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I.         Members of the team 

This Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent Product of 

South America (GFSAD30SACE) was produced by the following team members. Their specific 

roles are mentioned below. 

 

Ms. Ying Zhong, Scientist, Environmental Systems Research Institute (ESRI), led the 

GFSAD30SACE product generation effort. Ms. Zhong was instrumental in the design, coding, 

computing, analyzing, and synthesis of Landsat derived nominal 30-m GFSAD30SACE cropland 

product of the South American continent for the nominal year 2015. She was also instrumental 

in writing the manuscripts, ATBD, and user documentation. 

 

Dr. Chandra Giri, Chief, Sensing and Spatial Analysis Branch, United States Environmental 

Protection Agency (USEPA), provided guidance and intellectual insights into South American 

cropland mapping. He is one of the co-I’s of the project and was instrumental in developing 

framework of the GFSAD30SACE product, writing the manuscripts, ATBD, and user documen-

tation. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Prin-

cipal Investigator (PI) of the GFSAD30 project. Dr. Thenkabail was instrumental in developing 

the conceptual framework of the GFSAD30 project and the GFSAD30SACE product. He pro-

vided guidance and intellectual insights throughout the GFSAD30 project and contributed in 

writing of the manuscripts, ATBD, and user documentation. 

 

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute 

(BAERI) at the United States Geological Survey (USGS), provided input and insights on 

cropland extent product generation for the South American continent. He made a significant con-

tribution in writing the manuscripts, ATBD, user documentation. He also created the baseline 

cropland mask at 1-km which was instrumental in masking croplands versus non-croplands ini-

tially. 

 

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New 

Hampshire, led the independent accuracy assessment of the entire GFSAD30 project including 

GFSAD30SACE. 

 

Ms. Kamini Yadav, PhD student at the University of New Hampshire, made major contributions 

to the independent accuracy assessment directed by Prof. Russell G. Congalton. 

 

Mr. Adam Oliphant, Geographer, United States Geological Survey, provided Google Earth En-

gine (GEE) cloud computing insights and support in generating the GFSAD30SACE cropland 

product of the South American continent.  

 

Dr. Jun Xiong, Research Scientist, Bay Area Environmental Research Institute (BAERI) at the 

United States Geological Survey (USGS), provided Google Earth Engine (GEE) cloud compu-

ting insights and support in generating the GFSAD30SACE cropland product of the South Amer-

ican continent.   

https://plus.google.com/117927604440673369842
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Ms. Varsha Vijay, PhD student @ Duke University, helped in algorithm development of the 

GFSAD30SACE cropland product of the South American continent.  She also participated in 

several discussions on accuracy assessment. 

 

Mr. Justin Poehnelt, former member of GFSAD30 project and Computer Scientist with the 

United States Geological Survey, contributed to the initial conceptualization and development of 

the http://croplands.org website. 

 
II.         Historical Context and Background Information 

Monitoring global croplands is imperative for ensuring sustainable water and food security for 

the people of the world in the twenty-first century. However, the currently available cropland 

products suffer from major limitations such as: (1) the absence of precise spatial locations of the 

cropped areas; (2) coarse resolution of map products with significant uncertainties in areas, lo-

cations, and detail; (3) uncertainties in differentiating irrigated areas from rainfed areas; (4) ab-

sence of crop type information and cropping intensities; and/or (5) the absence of a dedicated 

Internet data portal for the dissemination of cropland products. Therefore, the Global Food Se-

curity-support Analysis Data (GFSAD) project aimed to address these limitations by producing 

cropland maps at 30m resolution covering the globe, referred to as Global Food Security Support-

Analysis Data @ 30-m (GFSAD30) products. This Algorithm Theoretical Basis Document 

(ATBD) provides a basis upon which the GFSAD30 cropland extent product was developed for 

the continent of South America (GFSAD30SACE, Table 1).  

 

South America is a traditional food producer and exporter, and it has the potential to continuously 

increase its food production in the near future given its relatively low population and rich avail-

ability of land and water resources. In the past 50 years, South America has experienced extensive 

cropland expansion (Graesser et al. 2015) and the fastest agricultural productivity growth in any 

developing region (Ludena 2010). South America has great potential to further expand and in-

tensify crop production (Conforti 2011) due to availability of unexploited arable lands for culti-

vation (Fischer, van Velthuizen, and Nachtergaele 2011), water resources, labor forces, rich ex-

periences in cultivation practices, and infrastructure (Zeigler and Truitt Nakata 2014). In the re-

cent past, about 40 percent of agricultural production was contributed by cropland expansion for 

Gross Domestic Product (GDP) and according to FAO it will remain equally important in the 

future (Alexandratos and Bruinsma 2012). This is in sharp contrast to the rest of the world where 

the focus will be to increase the yield rather than cropland expansion. 

