates 109 215,571 7,154 222,725

110 6 3 Albania 110 209,180 460,791 669,971
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Sno Zone# ADM0_CODE
1

ADM0_NAME
1

Irr-rank
2

LGRIP30-Irrigated
3

LGRIP30-Rainfed
3

LGRIP30-Total
3

# # # Name # Ha Ha Ha

111 6 27 Belgium 111 206,802 1,476,243 1,683,045

112 5 45 Cameroon 112 204,248 4,407,678 4,611,927

113 4 73 Ecuador 113 200,321 2,027,725 2,228,046

114 5 226 Somalia 114 178,552 1,456,278 1,634,831

115 9 187 Oman 115 145,334 2,395 147,729

116 4 57 Colombia 116 134,755 5,536,017 5,670,771

117 3 108 Haiti 117 129,332 1,089,452 1,218,784

118 6 34 Bosnia and Herzegovina 118 121,634 1,628,530 1,750,164

119 5 235 Swaziland 119 121,272 460,840 582,111

120 5 43 Burundi 120 103,861 644,583 748,444

121 6 119 Ireland 121 102,213 5,094,203 5,196,415

122 6 186 Norway 122 86,078 774,458 860,536

123 6 237 Switzerland 123 77,078 1,235,910 1,312,988

124 5 181 Niger 124 73,207 7,752,110 7,825,317

125 4 107 Guyana 125 70,476 68,780 139,255

126 12 242 Timor-Leste 126 69,189 51,002 120,191

127 5 29 Benin 127 66,513 3,207,925 3,274,438

128 5 8 Angola 128 47,936 4,691,297 4,739,234

129 5 217 Senegal 129 46,543 3,939,082 3,985,624

130 3 28 Belize 130 44,187 319,271 363,458

131 5 106 Guinea 131 39,622 648,708 688,330

132 3 75 El Salvador 132 38,803 991,786 1,030,589

133 9 137 Kuwait 133 36,967 1,152 38,119

134 3 123 Jamaica 134 35,368 235,535 270,903

135 3 200 Puerto Rico 135 34,919 302,064 336,983

136 5 59 Congo 136 34,647 208,740 243,388

137 5 105 Guinea-Bissau 137 29,783 164,991 194,773

138 9 267 West Bank 138 29,382 212 29,594

139 5 91 Gaza Strip 139 28,905 423 29,328

140 6 2647 Montenegro 140 26,809 181,392 208,201

141 6 224 Slovenia 141 25,764 633,483 659,246

142 5 35 Botswana 142 24,678 1,594,821 1,619,499

143 12 192 Papua New Guinea 143 22,615 295,168 317,782

144 9 201 Qatar 144 20,710 1,219 21,928

145 5 42 Burkina Faso 145 20,601 5,674,965 5,695,565

146 5 50 Chad 146 19,390 5,324,980 5,344,370

147 10 31 Bhutan 147 19,035 17,064 36,099

148 3 100 Guadeloupe 148 16,180 47,777 63,957

149 5 160 Mauritius 149 15,210 51,895 67,104

150 12 83 Fiji 150 14,111 156,300 170,411

151 5 77 Eritrea 151 13,773 609,684 623,457

152 6 156 Malta 152 13,355 11,268 24,623

153 11 167 Mongolia 153 12,010 882,577 894,587

154 5 74 South Sudan 154 11,819 1,036,348 1,048,166

155 12 178 New Caledonia 155 11,759 24,094 35,854

156 5 221 Sierra Leone 156 11,219 91,125 102,344

157 4 233 Suriname 157 9,509 22,811 32,320

158 12 40 Brunei Darussalam 158 8,062 42,005 50,067

159 3 24 Barbados 159 7,222 10,728 17,950

160 5 90 Gambia 160 5,969 318,670 324,639

161 11 33364 Hong Kong 161 5,679 4,454 10,133

162 5 172 Namibia 162 5,238 884,344 889,582

163 6 148 Luxembourg 163 5,201 134,105 139,306

164 5 159 Mauritania 164 4,491 87,733 92,224

165 12 225 Solomon Islands 165 4,245 315,279 319,524
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Sno Zone# ADM0_CODE
1

