JPL D-94636

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission

Level 3 Evapotranspiration (PT-JPL) Product Specification Document

June 13, 2019

Gregory H. Halverson ECOSTRESS Algorithm Development Team Jet Propulsion Laboratory California Institute of Technology

Joshua B. Fisher, ECOSTRESS Science Lead ECOSTRESS Algorithm Development Team ECOSTRESS Science Team Jet Propulsion Laboratory California Institute of Technology

JPL D-94636

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the ECOSTRESS DocuShare Library (*) at https://bravo-lib.jpl.nasa.gov/docushare/dsweb/View/Library-509 (*) Access limited to user group

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

ECOSTRESS Level 3 Evapotranspiration (PT-JPL) Product Specification Document

Prepared by:

Gregory H. Halverson Date **ECOSTRESS** Algorithm Development Team Joshua B. Fisher Date **ECOSTRESS Science Lead** Approved by: Dana Freeborn Date ECOSTRESS Science Data System Manager Eugene Chu Date **ECOSTRESS SDS System Engineer Concurred by:** Simon Hook Date **ECOSTRESS** Principal Investigator National Aeronautics and Space Administration Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

*** Original signature page on file in project physical repository ***

Revision	Date	Sections Changed	Author
Preliminary	02/23/2016	All	Laura Jewell Joshua Fisher
	06/06/2016	T2-1, T2-2, T3-1	Eugene Chu
	12/01/2017	T3-2	Laura Jewell
	01/22/2018	All	Laura Jewell
	03/23/2018	Section 3	Laura Jewell
	04/18/2018	Copyright marking in footer	Laura Jewell
	04/26/2018	Removed outdated metadata (Section 3); cleaned signature page.	Laura Jewell
	06/26/2018	Specified data types as Float32 in Table 3-3.	Laura Jewell
	11/28/2018	Revised QA product description and added references	Gregory Halverson
	02/15/2019	Added valid ET range	Eugene Chu
	02/28/2019	Fixed fill-values	Gregory Halverson
	03/05/2019	Fixed valid ranges	Gregory Halverson
	05/15/2019	Anomaly statement and band specification	Eugene Chu
	06/13/2019	Start date of non-MSU operation	Gregory Halverson

Document Change Log

Document TBD, TBR, TBS

Section/Page	Description	Date

Contacts

Readers seeking additional information about this document may contact the following ECOSTRESS Algorithm Development team members:

Gregory H. Halverson

MS 233-305J Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 Email: gregory.h.halverson@jpl.nasa.gov Office: (818) 393-3072

Joshua B. Fisher

MS 233-305C Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 Email: jbfisher@jpl.nasa.gov Office: (818) 354-0934

TABLE OF CONTENTS

TABLE O	F CONTENTS	6
1.1 Io	lentification	7
1.2 P	urpose and Scope	7
1.3 N	lission Overview	7
1.4 A	pplicable and Reference Documents	8
1.4.1	Applicable Documents	8
1.4.2	Reference Documents	8
1.5 E	COSTRESS Data Products	8
DATA PR	ODUCT ORGANIZATION	11
1.6 P	roduct File Format	11
1.7 H	DF5 Notation	11
1.7.1	HDF5 File	11
1.7.2	HDF5 Group	11
1.7.3	HDF5 Dataset	11
1.7.4	HDF5 Datatype	11
1.7.5	HDF5 Dataspace	12
1.7.6	HDF5 Attribute	12
1.8 E	COSTRESS File Organization	13
1.8.1	Structure	13
1.8.2	Data	13
1.8.3	Element Types	13
1.8.4	File Level Metadata	14
1.8.5	Local Metadata	14
1.9 D	ata Definition Standards	14
1.9.1	Double Precision Time Variables	15
1.9.2	Array Representation	15
ECOSTRE	ESS PRODUCT FILES	16
1.10	Standard Metadata	17
1.11	Product-Specific Metadata	18
1.12	Product Data	19
1.13	Product Metadata File	19
1.14	Quality Assessment Product	19
2.0 AP	PENDIX A: ABBREVIATIONS AND ACRONYMS	20

INTRODUCTION

1.1 Identification

This is the Product Specification Document (PSD) for Level 3 (L3) data products of the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission. The ECOSTRESS L3(ET_PT-JPL) product provides evapotranspiration (ET) generated from data acquired by the ECOSTRESS radiometer instrument according to the PT-JPL algorithm described in the ECOSTRESS L3(ET_PT-JPL) Algorithm Theoretical Basis Document (ATBD) (JPL D-94645).