 

However, expansion of cropland in South America does not come without serious negative con-

sequences in providing ecosystem goods and services to environment and society. For example, 

South America has the largest area of tropical forest in the world with rich biodiversity (Myers 

et al. 2000). Cropland expansion occurs at the expense of wild lands such as forest, (Castiblanco, 

Etter, and Aide 2013; Gasparri, Grau, and Angonese 2013; Müller et al. 2012) grassland, and 

savanna (Baldi and Paruelo 2008; Graesser et al. 2015). This will have negative consequences in 

providing ecosystem goods and services to the entire world (Foley et al. 2007; Viglizzo and Frank 

2006). For example, crop expansion accelerates carbon emission (Karstensen, Peters, and An-

drew 2013), reduces sequestration due to loss of forests, and impacts biodiversity (Fearnside 
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2001). Thus, improving our scientific understanding of the cropland distribution and dynamics 

over space and time is critically important. The South American continent has experienced rapid 

changes in the last 50 years, which is likely to continue throughout the twenty-first century. 

 

Despite this, accurate, reliable, and consistent information on the extent and distribution of 

croplands of the South American continent at finer spatial scale is unavailable. In order to fill 

this gap, the Global Food Security–Support Analysis Data at 30 m (GFSAD30) project imple-

mented by the U.S. Geological Survey (USGS) together with a number of partner organizations 

(croplands.org) and funded by NASA aims to generate high resolution (nominal 30 meters) 

cropland products from multi-sensor remote sensing images (http://geography.wr.usgs.gov/sci-

ence/croplands/). GFSAD30 has successfully developed a 1-km resolution cropland extent prod-

uct and a watering sources product (Teluguntla et al. 2015) by synthesizing four cropland spatial 

distribution studies: Thenkabail et al. (2009), Pittman et al. (2010), Yu et al. (2013), Friedl et al. 

(2010). The research group is generating 30-meter spatial resolution cropland products 

(croplands.org) for the entire world. This paper is focused on development of cropland extent 

and areas of the South American continent at nominal 30-m spatial resolution using Landsat data. 

 

Table 1. Basic information of the Global food security support-analysis data @ 30-m cropland 

extent product for the South American continent (GFSAD30SACE)

 

Product Name Short Name Spatial Resolution Temporal Resolution 

GFSAD 30-m Cropland Extent 

Product of South America 
GFSAD30SACE 30-m nominal 2015 

 

   III.         Rationale for Development of the Algorithms 

Mapping the precise location of croplands enables the extent and area of agricultural lands to be 

more effectively captured, which is of great importance for managing food production systems 

and studying their inter-relationships with water, geo-political, socio-economic, health, environ-

mental, and ecological issues (Thenkabail et al., 2010). Furthermore, the accurate development 

of all higher-level cropland products such as crop watering methods (irrigated or rainfed), crop-

ping intensities (e.g., single, double, or continuous cropping), crop type mapping, cropland fal-

low, as well as assessment of cropland productivity (i.e., productivity per unit of land), and crop 

water productivity (i.e., productivity per unit of water) are all highly dependent on availability of 

precise and accurate cropland extent maps. Uncertainties associated with cropland extent data 

affect the quality of all higher-level cropland products reliant on an accurate base map. However, 

precise and accurate cropland extent data are currently nonexistent at the continental scale at a 

high spatial resolution (30-m or better). This lack of crop extent data is particularly true for com-

plex and varied agricultural systems of South America that vary from small-holder farms to very 

large industrial farms. By mapping croplands at a high-resolution (30-m or better) at the conti-

nental scale, the GFSAD30 project has resolved many of the shortcomings and uncertainties of 

other cropland mapping efforts. 
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The two most common methods for land-cover mapping over large areas using remote-sensing 

images are manual classification based on visual interpretation and digital per-pixel classifica-

tion. The former approach delivers products of high quality, such as the European CORINE Land 

Cover maps (Büttner, 2014). Although the human capacity for interpreting images is remarkable, 

visual interpretation is subjective (Lillesand et al., 2014), time-consuming, and expensive. Digital 

per-pixel classification has been applied for land-cover mapping since the advent of remote sens-

ing and is still widely used in operational programs, such as the 2005 North American Land 

Cover Database at 250-m spatial resolution (Latifovic, 2010). Pixel-based classifications such as 

maximum likelihood classifier (MLC), neural network classification (NN), decision trees, Ran-

dom Forests (RF), and Support Vector Machines are powerful, and fast classifiers that help dif-

ferentiate distinct patterns of landscape.  