ADM0_NAME
1

Irr-rank
2

LGRIP30-Irrigated
3

LGRIP30-Rainfed
3

LGRIP30-Total
3

# # # Name # Ha Ha Ha

166 9 21 Bahrain 166 4,099 1,990 6,089

167 5 142 Lesotho 167 3,831 695,649 699,480

168 3 158 Martinique 168 2,089 24,648 26,737

169 3 11 Antigua and Barbuda 169 2,027 5,588 7,615

170 3 208 Saint Kitts and Nevis 170 1,502 5,701 7,203

171 5 49 Central African Republic 171 1,345 744,289 745,633

172 6 213 San Marino 172 1,273 3,962 5,235

173 3 258 United States Virgin Islands 173 1,269 3,832 5,102

174 5 206 RÃ©union 174 760 9,760 10,521

175 4 246 Trinidad and Tobago 175 618 6,299 6,917

176 3 209 Saint Lucia 176 492 2,623 3,114

177 4 86 French Guiana 177 491 3,005 3,496

178 5 144 Liberia 178 445 4,853 5,298

179 3 20 Bahamas 179 418 10,233 10,651

180 12 262 Vanuatu 180 401 39,442 39,844

181 3 71 Dominica 181 389 9,585 9,974

182 3 39 British Virgin Islands 182 376 1,446 1,821

183 6 7 Andorra 183 328 468 797

184 3 211 Saint Vincent and the Grenadines184 297 3,373 3,670

185 3 99 Grenada 185 185 2,784 2,970

186 10 154 Maldives 186 146 379 525

187 5 47 Cape Verde 187 143 1,343 1,485

188 5 214 Sao Tome and Principe 188 113 732 845

189 6 146 Liechtenstein 189 104 4,266 4,370

190 3 168 Montserrat 190 39 193 232

191 5 89 Gabon 191 16 1,384 1,400

192 6 166 Monaco 192 11 618 629

193 5 58 Comoros 193 11 123 134

194 4 81 Falkland Islands (Malvinas) 194 4 1,633 1,637

195 6 114 Iceland 195 0 235,840 235,840

196 12 245 Tonga 196 0 28,582 28,582

197 12 212 Samoa 197 0 16,249 16,249

198 12 87 French Polynesia 198 0 4,499 4,499

199 5 207 Saint Helena 199 0 3,996 3,996

200 12 60 Cook Islands 200 0 2,001 2,001

201 12 266 Wallis and Futuna 201 0 1,487 1,487

202 5 268 Western Sahara 202 0 1,470 1,470

203 3 9 Anguilla 203 0 680 680

204 12 5 American Samoa 204 0 374 374

205 3 176 Netherlands Antilles 205 0 259 259

206 12 185 Northern Mariana Islands 206 0 159 159

207 5 76 Equatorial Guinea 207 0 152 152

208 4 14 Aruba 208 0 98 98

209 12 135 Kiribati 209 0 87 87

210 12 163 Micronesia (Federated States of)210 0 58 58

211 12 101 Guam 211 0 43 43

212 12 189 Palau 212 0 32 32

213 6 110 Holy See 213 0 21 21

214 5 70 Djibouti 214 0 14 14

215 5 220 Seychelles 215 0 0 0

216 3 A Saint Martin 216 0 703 703

217 3 B Saint Eustatius 217 0 368 368

218 3 C Bonaire 218 0 269 269

219 3 D Curacao 219 0 244 244

220 3 E Sint Maarten 220 0 123 123

221 3 F Saint Barthelemy 221 0 63 63

Total(ha) 715,743,899 1,087,185,109 1,802,929,008

TGNIA
6

TGNRA
6

TGNCA
6

Total(Mha) 716 1087 1803
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Note:

1. FAO country code and Gaul code have diffent numbers, all stats are matched using country names only.

2. Rank assigned based on LGRIP30 irrigated areas of the countries

3. Country wise irrigated and rainfed cropland areas were calculated from LGRIP30 (nominal 2015) product using FAO GAUL boundary(FAO, 2015)

4. For the two countries (Argentina, and Brazil), croplands were estimated using following equations

LGRIP30-Irr= 1.7979*FAO-Irr+631717  (equation excludes pastures from LGRIP30 irrigated area)

LGRIP30-RF= 0.8225*FAO-Rf+338084 (equation excludes pastures from LRIP30 rainfed areas)

LGRIP-irrigated LGRIP-rainfed LGRIP-Total1

Ha Ha Ha

Argentina 19893291 45203957 65097248

Brazil 33292139 127949544 161241684

5. For the two countries (Australia and Kazakhstan), croplands were estimated using following equations

LGRIP30-RF= 0.8225*FAO-Rf+338084 (equation excludes pastures from LRIP30 rainfed areas)

LGRIP-irrigated LGRIP-rainfed LGRIP-Total1

Ha Ha Ha

Australia 4557947 63634440 68192387

Kazakhstan 2928290 59328440 62256731

6. Acronyms and abbreviations

LGRIP30: Landsat derived Global rainfed and Iriigtated croplan product @30m 

TGNIA: Total Global Net Irrigated cropland Area 

TGNRA: Total Global Net Rainfed cropland  Area 

TGNCA: Total Global Net cropland  Area  
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C2. Areas by continent and countries in each continent 

Of the total global net irrigated areas (TNGIAs) of 715 Mha (Table 7, Figure 37), continentwide 

irrigated areas were (Table 8 to 13): Asia (56.1%), Europe (24.2%), North America (8.9%), Af-

rica (6.7%), South America (3.4%), and Australia and Oceania (0.75%).  