1.2 Purpose and Scope

This Product Specification Document (PSD) describes the standard Level 3 evapotranspiration (ET) product generated using the PT-JPL algorithm in the JPL facility. These include the detailed descriptions of the format and contents of the product and ancillary files that will be delivered to the Land Process Distributed Active Archive Center (LP-DAAC).

1.3 Mission Overview

The ECOSTRESS instrument measures the temperature of plants and uses that information to better understand how much water plants use and how they respond to stress.

ECOSTRESS addresses three overarching science questions:

How is the terrestrial biosphere responding to changes in water availability? How do changes in diurnal vegetation water stress impact the global carbon cycle? Can agricultural vulnerability be reduced through advanced monitoring of agricultural water consumptive use and improved drought estimation?

The ECOSTRESS mission answers these questions by accurately measuring the temperature of plants. Plants regulate their temperature by releasing water through pores on their leaves called stomata. If they have sufficient water, they can maintain their temperature. However, if there is insufficient water, their temperatures rise. This temperature rise can be measured with a sensor in space. ECOSTRESS uses a multispectral thermal infrared (TIR) radiometer to measure the surface temperature, deployed on the International Space Station. The instrument will measure radiances at 5 spectral bands in the 8-12.5 μ m range with approximately 38 meter by 57 meter of spatial resolution on the ground.

On September 29th 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5th, the instrument was switched to the secondary MSU and operations resumed with initial acquisitions over Australia and wider coverage resumed on January 9th 2019. The initial anomaly was attributed to exposure to high radiation regions, primarily over the Southern Atlantic Anomaly, and the acquisition strategy was revised to exclude these regions from future acquisitions. On March 14th 2019, the secondary MSU experienced an anomaly, and acquisitions are temporarily on hold. Work is underway to implement a direct streaming option, which will bypass the need for mass

storage units. The streaming acquisition mode will change the format of the data being collected. Specifically, the new collection mode will eliminate the 1.6 μ m (SWIR), 8.2 μ m (TIR), and 9.0 μ m (TIR) bands. To simplify product formats, the L1 and L2 products will continue to contain the datasets for these bands, but the datasets will contain fill values. This will be seen in products generated after May 15th 2019, when the instrument resumes operations. These changes will be described in the detailed product specifications.

1.4 Applicable and Reference Documents

"Applicable" documents levy requirements on the areas addressed in this document. "Reference" documents are identified in the text of this document only to provide additional information to readers. Unless stated otherwise, the document revision level is Initial Release. Document dates are not listed, as they are redundant with the revision level.

1.4.1 Applicable Documents

ECOSTRESS Project Level 3 Science Data System Requirements (JPL D-94088).

ECOSTRESS Science Data Management Plan (JPL D-94607)

423-ICD-005 ICD Between ECOSTRESS SDS and LPDAAC

ECOSTRESS Level 1 Algorithm Theoretical Basis Documents (JPL D-94641, D-94642)

ECOSTRESS Level 1 Algorithm Specification Document

ECOSTRESS Level 2 Algorithm Theoretical Basis Documents (JPL D-94643, D-94644)

ECOSTRESS Level 2 Algorithm Specification Document

ECOSTRESS Level 3 (ET_PT-JPL) Algorithm Theoretical Basis Document (JPL D-94645)

ECOSTRESS Level 3 (ET_PT-JPL) Algorithm Specification Document

1.4.2 Reference Documents

1.5 ECOSTRESS Data Products

The ECOSTRESS mission will generate 13 different distributable data products. The products represent four levels of data processing, with data granules defined as an image scene. Each image scene consists of 44 scans of the instrument mirror, each scan taking approximately 1.181 seconds, and each image scene taking approximately 52 seconds. Each image scene starts at the beginning of the first target area encountered during each orbit. Each orbit is defined as the equatorial crossing of an ascending International Space Stations (ISS) orbit.