 

Both supervised and unsupervised classification approaches are adopted in pixel-based classifi-

ers. However, per-pixel classification includes several limitations. For example, the pixel’s 

square shape is arbitrary in relation to patchy or continuous land features of interest, and there is 

significant spectral contamination among neighboring pixels. As a result, per-pixel classification 

often leads to noisy classification outputs – the well-known “salt-and-pepper” effect. There are 

other limitations of pixel-based methods: 1. they fail to fully capture the spatial information of 

high resolution imagery such as from Landsat 30-m imagery, and 2. they often, classify the same 

field (e.g., a corn field) into different classes as a result of within field variability. This may often 

result in a field with a single crop (e.g., corn) classified as different crops.  

 

For the creation of the GFSAD30SACE data product, we applied the most commonly used su-

pervised pixel-based classifier (Pelletier et al., 2016, Tian et al., 2016, Shi and Yang, 2015, 

Huang et al., 2010):  Random Forests (RF’s).  

 

IV.         Algorithm Description 

We used the Random Forest classifier to classify croplands and non-croplands. Previous studies 

have shown that the RF classifier performs better in land cover classification (Gislason, Ben-

ediktsson, and Sveinsson 2006; Pal 2005; Rodriguez-Galiano et al. 2012) compared to the tradi-

tional maximum likelihood classifier (MLC). Furthermore, since Random Forest is a nonpara-

metric classifier (Duda, Hart, and Stork 2012), it is appropriate and powerful for land cover clas-

sification in which remote sensing data collected from multiple sources are used (Gislason, Ben-

ediktsson, and Sveinsson 2006). As an ensemble classification model, multiple decision trees are 

trained in one Random Forest classification model, each of which uses a set of bootstrapped 

samples from the original samples. Each decision tree contributes a vote of class, and the final 

output class of the classifier is the majority vote of the trees. In each tree node, only a random 

subset of variables is selected for classification in order to reduce tree correlation (Breiman and 

Adele 2016).  

 

The Random Forest classifier is more robust, relatively faster in speed of classification, and easier 

to implement than many other classifiers (Pelletier et al., 2016). The Random Forests classifier 

uses bootstrap aggregating (bagging) to form an ensemble of decision trees (Pelletier et al., 2016) 

by searching random subspaces from the given data (features) and the best splitting of the nodes 

by minimizing the correlation between the trees. 
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 a.     Input data 

i. Region Definition 
 

The study area consists of the entire continent of South America, covering twelve sovereign 

countries (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suri-

name, Uruguay, and Venezuela), and two territories including French Guiana and Falkland Is-

lands. The continent’s area is ~1.78 billion hectares with a total population of 418 million peo-

ple. Forest covers half of the South America continent (Giri and Long 2014). The country 

boundaries were determined by the Global Administrative Unit layers (GAUL) of United Na-

tions (http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691&currTab=simple). 

 

ii. Reference Samples 

Training samples for croplands versus non-croplands were generated through multiple steps. 

First, we created random points and drew homogenous polygons around the random point with 

the size of approximately three by three Landsat pixels (90-m by 90-m). We then defined the 

land cover category of the polygons as croplands, or non-croplands with visual interpretation 

assisted by (i) high-resolution images available from Google Earth, (ii) Landsat images, and (iii) 

a MODIS NDVI temporal profile. In the second stage, additional training samples were selected 

where classification performance was poor. The training sample selection and classification 

model training were performed tile by tile.    

 

Reference training/testing data were obtained in the ways. First, we gathered random samples by 

interpreting sub-meter to 5-meter very high spatial resolution imagery (VHRI) throughout South 

America available to us from the National Geospatial Agency (NGA). There was a total of 3000+ 

samples from VHRI spread across South America. Second, some other global/region projects 

(Teluguntla et al., 2015, Thenkabail et al., 2012) shared their valuable reference datasets. To 

incorporate these reference data in our project, we converted their labeling system (“cross-

walked”) to be consistent with the labeling scheme of our project (Teluguntla, 2015). 

 

iii. Satellite Imagery: Landsat data 

We used Landsat 5-8 (Table 2) Top-of-atmosphere images provided by USGS acquired during 

January 1, 2013 to January 1, 2016. In most areas, we divided a calendar year into 6 periods 

starting with Julian day 1.  The first 5 periods consisted of 60 days while the sixth period con-

sisted of 65 days, for a total of 365 days. All images acquired in one period across 3 years were 

composited together to find the medium value of every pixel except in areas with high percentage 

of cloud coverage across the year, such as coastal Brazil and Ecuador. In these areas, only the 

last three periods (day 181 – day 365) – the dry periods – were used, or the year was divided into 

three periods with every 120 days being a period (125 for the last period), in order to acquire 

clear images for each period.   