 

Of the total global net rainfed areas (TNGRAs) of 1090 Mha, continentwide irrigated areas were 

(Table 8 to 13): Europe (26.4%), Africa (20.4%), Asia (19.7%), North America (19.3%), South 

America (10.7%), and Australia and Oceania (3.5%).  

 

There are several useful maps (Figure 50 through 53) that show LGRIP30 derived irrigated and 

rainfed areas as percentage of the total global net irrigated areas (TGNIA) or total global net 

rainfed areas (TNGRA).  

• Figure 50 shows the LGRIP30-derived total net irrigated areas (TNIAs) of each country 

as percentage of the total Net geographic areas (TNGAs) of each country.  

• Figure 51 shows the LGRIP30-derived total net irrigated areas (TNIAs) of each country 

as percentage of the total global net irrigated areas (TGNIAs).  

• Figure 52 shows the LGRIP30-derived total net rainfed areas (TNRAs) of each country 

as percentage of the total net geo-graphic areas (TNGAs) of each country.  

• Figure 53 shows the LGRIP30-derived total net rainfed areas (TNRAs) of each country 

as percentage of the total global net rainfed areas (TGNRAs). 

 

C3. Areas by district or county in selected countries 

The LGRIP30 is a 30 m (1 pixel = 0.09 hectares) data. So, it’s areas can be computed even at 

farm level if need be. So, apart from the country level statistics discussed in previous sections, 

we also computed state level net irrigated areas (NIAs) statistics for USA and compared that with 

the NIAs statistic obtained from the LANID (Xie et al., 2021, and Xie and Lark, 2021; Table 14 

and Figure 51a,b). This provided an R-square value of 0.82. Overall, LGRIP30 provides signifi-

cantly higher NIAs.  

 

These relationships clearly demonstrate the ability of LGRIP30 to determine rainfed and irrigated 

areas at county, district, state, country and other administrative units. This implies that opera-

tional application of LGRIP30 data for determining rainfed and irrigated areas is a powerful and 

accurate approach. 
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Table 8. LGRIP30 irrigated and rainfed areas of Africa. LGRIP30-derived total net irrigated 

areas (TNIAs) and total net rainfed areas (TNRAs) of countries of Africa. 

 

Rank Continent GAUL Country

LGRIP30 

irrigated area

LGRIP30  

rainfed area

LGRIP30 

Total area

# Name # Name  (Ha)  (Ha)  (Ha)

1 Africa 133 Kenya 5,224,532 3,555,088 8,779,620

2 Africa 257 United Republic of Tanzania 5,222,179 14,829,772 20,051,951

3 Africa 169 Morocco 4,765,248 3,700,828 8,466,076

4 Africa 4 Algeria 4,703,703 3,469,561 8,173,264

5 Africa 40765 Egypt 4,249,590 452,604 4,702,194

6 Africa 227 South Africa 4,080,443 13,234,658 17,315,100

7 Africa 79 Ethiopia 4,045,941 19,538,956 23,584,897
8 Africa 253 Uganda 2,606,349 3,977,090 6,583,440
9 Africa 248 Tunisia 2,437,781 2,363,821 4,801,602

10 Africa 6 Sudan 2,108,841 18,463,778 20,572,619

11 Africa 182 Nigeria 915,851 30,752,427 31,668,278

12 Africa 68 Democratic Republic of the Congo 897,222 11,613,284 12,510,506

13 Africa 145 Libya 893,336 920,194 1,813,530
14 Africa 152 Malawi 816,280 3,796,667 4,612,947
15 Africa 270 Zambia 730,337 6,583,386 7,313,723