ECOSTRESS Level 0 data include spacecraft packets that have been pre-processed by the Ground Data System (GDS). Level 1 products include spacecraft engineering data, the time-tagged raw sensor pixels appended with their radiometric calibration coefficients, the black body pixels used to generate the calibration coefficients, geolocated and radiometrically calibrated at-sensor radiances of each image pixel, the geolocation tags of each pixel, and the corrected spacecraft attitude data. Level 2 products include the land surface temperature and emissivities of each spectral band retrieved from the at-sensor radiance data, and a cloud mask. Level 2 products also appear in image scene granules. Level 3 products contain evapotranspiration data derived from

Level 2 data. Level 4 products contain evaporative stress index and water use efficiency derived from Level 3 data.

The ECOSTRESS products are listed in Table 1-1. This document will discuss only the Level 3 ET_PT-JPL product, and provide a brief description of the Level 3/4 QA product.

Product type	Description		
L0A_FLEX	Level 0 "raw" spacecraft packets		
L0A_HK	Level 0 housekeeping packets		
L1A_ENG	Spacecraft and instrument engineering data, including blackbody gradient		
	coefficients		
L1A_BB	Instrument Black Body calibration pixels		
L1A_PIX	Raw pixel data with appended calibration coefficients		
L1B_GEO	Geolocation tags, sun angles, and look angles, and calibrated, resampled at- sensor radiances		
L1B_RAD	Radiometrically corrected, band-aligned, squared at-sensor radiance pixels		
L1B_MAP_RAD	L1B_RAD data map projected to fixed 70 meter pixels		
L1B_ATT	Corrected spacecraft ephemeris and attitude data		
L2_LSTE	Land Surface temperature and emissivity		
L2_CLOUD	Cloud mask		
L3_ET_PT-JPL	Evapotranspiration retrieved from L2_LSTE using the PT-JPL Algorithm		
L3_ET_ALEXIU	Evapotranspiration generated at USDA with the ALEXI/DisALEXI Algorithm over specific calibration sites		
L4_ESI_PT-JPL	Evaporative Stress Index generated with PT-JPL		
L4_ESI_ALEXIU	Evaporative Stress Index generated at USDA with the ALEXI/DisALEXI over		
	specific calibration sites		
L4_WUE	Water Use efficiency		
L3_L4_QA	Quality Assessment fields for all ancillary data used in L3 and L4 products		

Table 1-1: ECOSTRESS Distributable Standard Products

DATA PRODUCT ORGANIZATION

1.6 Product File Format

All ECOSTRESS standard products are stored in the Hierarchical Data Format version 5 (HDF5). HDF5 is a general purpose file format and programming library for storing scientific data. The National Center for Supercomputing Applications (NCSA) at the University of Illinois developed HDF to help scientists share data regardless of the source. The following sections provide some key elements of HDF5 that will be employed in ECOSTRESS data products. Complete documentation of the HDF5 structure and application software can be found at http://www.hdfgroup.org/HDF5

1.7 HDF5 Notation

The key concepts of the HDF5 Abstract Data Model are Files, Groups, Datasets, Datatypes, Attributes and Property Lists. The following sections provide a brief description of each of these key HDF5 concepts.

1.7.1 HDF5 File

A File is the abstract representation of a physical data file. Files are containers for HDF5 Objects. These Objects include Groups, Datasets, and Datatypes.

1.7.2 HDF5 Group

Groups are containers for other Objects, including Datasets, named Datatypes and other Groups. In that sense, groups are analogous to directories that are used to categorize and classify files in standard operating systems.