 

The following bands were selected from Landsat images to use in classification: blue, green, red, 

NIR, SWIR1, SWIR2, and NDVI (Table 2). We also add an NDVI standard deviation (NDVI 

SD) band which is calculated from the composited NDVI bands of all periods in a year. The 

http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691&currTab=simple
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NDVI SD band reflects the fluctuation of NDVI within a year. Further, considering that topo-

graphic characteristics can often affect whether farming is possible, a slope band was added to 

the set of classification bands, and was calculated from the Shuttle Radar Topography Mission 

(SRTM) (Farr et al. 2007) digital elevation at 1 arc-sec (approximately 30m) resolution dataset.  

Overall, a total of 44 bands were used in the areas that were composited by 6 periods, and 23 

bands in the areas that were composited by 3 periods. 

 

Table 2. Characteristics of Landsat 5, 7 &8 data used in the study along with band indices (VI). 

Band 

Name 

Landsat 5 TM 

Spectral Range 

μm 

Landsat 7 ETM+ 

Spectral Range 

μm 

Landsat 8 

OLI Spectral 

Range  

μm 

Blue 0.45-0.52 0.45-0.52 0.45 – 0.51 

Green 0.52-0.60 0.52-0.60 0.53 – 0.59 

 Red 0.63-0.69 0.63-0.69 0.64 – 0.67 

NIR 0.76-0.90 0.77-0.90 0.85 – 0.88 

SWIR1 1.55-1.75 1.55-1.75 1.57 – 1.65 

SWIR2 2.08-2.35 2.09-2.35 2.11 – 2.29 
Note: NIR = near infrared, SWIR = shortwave infrared, TM = thematic mapper, ETM+ = enhanced thematic map-

per plus, OLI = Operational Land Imager, NDVI = normalized difference vegetation index, NDVI SD = standard 

deviation of NDVI. 

 
 

b.     Theoretical description                                                

i.   Definition of Croplands 
For all products within GFSAD30, cropland extent was defined as, “lands cultivated with plants 

harvested for food, feed, and fiber, including both seasonal crops (e.g., wheat, rice, corn, soy-

beans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, oil palms). Cropland 

fallows are lands uncultivated during a season or a year but are farmlands and are equipped for 

cultivation, including plantations (e.g., orchards, vineyards, coffee, tea, and rubber” (Teluguntla 

et al., 2015). Cropland extent includes all planted crops and fallow lands. Non-croplands include 

all other land cover classes other than croplands and cropland fallows (Figure 1). 

 

 

VI 

Name 

Equation 

NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NDVI 

SD √
∑(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ )2

𝑛 − 1
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Figure 1. Illustration of definition of cropland mapping. Croplands included: (a) standing crop, 

(b) cropland fallows, and (c) permanent plantation crops. 

 

ii.   Algorithm 
The study used the pixel-based supervised classification machine-learning algorithm Random 

Forest (RF) to create the cropland extent product. The algorithm is described in detail below.  

South America was stratified into five separate refined FAO agro-ecological zones (Figure 2) to 

facilitate the optimal classification. 

 

c.     Practical description 

i. Random Forest (RF) Algorithm 
All supervised pixel-based classifications are heavily dependent on the input training samples 

selected. In order to discriminate croplands under various environments and conditions, the sam-

ple size of the initial training dataset needs to be large, especially in complex regions. All samples 

were selected to represent a 90-m x 90-m polygon. We used sub-meter to 5-m very high spatial 

resolution imagery to generate croplands versus non-cropland samples using multiple interpreters 

across South America. Approximately 3000+ data samples were used generated from these in-

terpretations. These samples were used in training the Random Forest (RF) machine learning 

algorithm. 

 

We processed and composited Landsat images, and performed Random Forest classification on 

the Google Earth Engine cloud computing platform. GEE stores all  Landsat data seamlessly for 

the entire continent. Cloud computing offers the power of parallel processing across thousands 

of computers, thus allowing us to classify the entire continent in a matter of minutes. 

 

Parameter settings of the Random Forest classifier are listed below: 

 Number of decision trees to grow: 600. After testing on several training datasets, the 

number of 600 trees balances the classification error rate and computation load. There-

fore, 600 trees were built in each Random Forest classifier. 

 Variables per split: 2 The default setting of the Random Forest classifier algorithm, square 

root of the number of inputs, was accepted and therefore two randomly selected variables 

were used in each tree node to determine the class.  
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 Minimum leaf population: 1. The minimum size of a terminal leaf in the tree could be as 

small as one, meaning that no pruning was done.  

 Fraction of input to bag per tree: 50%The Random Forest classifier uses an out-of-bag 

(oob) mode so that half of the original set of samples are randomly selected with replace-

ment as input samples in the training of one decision tree, and the rest samples are used 

to estimate the oob error. More information about oob and oob error estimates is available 

at (Breiman and Adele 2016).  