16 Africa 66 CÃ t́e d'Ivoire 626,745 5,484,524 6,111,269

17 Africa 205 Rwanda 499,148 831,933 1,331,081

18 Africa 271 Zimbabwe 449,584 9,748,437 10,198,021

19 Africa 94 Ghana 410,828 2,858,865 3,269,694

20 Africa 155 Mali 353,258 10,011,477 10,364,735

21 Africa 170 Mozambique 299,985 6,004,906 6,304,891

22 Africa 150 Madagascar 277,448 3,068,635 3,346,083

23 Africa 243 Togo 241,842 1,657,732 1,899,573

24 Africa 45 Cameroon 204,248 4,407,678 4,611,927

25 Africa 226 Somalia 178,552 1,456,278 1,634,831

26 Africa 235 Swaziland 121,272 460,840 582,111

27 Africa 43 Burundi 103,861 644,583 748,444

28 Africa 181 Niger 73,207 7,752,110 7,825,317

29 Africa 29 Benin 66,513 3,207,925 3,274,438

30 Africa 8 Angola 47,936 4,691,297 4,739,234

31 Africa 217 Senegal 46,543 3,939,082 3,985,624

32 Africa 106 Guinea 39,622 648,708 688,330

33 Africa 59 Congo 34,647 208,740 243,388

34 Africa 105 Guinea-Bissau 29,783 164,991 194,773

35 Africa 35 Botswana 24,678 1,594,821 1,619,499

36 Africa 42 Burkina Faso 20,601 5,674,965 5,695,565

37 Africa 50 Chad 19,390 5,324,980 5,344,370

38 Africa 160 Mauritius 15,210 51,895 67,104

39 Africa 77 Eritrea 13,773 609,684 623,457

40 Africa 74 South Sudan 11,819 1,036,348 1,048,166

41 Africa 221 Sierra Leone 11,219 91,125 102,344

42 Africa 90 Gambia 5,969 318,670 324,639

43 Africa 172 Namibia 5,238 884,344 889,582

44 Africa 159 Mauritania 4,491 87,733 92,224

45 Africa 142 Lesotho 3,831 695,649 699,480

46 Africa 49 Central African Republic 1,345 744,289 745,633

47 Africa 206 RÃ©union 760 9,760 10,521

48 Africa 144 Liberia 445 4,853 5,298

49 Africa 47 Cape Verde 143 1,343 1,485

50 Africa 214 Sao Tome and Principe 113 732 845

51 Africa 89 Gabon 16 1,384 1,400

52 Africa 58 Comoros 11 123 134

53 Africa 207 Saint Helena 0 3,996 3,996

54 Africa 268 Western Sahara 0 1,470 1,470

55 Africa 76 Equatorial Guinea 0 152 152

56 Africa 70 Djibouti 0 14 14

57 Africa 220 Seychelles 0 0 0

TOTAL 47,941,706 221,639,185 269,580,891

Africa
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Table 9. LGRIP30 irrigated and rainfed areas of Asia. LGRIP30-derived total net irrigated 

areas (TNIAs) and total net rainfed areas (TNRAs) of countries of Asia. 

 

 
 