The notation for files is identical to the notation used for Unix directories. The root Group is "/". Like Unix directories, Objects appear in Groups through "links". Thus, the same Object can simultaneously be in multiple Groups.

1.7.3 HDF5 Dataset

The Dataset is the HDF5 component that stores user data. Each Dataset associates with a Dataspace that describes the data dimensions, as well as a Datatype that describes the basic unit of storage element. A Dataset can also have Attributes.

1.7.4 HDF5 Datatype

A Datatype describes a unit of data storage for Datasets and Attributes. Datatypes are subdivided into Atomic and Composite Types.

Atomic Datatypes are analogous to simple basic types in most programming languages. HDF5 Atomic Datatypes include Time, Bitfield, String, Reference, Opaque, Integer, and Float. Each atomic type has a specific set of properties. Examples of the properties associated with Atomic Datatypes are:

- Integers are assigned size, precision, offset, pad byte order, and are designated as signed or unsigned.
- Strings can be fixed or variable length, and may or may not be null-terminated.

• References are constructs within HDF5 Files that point to other HDF5 Objects in the same file.

HDF5 provides a large set of predefined Atomic Datatypes. Table 2-1 lists the Atomic Datatypes that are used in ECOSTRESS data products.

HDF5 Atomic	Description			
Datatypes				
H5T_STD_U8LE	unsigned, 8-bit, little-endian integer			
H5T_STD_U16LE	unsigned, 16-bit, little-endian integer			
H5T_STD_U32LE	unsigned, 32-bit, little-endian integer			
H5T_STD_U64LE	unsigned, 64-bit, little-endian integer			
H5T_STD_I8LE	signed, 8-bit, little-endian integer			
H5T_STD_I16LE	signed, 16-bit, little-endian integer			
H5T_STD_I32LE	signed, 32-bit, little-endian integer			
H5T_STD_I64LE	Signed, 64-bit, little-endian integer			
H5T_IEEE_F32LE	32-bit, little-endian, IEEE floating point			
H5T_IEEE_F64LE	64-bit, little-endian, IEEE floating point			
H5T_STRING	character string made up of one or more bytes			

Composite Datatypes incorporate sets of Atomic datatypes. Composite Datatypes include Array, Enumeration, Variable Length and Compound.

The Array Datatype defines a multi-dimensional array that can be accessed atomically.

Variable Length presents a 1-D array element of variable length. Variable Length Datatypes are useful as building blocks of ragged arrays.

Named Datatypes are explicitly stored as Objects within an HDF5 File. Named Datatypes provide a means to share Datatypes among Objects. Datatypes that are not explicitly stored as Named Datatypes are stored implicitly. They are stored separately for each Dataset or Attribute they describe.

None of the ECOSTRESS data products employ Enumeration or Compound data types.

1.7.5 HDF5 Dataspace

A Dataspace describes the rank and dimension of a Dataset or Attribute. For example, a "Scalar" Dataspace has a rank of 1 and a dimension of 1. Thus, all subsequent references to "Scalar" Dataspace in this document imply a single dimensional array with a single element.

Dataspaces provide considerable flexibility to HDF5 products. They incorporate the means to subset associated Datasets along any or all of their dimensions. When associated with specific properties, Dataspaces also provide the means for Datasets to expand as the application requires.

1.7.6 HDF5 Attribute

An Attribute is a small aggregate of data that describes Groups or Datasets. Like Datasets, Attributes are also associated with a particular Dataspace and Datatype. Attributes cannot be subsetted or extended. Attributes themselves cannot have Attributes.

1.8 ECOSTRESS File Organization

1.8.1 Structure

ECOSTRESS data products follow a common convention for all HDF5 Files. Use of this convention provides uniformity of data access and interpretation.

The ECOSTRESS Project uses HDF5 Groups to provide an additional level of data organization. All metadata that pertain to the complete data granule are members of the "/Metadata" Group. All other data are organized within Groups that are designed specifically to handle the structure and content of each particular data product.