 

The RF algorithm was coded and run separately on each of the five distinct zones (Figure 2). The 

zones were delineated based on their agro-ecology, climate, elevation, and agricultural patterns. 

This was done based on the internal discussions within the team keeping in view the ease of 

applying the RF algorithm for best possible results in separating croplands from non-croplands. 

We followed an iterative process to run the Random Forest classifier for each of the 5 zones 

separately, until the results were satisfactory. For the land cover classes and areas that were 

poorly classified, we manually added training samples and re-ran the classifier.  

 

After each round of classification, we identified areas where croplands were misclassified as non-

croplands. In order to reduce omissions, we ran another round of classification on only the areas 

being classified as non-croplands. Afterwards, the croplands classified through multiple itera-

tions were mosaicked together to generate an overall Cropland Extent Map for the continent. 

This process was adopted in each of the 5 zones (Figure 2).  

 

To improve spatial coherency, the Cropland Extent Maps of each of the 5 zones were smoothed 

by performing majority filtering, twice. In this process, each pixel was reclassified into the ma-

jority land cover class of its eight surrounding pixels. The output from majority filtering is the 

final Cropland Extent Map (Figure 3).  
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Figure 2. Study zones and reference training samples. The maps here show the delineation of 5 

study zones. The RF algorithm was run separately in each of the 5 zones. The map on the right 

also shows the distribution of the reference training samples spread across the continent. These 

reference training samples were used in training the RF algorithm. 

 

ii. Programming and codes 
 

The pixel-based supervised machine learning algorithm (RF) was coded on Google Earth Engine 

(GEE) using Python and Java Scripts using an Application Programming Interface (API). The 

codes are available in a zip file and are available for download through LPDAAC along with this 

ATBD. 

 

iii. Results 
The study led to a cropland extent product @ nominal 30-m (Figure 3) for nominal year 2015 for 

the South American continent. This is referred to as global food security-support analysis data 

@ 30-m of South America: cropland extent product (GFSAD30SACE). Spatial distribution of 

these croplands can be visualized at: croplands.org. The full 30-m resolution of the product can 

be “zoomed-in” and visualized (e.g., Figure 4). A visual comparison of our Cropland Extent Map 

shows a similar distribution pattern of major croplands in South America as depicted by Glob-

Cover 2009 and GCE V1.0 cropland maps (Figure 5). The total cropland area and cropland area 

in each country (Table 3) calculated from our Cropland Extent Map are also very close to the 

area calculated from GlobCover 2009 major cropland map and GCE V1.0 major cropland. Some 

regions where major differences of cropland distribution were observed are Chile, Colombia, 

Ecuador, and Venezuela. Our Cropland Extent Map generates a higher value of cropland area in 

Chile and lower value in Colombia compared with GlobCover 2009 major cropland map and 
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GCE V1.0 major cropland map, and much lower estimation of cropland area in Venezuela com-

pared with GCE V1.0 major cropland map. Moreover, GlobCover 2009 major and minor 

cropland maps have a wider distribution of cropland than the three-cropland maps mentioned 

above. To achieve a more accurate evaluation and comparison of cropland areas based on 

cropland maps, sub-pixel cropland area should be calculated to replace full-pixel area across all 

products as proposed by Thenkabail et al. (2007). Sub-pixel areas provide actual areas, especially 

when computing areas from coarser resolution imagery such as GlobCover 2009. However, sub-

pixel areas may not be needed to determine areas in 30-m product such as this study. 

 

 
Figure 3. Cropland Extent Map of South America at a spatial resolution of 30-m for the years  

2013 - 2015. This product is made available for visualization at: https://croplands.org. 
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Figure 4. “Zoom-in” view of a selected area of the cropland Extent Map of South America at a 

spatial resolution of 30-m for the years 2013 - 2015. The South American product is made avail-

able for visualization at: https:// croplands.org. 
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Figure 5. Comparison of GFSAD30SACE 30-m cropland product with three other coarser reso-

lution cropland products. 
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iv. Cropland areas of South America 
According to our Cropland Extent Map, the total net cropland area (TNCA) in South America is 

151,994,479 hectares, or 8.7% of its total land area (Table 3). Brazil has the largest cropland area 

(42.1% of the total net cropland area of South America) followed by Argentina (25.3%). So, 

Brazil and Argentina have the largest cropland areas  in South America relative to TNCA of the 

South American continent. However, as a % of the total geographic area of the country, Uruguay, 

and Paraguay have highest % areas of croplands with 66.9%, and 23.2% respectively. However, 

Uruguay,  and Paraguay only have 7.7%, and 6.1% (Table 3) of total net cropland areas in South 

America. 