Rank Continent GAUL Country

LGRIP30 

irrigated area

LGRIP30  

rainfed area

LGRIP30 

Total area

# Name # Name  (Ha)  (Ha)  (Ha)

1 Asia 115 India 132,542,113 46,767,434 179,309,548

2 Asia 147295 China 131,778,217 32,118,339 163,896,556

3 Asia 188 Pakistan 19,127,578 7,492,682 26,620,261

4 Asia 240 Thailand 13,516,805 12,175,398 25,692,203

5 Asia 118 Iraq 11,537,570 350,703 11,888,273

6 Asia 116 Indonesia 10,015,594 26,434,913 36,450,507

7 Asia 23 Bangladesh 9,359,234 481,359 9,840,593
8 Asia 171 Myanmar 8,939,549 4,979,478 13,919,026

9 Asia 117 Iran  (Islamic Republic of) 8,042,545 24,326,809 32,369,353

10 Asia 264 Viet Nam 7,725,984 2,812,147 10,538,131

11 Asia 238 Syrian Arab Republic 6,533,081 26,030 6,559,111

12 Asia 261 Uzbekistan 5,558,757 2,208,708 7,767,466

13 Asia 132 Kazakhstan
1

2,928,290 22,956,732 25,885,023

14 Asia 44 Cambodia 4,183,465 3,416,139 7,599,604

15 Asia 196 Philippines 3,004,488 3,205,429 6,209,917

16 Asia 215 Saudi Arabia 2,571,745 107,236 2,678,981

17 Asia 250 Turkmenistan 2,543,481 1,177,884 3,721,366

18 Asia 67 Dem People's Rep of Korea/North Korea 2,474,461 789,101 3,263,562

19 Asia 126 Japan 2,333,268 1,196,752 3,530,020

20 Asia 269 Yemen 1,750,354 412,147 2,162,501

21 Asia 175 Nepal 1,718,874 224,783 1,943,657

22 Asia 153 Malaysia 1,656,305 8,683,545 10,339,850

23 Asia 1 Afghanistan 1,566,341 6,572,877 8,139,219

24 Asia 202 Republic of Korea/South Korea 1,162,164 263,476 1,425,640

25 Asia 139 Lao People's Democratic Republic 1,087,528 1,246,341 2,333,869

26 Asia 231 Sri Lanka 1,085,920 351,863 1,437,783

27 Asia 239 Tajikistan 744,781 365,886 1,110,668

28 Asia 138 Kyrgyzstan 675,227 1,445,769 2,120,997

29 Asia 121 Israel 624,292 3,238 627,530

30 Asia 130 Jordan 456,531 11,553 468,083

31 Asia 147296 Taiwan 421,802 109,157 530,959

32 Asia 141 Lebanon 218,842 23,912 242,754

33 Asia 255 United Arab Emirates 215,571 7,154 222,725

34 Asia 187 Oman 145,334 2,395 147,729

35 Asia 242 Timor-Leste 69,189 51,002 120,191

36 Asia 137 Kuwait 36,967 1,152 38,119

37 Asia 267 West Bank 29,382 212 29,594

38 Asia 91 Gaza Strip 28,905 423 29,328

39 Asia 201 Qatar 20,710 1,219 21,928

40 Asia 31 Bhutan 19,035 17,064 36,099

41 Asia 167 Mongolia 12,010 882,577 894,587

42 Asia 40 Brunei Darussalam 8,062 42,005 50,067

43 Asia 33364 Hong Kong 5,679 4,454 10,133

44 Asia 21 Bahrain 4,099 1,990 6,089

45 Asia 262 Vanuatu 401 39,442 39,844

46 Asia 154 Maldives 146 379 525

TOTAL 398,480,677 213,789,291 612,269,968

Asia

Note: 1. Kazakstan total net cropland and pasture areas were 62,256,731 hactares in LGRIP30 product.  The total net irrigated areas of  2,928,290 

hactares was actual,  derived from LGRIP30 product. The net rainfed areas of 22,956,732 hactares was calculated using the equation.
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Table 10. LGRIP30 irrigated and rainfed areas of Australia and Oceania. LGRIP30-derived 

total net irrigated areas (TNIAs) and total net rainfed areas (TNRAs) of countries of Australia 

and Oceania. 

 

 

  

Rank Continent GAUL Country

LGRIP30 

irrigated area

LGRIP30  

rainfed area

LGRIP30 

Total area

# Name # name  (Ha)  (Ha)  (Ha)

1 Australia & Oceania 17 Australia
1 4,557,947 30,547,846 35,105,792

2 Australia & Oceania 179 New Zealand
2 821,896 7,298,127 8,120,023

3 Australia & Oceania 192 Papua New Guinea 22,615 295,168 317,782

4 Australia & Oceania 83 Fiji 14,111 156,300 170,411

5 Australia & Oceania 178 New Caledonia 11,759 24,094 35,854

6 Australia & Oceania 225 Solomon Islands 4,245 315,279 319,524

7 Australia & Oceania 245 Tonga 0 28,582 28,582
8 Australia & Oceania 212 Samoa 0 16,249 16,249
9 Australia & Oceania 87 French Polynesia 0 4,499 4,499

10 Australia & Oceania 60 Cook Islands 0 2,001 2,001

11 Australia & Oceania 266 Wallis and Futuna 0 1,487 1,487

12 Australia & Oceania 5 American Samoa 0 374 374

13 Australia & Oceania 185 Northern Mariana Islands 0 159 159
14 Australia & Oceania 135 Kiribati 0 87 87
15 Australia & Oceania 163 Micronesia (Federated States of) 0 58 58

16 Australia & Oceania 101 Guam 0 43 43

17 Australia & Oceania 189 Palau 0 32 32

TOTAL 5,432,573 38,690,385 44,122,958

Australia & Oceania

Note:

1. Australia total net cropland and pasture areas were 68,192,387  hactares in LGRIP30 product.  

The total net irrigated areas of 4,557,947 hactares was actual derived from LGRIP30 product. 

The net rainfed areas of 30,547,845 hactares was calculated the using equation.

 2. In Newzealand,  the total net rainfed areas of  7,298,127 hactares includes significant pastures. But was not separated. Where as the irrigated 

areas 821,896 hectares was actual and derived from LGRIP30 product.
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Table 11. LGRIP30 irrigated and rainfed areas of South America. LGRIP30-derived total 

net irrigated areas (TNIAs) and total net rainfed areas (TNRAs) of countries of South America. 

 

 
  

Rank Continent GAUL Country

LGRIP30 

irrigated area

LGRIP30  

rainfed area

LGRIP30 

Total area

# Name # name  (Ha)  (Ha)  (Ha)

1 South America 37 Brazil
1

13,135,572 46,424,651 59,560,223

2 South America 12 Argentina
2

4,869,367 29,397,914 34,267,281

3 South America 194 Paraguay 1,940,790 7,037,188 8,977,978

4 South America 51 Chile 1,274,174 4,700,924 5,975,098

5 South America 260 Uruguay 1,441,529 10,557,482 11,999,011

6 South America 33 Bolivia 609,476 2,898,338 3,507,814

7 South America 263 Venezuela 303,055 6,881,570 7,184,625
8 South America 195 Peru 256,558 1,513,123 1,769,681

9 South America 73 Ecuador 200,321 2,027,725 2,228,046

10 South America 57 Colombia 134,755 5,536,017 5,670,771

11 South America 107 Guyana 70,476 68,780 139,255

12 South America 233 Suriname 9,509 22,811 32,320

13 South America 246 Trinidad and Tobago 618 6,299 6,917

14 South America 86 French Guiana 491 3,005 3,496

15 South America 81 Falkland Islands (Malvinas) 4 1,633 1,637

16 South America C Bonaire 0 269 269

17 South America D Curacao 0 244 244

18 South America 14 Aruba 0 98 98

TOTAL 24,246,695 117,078,071 141,324,765

South America

Note: 