 

The following major factors may contribute to prediction errors:  

(1) Limitations of the input Landsat data. Some areas are persistently covered by clouds, such 

as the Guayas region in Ecuador where large areas of plantation are present, resulting in low 

quality Landsat data (Giri and Long 2014) and therefore unsatisfactory classification results in 

these areas. Additionally, the anomaly of the Landsat 7 ETM + Scan Line Corrector caused prob-

lematic “stripes” in the Landsat 7 ETM + images. In future studies, more reliable remote sensing 

images such as Landsat 8 and Sentinel-2 should be used in the classification training and predic-

tion. 

 

(2) Under-representation of landscape characteristics. Though training samples are selected 

to represent the diverse land cover types of South America comprehensively, some landscape 

may still be missed in the training dataset. Therefore, the input variable values of prediction cases 

may exceed the range of training cases, resulting in misclassification.  

 

(3) Uncertainties in the training dataset. We selected the training dataset and identified the 

cropland cover categories carefully. However, the visual interpretation of land cover may be in-

correct in some cases, especially when reliable reference data in certain areas for the mapping 

period are not available. Therefore, errors are likely to exist in the training dataset which jeop-

ardized the classification accuracy from the root. In order to increase accuracy of the training 

dataset, field survey data or high-resolution images and photographs should be used in training 

data generation.  

 

Although our Cropland Extent Map agrees with other cropland maps in terms of the major spatial 

distribution pattern, discrepancies exist in some areas of the continent. Three major reasons may 

have contributed to the disagreements: 1. inconsistent definition of cropland class, 2. Maps pro-

duced at different time periods, and 3. different spatial resolution of the cropland maps. Incon-

sistency in cropland definition may contributes most to the disagreement between cropland maps. 

As mentioned above, pasture and rangeland are excluded from the ‘cropland’ class in our 

Cropland Extent Map, but included in the GlobCover 2009 agricultural classes. Therefore, the 

GlobCover 2009 major and minor cropland map in which Class 11, 14, and 20 of GlobCover 

2009 were clumped into one ‘cropland’ class tends to over-estimate cropland areas as defined in 

this project.  

 

In addition, the cropland maps were developed for different years, during which land cover 

changes may have happened; This would in turn result in disagreement of land cover descriptions 

even if the descriptions of cropland maps were all accurate for their mapping time. GlobCover 
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2009 was developed for the period of January – December 2009, and GCE V1.0 was synthesized 

from four cropland maps, the mapping time of which ranges widely from 2000 to 2010, while 

our Cropland Extent Map was developed for the years 2013 – 2015. From 2010 to 2013, some 

croplands might have been abandoned while new croplands were developed. 

 

Table 3. Net cropland areas (NCAs) of South America based on 30-m cropland product and 

comparison with other cropland products. 

 
 

V.         Calibration Needs/Validation Activities 

In addition to spatial distribution, the Cropland Extent Map also indicates the cropland area in 

South America. We summarized the cropland area in each country and the total cropland area in 

South America from the Cropland Extent Map, and compared them with FAO statistics (FAO 

2016) and the cropland area calculated from GlobCover 2009 major cropland map, GlobCover 

2009 major and minor cropland map, GCE V1.0 major cropland map, GCE V1.0 major and minor 

cropland. It’s noteworthy that the area here is full pixel area, meaning that the cropland pixels 

were considered as “pure” and the sub-pixel composition was not analyzed to extract fractional 

information of cropland (Thenkabail et al. 2007). Given that a Landsat pixel constitutes an area 

of 0.09 hectares, purity of the pixels can be trusted. 

 

Country Land Area
1

GFSAD30
2

MIRCA  

2014
3

 FAO 

Agricultural 

land
4

GIAM-

GMRCA
5

GRIPC 

2005
6

Percent  of  

total 

Croplands

percent of  

total    

Land Area 

Name Ha Ha Ha Ha Ha Ha % %

Brazil 845047923 63994709 58705445 68505500 91603674 102616446 42.10% 7.6%

Argentina 273879142 38383784 34778946 32034000 43623158 55168208 25.25% 14.0%

Uruguay 17502364 11709192 1567659 1910103 3735751 2879925 7.70% 66.9%

Paraguay 39733840 9238047 4868887 3908300 5567578 7481895 6.08% 23.2%

Venezuela 88065844 7630606 3766502 3402600 4151851 12681187 5.02% 8.7%

Colombia 111070496 6502398 4269633 3360660 5905473 17748936 4.28% 5.9%

Chile 74254717 5974811 3188325 1731620 3927135 3095281 3.93% 8.0%

Bolivia 108369501 3737749 3230784 3954078 9017920 3602161 2.46% 3.4%

Ecuador 24864686 2413259 3217439 2546492 3133011 4022652 1.59% 9.7%

Peru 127619048 2192154 5115162 4438080 5202729 2203578 1.44% 1.7%

Guyana 19705882 161870 563968 445550 280303 621627 0.11% 0.8%

Suriname 16200000 45464 106736 63666 108439 248805 0.03% 0.3%

Trinidad & 

Tobago
514286 10436 124446 46980 10449 150099 0.01% 2.0%

Total 1746827730 151994479 123503931 126347629 176267471 212520801 100% 8.7%

 Note: 

1= Total land area is land area excluding area under inland water bodies

2= GFSAD30 current study

3=  Monthly irrigated and rainfed crop areas (MIRCA) around the year 2014 derived by Portman et al.

4= FAO Agricultural land area excluding  pasture based on FAO2013 statistics consider nominal 2015

http://www.fao.org/faostat/en/#data/QC

5= Global croplands derived from Global Irrigated Area Mapping (GIAM)  and 

Global Map of Rainfed Cropland Areas (GMRCA)  by Thenkabail et al., 2009 and Biradar et al., 2009 

6= Global rain-fed, irrigated, and paddy croplands (GRIPC) derived by solmon et al., 2015
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For this assessment, 1250 reference samples were used, that were collected independently of any 

reference training and testing samples used by the mapping team.   Error matrices (Table 4) were 

generated for each of the five zones separately and for the entire South American continent 

providing producer’s, user’s, and overall accuracies (Story and Congalton, 1986, Congalton, 

1991, and Congalton and Green, 2009).  
 

Table 4. Independent Accuracy Assessment of 30-m Cropland Extent Map for South America. 

Accuracies were assessed for each of the five zones as well as for the entire continent. 

  

 
For the entire continent, the weighted overall accuracy was 93.2% with producer’s accuracy of 

82.6% (errors of omissions of 17.4%) and user’s accuracy of 76.7% (errors of commissions of 

23.3%) (Table 5). When considering all 5 zones, the overall accuracies ranged between 92.4-

96.8%, producer’s accuracies ranged between 79.6-90.9%, and user’s accuracies ranged between 

76.7-81.3% (Table 4).  

 

VI.         Constraints and Limitations 

GFSAD30SACE product mapped the croplands of South America @ nominal 30-m, which is the 

best-known resolution for cropland mapping over such a large area as the South American con-

tinent covering all countries. It also has high levels of accuracy with overall accuracy of 93.2%, 

producer’s accuracy of 82.6%,  and user’s accuracy of 76.7%.  

 

A producer’s accuracy of 82.6% for the cropland class means an error of omission of 17.4%. 

This means 17.4% of the continental croplands were missing in the product. A user’s accuracy 

of 76.7% for the cropland class for the continent means there is an error of commission of 23.3%. 

This means 23.38% of non-croplands are mapped as croplands. We tweaked the Random Forest 

algorithm (section IV) to maximize capturing as much cropland as feasible automatically. In this 
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process, some non-croplands were mapped as croplands as well. This is a preferred solution in 

order not to miss croplands or only to miss them minimally. As a compromise mapping some 

non-croplands as croplands becomes unavoidable. 

 

There are numerous issues that cause uncertainties and limitations in the cropland extent product. 

Some of these issues are discussed here. First is temporal coverage. Five to ten-day Sentinel-2 

and 16-day Landsat-8 coverage put together, there is substantial temporal coverage. Yet, achiev-

ing cloud-free or near cloud-free mosaics of the entire South American continent is difficult over 

some time periods (e.g., weekly, twice-monthly, monthly). This is not surprising given such a 

large area of the continent. If we were to have daily coverage over an area (e.g., like MODIS) 

then it becomes feasible to have more frequent (e.g., monthly or bi-monthly composites) tem-

poral coverage of the continent that will help advance cropland mapping at improved accuracies. 

Second, there is a need for greater understanding of the Landsat-7 and Landsat-8 data on how 

well they are correlated in efforts to achieve better harmonization of data from the two different 

sensors. Third is the limitation of the reference training and validation data. In this project, we 

already have large training and validation data compared to any previous work as described in 

previous sections. Nevertheless, much wider and extensive field visits to different parts of the 

continent will be helpful in better understanding the issues involved, and as a result better map-

ping. For example, better understanding and defining of managed pastures from agricultural 

croplands are desirable. These and a better understanding of croplands through field visits as well 

as understanding of host of other issues (e.g., various types of irrigated and rainfed croplands, 

various types and ages of cropland fallows) will help improve cropland mapping. The greatest 

difficulties in cropland mapping in South America were in detecting, understanding, and deline-

ating managed pastures from croplands. Furthermore, reduction in uncertainties in cropland map-

ping is feasible if we were to implement multiple machine learning algorithms rather than just  

Random Forests. These and numerous other issues will continue to persist in cropland mapping 

over such large areas as the South American continent. Nevertheless, advances made in this study 

are substantial, especially in developing a nominal 30-m cropland extent of the entire continent 

at very good accuracies. 