1. Brazil total net cropland and pasture areas were 161, 241,684 hactares in LGRIP30 product.  

However  since Croplands were not separated from pasture in the LGRIP30 product, 

the total net LGRIP30 irrigated areas (13,135,572 hactares) and LGRIP30 rainfed areas (46,424,651 hactares) were derived using equations. 

2. Argentina total cropland and pasture areas were 65,097,248 hactares in LGRIP30 product.

 However since Croplands were not separated from pasture in the LGRIP30 product, 

the total net LGRIP30 irrigated areas (4,869,367 hactares) and LGRIP30 rainfed areas (29,397,914 hactares) were derived using equations. 
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Table 12. LGRIP30 irrigated and rainfed areas of Europe. LGRIP30-derived total net irri-

gated areas (TNIAs) and total net rainfed areas (TNRAs) of countries of Europe 

 
  

Rank Continent GAUL Country

LGRIP30 

irrigated area

LGRIP30  

rainfed area

LGRIP30 

Total area

# Name # name  (Ha)  (Ha)  (Ha)

1 204 Russian Federation 33,276,856 121,651,518 154,928,374

2 254 Ukraine 30,408,208 12,621,600 43,029,808

3 249 Turkey 19,547,992 8,872,795 28,420,787

4 229 Spain 15,355,735 12,856,514 28,212,249

5 85 France 13,519,701 18,132,629 31,652,330

6 198 Poland 10,649,360 8,344,592 18,993,952

7 93 Germany 8,237,645 11,544,787 19,782,432
8 203 Romania 5,649,424 7,872,839 13,522,263

9 122 Italy 5,117,951 11,865,176 16,983,127

10 26 Belarus 4,229,552 6,251,613 10,481,165

11 19 Azerbaijan 4,191,284 537,190 4,728,475

12 41 Bulgaria 2,277,087 3,534,067 5,811,154

13 256 U.K. of Great Britain and Northern Ireland 1,989,605 13,712,814 15,702,419

14 97 Greece 1,986,543 2,292,069 4,278,613

15 65 Czech Republic 1,891,452 2,799,278 4,690,730

16 177 Netherlands 1,825,597 440,542 2,266,139

17 113 Hungary 1,820,245 5,442,207 7,262,452

18 165 Moldova, Republic of 1,516,954 1,345,832 2,862,786

19 69 Denmark 1,491,313 1,848,808 3,340,121

20 92 Georgia 1,287,736 357,602 1,645,338

21 2648 Serbia 1,279,949 3,775,592 5,055,541

22 147 Lithuania 1,269,120 2,686,098 3,955,218

23 223 Slovakia 1,219,444 1,227,596 2,447,040

24 18 Austria 913,384 1,769,040 2,682,424

25 199 Portugal 881,055 3,343,981 4,225,036

26 236 Sweden 871,700 2,542,384 3,414,083

27 84 Finland 498,882 1,352,878 1,851,761

28 140 Latvia 450,665 2,169,877 2,620,542

29 64 Cyprus 449,492 52,005 501,497

30 62 Croatia 446,805 1,894,516 2,341,321

31 241 The former Yugoslav Republic of Macedonia 348,699 487,029 835,728

32 13 Armenia 330,652 255,125 585,777

33 78 Estonia 325,914 1,056,137 1,382,050

34 3 Albania 209,180 460,791 669,971

35 27 Belgium 206,802 1,476,243 1,683,045

36 34 Bosnia and Herzegovina 121,634 1,628,530 1,750,164

37 119 Ireland 102,213 5,094,203 5,196,415

38 186 Norway 86,078 774,458 860,536

39 237 Switzerland 77,078 1,235,910 1,312,988

40 2647 Montenegro 26,809 181,392 208,201

41 224 Slovenia 25,764 633,483 659,246

42 156 Malta 13,355 11,268 24,623

43 148 Luxembourg 5,201 134,105 139,306

44 213 San Marino 1,273 3,962 5,235

45 7 Andorra 328 468 797

46 146 Liechtenstein 104 4,266 4,370

47 166 Monaco 11 618 629

48 114 Iceland 0 235,840 235,840

49 110 Holy See 0 21 21

TOTAL 176,431,831 286,812,287 463,244,118

Europe
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Table 13. LGRIP30 irrigated and rainfed areas of North America. LGRIP30-derived total 

net irrigated areas (TNIAs) and total net rainfed areas (TNRAs) of countries of North America. 

  

Rank Continent GAUL Country

LGRIP30 

irrigated area

LGRIP30  

rainfed area

LGRIP30 

Total area

# Name # name  (Ha)  (Ha)  (Ha)

1 North America 259 USA 42,323,364 125,881,360 168,204,724

2 North America 162 Mexico 16,324,519 17,865,405 34,189,923

3 North America 46 Canada 1,038,976 42,594,426 43,633,402

4 North America 103 Guatemala 603,023 3,838,157 4,441,180

5 North America 63 Cuba 600,717 3,607,739 4,208,456

6 North America 180 Nicaragua 492,821 4,417,631 4,910,453

7 North America 61 Costa Rica 440,799 1,648,444 2,089,242
8 North America 111 Honduras 425,723 2,813,125 3,238,848

9 North America 191 Panama 340,175 1,758,764 2,098,939

10 North America 72 Dominican Republic 305,205 1,682,026 1,987,231

11 North America 108 Haiti 129,332 1,089,452 1,218,784

12 North America 28 Belize 44,187 319,271 363,458

13 North America 75 El Salvador 38,803 991,786 1,030,589
14 North America 123 Jamaica 35,368 235,535 270,903
15 North America 200 Puerto Rico 34,919 302,064 336,983

16 North America 100 Guadeloupe 16,180 47,777 63,957

17 North America 24 Barbados 7,222 10,728 17,950

18 North America 158 Martinique 2,089 24,648 26,737

19 North America 11 Antigua and Barbuda 2,027 5,588 7,615

20 North America 208 Saint Kitts and Nevis 1,502 5,701 7,203

21 North America 258 United States Virgin Islands 1,269 3,832 5,102

22 North America 209 Saint Lucia 492 2,623 3,114

23 North America 20 Bahamas 418 10,233 10,651

24 North America 71 Dominica 389 9,585 9,974

25 North America 39 British Virgin Islands 376 1,446 1,821

26 North America 211 Saint Vincent and the Grenadines 297 3,373 3,670

27 North America 99 Grenada 185 2,784 2,970

28 North America 168 Montserrat 39 193 232

29 North America A Saint Martin 0 703 703

30 North America 9 Anguilla 0 680 680

31 North America B Saint Eustatius 0 368 368

32 North America 176 Netherlands Antilles 0 259 259

33 North America E Sint Maarten 0 123 123

34 North America F Saint Barthelemy 0 63 63

TOTAL 63,210,417 209,175,891 272,386,308

North America
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Figure 50. LGRIP30 irrigated areas as percentage of TNGAs of the countries. The 

LGRIP30-derived net irrigated areas (NIAs) of each country as percentage of the total Net geo-

graphic areas (TNGAs) of the country.

 
Figure 51. LGRIP30 irrigated areas as percentage of TGNIAs. The LGRIP30-derived net 

irrigated areas (NIAs) of each country as percentage of the total global net irrigated areas 

(TGNIAs). 
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Figure 52. LGRIP30 rainfed areas as percentage of TNGAs of the countries. The LGRIP30-

derived net rainfed areas (NRAs) of each country as percentage of the total net geo-graphic areas 

(TNGAs) of the country. 

 

 
 

Figure 53. LGRIP30 rainfed areas as percentage of the TGNRAs of the countries. he 

LGRIP30-derived net rainfed areas (NRAs) of each country as percentage of the total global 

net rainfed areas (TGNRAs).  
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Table 14. LGRIP30 area statistics for the states of USA. State by state LGRIP30-derived net 

irrigated areas (NIAs) for the United States of America (USA). 
Sno State Name Irrigated(Mha) Rainfed(Mha) Total (Mha)