 

VII. Publications 

The following publications are related to the development of the above croplands products:  

i. Peer-reviewed publications within GFSAD project 
Congalton, R.G., Gu, J., Yadav, K., Thenkabail, P.S., and Ozdogan, M. 2014. Global Land 

Cover Mapping: A Review and Uncertainty Analysis. Remote Sensing Open Access Journal. 

Remote Sens. 2014, 6, 12070-12093; http://dx.doi.org/10.3390/rs61212070. 

 

Congalton, R.G, 2015. Assessing Positional and Thematic Accuracies of Maps Generated from 

Remotely Sensed Data. Chapter 29, In Thenkabail, P.S., (Editor-in-Chief), 2015. "Remote Sens-

ing Handbook" Volume I: Volume I: Data Characterization, Classification, and Accuracies: Ad-

vances of Last 50 Years and a Vision for the Future. Taylor and Francis Inc.\CRC Press, Boca 

Raton, London, New York. Pp. 900+. In Thenkabail, P.S., (Editor-in-Chief), 2015. "Remote 

Sensing Handbook" Volume I:  Remotely Sensed Data Characterization, Classification, and 

Accuracies. Taylor and Francis Inc.\CRC Press, Boca Raton, London, New York. ISBN 

http://dx.doi.org/10.3390/rs61212070
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9781482217865 - CAT# K22125. Print ISBN: 978-1-4822-1786-5; eBook ISBN: 978-1-4822-

1787-2. Pp. 678.  

 

Gumma, M.K., Thenkabail, P.S.,Teluguntla, P., Rao, M.N., Mohammed, I.A., and Whitbread, 

A.M. 2016. Mapping rice-fallow cropland areas for short-period grain legumes intensification in 

South Asia using MODIS 250 m time-series data. International Journal of Digital 

Earth, http://dx.doi.org/10.1080/17538947.2016.1168489 

 

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M., Sánchez 

Meador, A.J. 2017. MODIS phenology-derived, multi-year distribution of conterminous U.S. 
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ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.06.033. 

 

Phalke, A. R., Ozdogan, M., Thenkabail, P. S., Congalton, R. G., Yadav, K., & Massey, R. et al. 

(2017). A Nominal 30-m Cropland Extent and Areas of Europe, Middle-east, Russia and Central 

Asia for the Year 2015 by Landsat Data using Random Forest Algorithms on Google Earth En-

gine Cloud. (in preparation). 

 

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A., 

Poehnelt, J., Yadav, K., Rao, M., and Massey, R. 2017. Spectral matching techniques (SMTs) 
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DOI:10.1080/17538947.2016.1267269.IP-074181, 

http://dx.doi.org/10.1080/17538947.2016.1267269. 

 

Teluguntla, P., Thenkabail, P., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., Con-

galton, R., Yadav, K., 2015. CHAPTER 6 - Global Food Security Support Analysis Data at Nom-

inal 1 km (GFSAD1km) Derived from Remote Sensing in Support of Food Security in the 

Twenty-First Century: Current Achievements and Future Possibilities, in: Thenkabail, P.S. (Ed.), 

Remote Sensing Handbook (Volume II): Land Resources Monitoring, Modeling, and Mapping 
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Web sites and Data portals:  
http://croplands.org (30-m global croplands visualization tool) 
http://geography.wr.usgs.gov/science/croplands/index.html (GFSAD30 web portal and dissemination) 

http://geography.wr.usgs.gov/science/croplands/products.html#LPDAAC (dissemination on LP DAAC) 

http://geography.wr.usgs.gov/science/croplands/products.html (global croplands on Google Earth Engine) 

croplands.org (crowdsourcing global croplands data) 
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Sioux Falls, SD 57198-0001 

 

Phone Number: 605-594-6116 

Toll Free: 866-573-3222 (866-LPE-DAAC) 

Fax: 605-594-6963 

Email: lpdaac@usgs.gov 

Web: https://lpdaac.usgs.gov 
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For the Principal Investigators, feel free to write to: 

 

Prasad S. Thenkabail at pthenkabail@usgs.gov    

 

For 30-m cropland extent product of South America, please contact: 

Pardhasaradhi Teluguntla at pteluguntla@usgs.gov   

Prasad S. Thenkabail at pthenkabail@usgs.gov 

Ying Zhong at ying.zhong105@gmail.com                      

Chandra Giri at Giri.Chandra@epa.gov   

 
More details about the GFSAD project and products can be found at: globalcroplands.org  
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