1 Alabama 0.137 1.047 1.183

2 Alaska 0.000 0.010 0.010

3 Arizona 0.315 0.415 0.730

4 Arkansas 2.853 0.337 3.190

5 California 3.435 1.345 4.781

6 Colorado 0.994 3.093 4.087

7 Connecticut 0.001 0.058 0.058

8 Delaware 0.066 0.164 0.230

9 District of Columbia 0.000 0.000 0.000

10 Florida 0.847 1.326 2.173

11 Georgia 1.159 1.013 2.172

12 Hawaii 0.015 0.259 0.275

13 Idaho 1.712 0.995 2.707

14 Illinois 2.104 7.822 9.926

15 Indiana 0.987 4.436 5.424

16 Iowa 1.058 10.430 11.488

17 Kansas 3.076 8.172 11.248

18 Kentucky 0.155 1.684 1.839

19 Louisiana 1.624 0.408 2.032

20 Maine 0.002 0.193 0.196

21 Maryland 0.070 0.736 0.806

22 Massachusetts 0.002 0.074 0.076

23 Michigan 0.264 3.919 4.182

24 Minnesota 0.263 9.576 9.839

25 Mississippi 1.355 0.927 2.282

26 Missouri 1.513 3.354 4.867

27 Montana 1.239 6.249 7.488

28 Nebraska 5.058 3.764 8.822

29 Nevada 0.169 0.144 0.313

30 New Hampshire 0.000 0.044 0.044

31 New Jersey 0.028 0.236 0.264

32 New Mexico 0.265 0.521 0.786

33 New York 0.021 1.979 2.001

34 North Carolina 0.289 1.972 2.260

35 North Dakota 0.656 11.163 11.819

36 Ohio 0.578 4.234 4.812

37 Oklahoma 1.139 2.838 3.977

38 Oregon 1.170 0.774 1.945

39 Pennsylvania 0.027 2.303 2.330

40 Rhode Island 0.000 0.008 0.008

41 South Carolina 0.071 0.988 1.059

42 South Dakota 0.314 7.324 7.638

43 Tennessee 0.527 1.443 1.970

44 Texas 4.427 8.691 13.118

45 Utah 0.428 0.340 0.769

46 Vermont 0.003 0.161 0.164

47 Virginia 0.058 0.884 0.942

48 Washington 1.226 2.584 3.810

49 West Virginia 0.002 0.094 0.096

50 Wisconsin 0.114 4.624 4.738

51 Wyoming 0.510 0.682 1.192

Grand Total 42.327 125.840 168.167
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VIII. Constraints and Limitations and way forward 
GFSADLGRIP30WORLD product has demonstrated the power of using time-series Landsat 

data to map global rainfed and irrigated areas. The LGRIP30 product (Figure 37) mapped the 

entire world’s net irrigated areas and net rainfed areas. The product was produced with an overall 

accuracy of 86.5%. The irrigated class has a producer’s accuracy of 86.7% (errors of omissions 

of = 13.3%) and user’s accuracy of 84.3% (errors of commissions = 15.7%). The rainfed class 

has a producer’s accuracy of 86.3% (errors of omissions of = 13.7%) and user’s accuracy of 

88.4% (errors of commissions = 11.6%). The study demonstrated that rainfed and irrigated areas 

can be accurately computed at the global, National, state, and other administrative units like the 

counties or districts. 

 

The main limitation of the work will be in obtaining the reference training and validation data 

year after year. That will take coordination, trained personnel, and resources. Globally, this can 

be a significant constraint when taking National cooperation into consideration. However, such 

constraints can be overcome by partnering with international organizations such as the Food and 

Agricultural Organization of the United Nations (UN FAO) or CGIAR (Consultative Group on 

International Agricultural Research). Further, data can be relayed using Mobile apps from any-

where in the world. This is feasible with a good network of partners who can send sample refer-

ence data and need partnering with National agricultural extension institutes. An alternative ap-

proach for the reference data will be to acquire sub-meter to 5-meter very high spatial resolution 

imagery (VHRI) remote sensing data from sources such as Doves for Skysat from Planetscope 

LLc. and other similar sources. For global reach this is more feasible proposition as it involves 

less cooperation or coordination from numerous partners from around the world that can even be 

complex for International Institutions. However, VHRI reference data, even when sampled from 

1000s of locations for the world can be costly.  

 

LGRIP30 maps irrigated and rainfed areas at 0.09 hectares (1 pixel = 30m) compared to other 

existing products like GFSAD1000 that map irrigated and rainfed at 100 hectares (1 pixel = 

1000m). So, LGRIP30 provides 1,111 times greater resolution compared to GFSAD1000 or other 

1000m products.  

 

Once the product is released it will be downloaded by various users worldwide and they will 

conduct their own evaluations and\or provide comments. As the reviewer of this manuscript sug-

gested, in his visit to South Africa, he will further evaluate the product by field observation and 

through local partners. Where we get field data or maps from the ground for individual countries 

or regions, we will further evaluate and update the maps. The goal is to release an update 2020 

LGRIP30 (LGRIP30-2020) in about 2-3 years. This will involve refining local or regional com-

ponents of LGRIP30 based on maps, ground reference data, and comments received from users. 

 

The LGRIP30-2020 product will also make use of newer generation of data such as a fusion of 

Landsat-8, 9, and Sentinel-2A&2B (S2) surface reflectance (SR) products on GEE, and 

NASA’s Harmonized Landsat Sentinel-2 (HLS) Landsat product (HLSL30) for 2013-present 

and HLS Sentinel-2 product (HLSS30) for 2015-present, that together have sub-5-days global 

coverage (Masek, et al., 2021, 2022) at nominal 30m resolution. 
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