1.8.2 Data

All data in HDF5 files are stored in individual Datasets. All related Datasets in an ECOSTRESS product are assigned to an HDF5 Group. A standard field name is associated with each Dataset. The field name is a unique string identifier. The field name corresponds to the name of the data element the Dataset stores. This document lists these names with the description of each data element that they identify.

Each Dataset is associated with an HDF5 Dataspace and an HDF5 Datatype. They provide a minimally sufficient set of parameters for reading the data using standard HDF5 tools.

1.8.3 Element Types

ECOSTRESS HDF5 employs the Data Attribute "Type" to classify every data field as a specific data type. The "Type" is an embellishment upon the standard HDF5 Datatypes that is designed specifically to configure ECOSTRESS data products.

Table 2-2 lists all of the "Type" strings that appear in the ECOSTRESS data products. The table maps each ECOSTRESS "Type" to a specific HDF5 Datatype in both the HDF5 file and in the data buffer. The table also specifies the common conceptual data type that corresponds to the "Type" in ECOSTRESS executable code.

Туре	HDF5 Datatype (File)	HDF5 Datatype (Buffer)	Conceptual Type
Unsigned8	H5T_STD_U8LE	H5T_NATIVE_UCHAR	unsigned integer
Unsigned16	H5T_STD_U16LE	H5T_NATIVE_USHORT	unsigned integer
Unsigned32	H5T_STD_U32LE	H5T_NATIVE_UINT	unsigned integer
Unsigned64	H5T_STD_U64LE	H5T_NATIVE_ULLONG	unsigned integer
Signed8	H5T_STD_I8LE	H5T_NATIVE_SCHAR	signed integer
Signed16	H5T_STD_I16LE	H5T_NATIVE_SHORT	signed integer
Signed32	H5T_STD_I32LE	H5T_NATIVE_INT	signed integer
Signed64	H5T_STD_I64LE	H5T_NATIVE_LLONG	signed integer
Float32	H5T_IEEE_F32LE	H5T_NATIVE_FLOAT	floating point
Float64	H5T_IEEE_F64LE	H5T_NATIVE_DOUBLE	floating point
VarLenStr	H5T_STRING	H5T_NATIVE_CHAR	character string

1.8.4 File Level Metadata

All metadata that describe the full content of each granule of the ECOSTRESS data product are stored within the explicitly named "/Metadata" Group. Metadata are handled using exactly the same procedures as those that are used to handle data. The contents of each Attribute that stores metadata conform to one of the ECOSTRESS Types. Most metadata elements are stored as scalars. A few metadata elements are stored as arrays. The metadata appear in a set of HDF5 Groups under the "/Metadata" Group. These HDF5 Groups contain a set of HDF5 Attributes.

1.8.5 Local Metadata

ECOSTRESS standards incorporate additional metadata that describe each HDF5 Dataset within the HDF5 file. Each of these metadata elements appear in an HDF5 Attribute that is directly associated with the HDF5 Dataset. Wherever possible, these HDF5 Attributes employ names that conform to the Climate and Forecast (CF) conventions. Table 2-3 lists the CF names for the HDF5 Attributes that ECOSTRESS products typically employ.

CF Compliant Attribute Name	Description	Required?
units	Units of measure. Appendix A lists applicable units for various data elements in this product.	Yes
valid_max	The largest valid value for any element in the Dataset. The data type in valid_max matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding valid_max will also be float32.	No
valid_min	The smallest valid value for any element in the Dataset. The data type in valid_min matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding valid_min will also be float32.	No
_FillValue	Specification of the value that will appear in the Dataset when an element is missing or undefined. The data type of _FillValue matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding _FillValue will also be float32.	Yes for all numeric data types
long_name	A descriptive name that clearly describes the content of the associated Dataset.	Yes
scale_factor	Scale factor (always set to one)	No
add_offset	Additive offset (always set to zero)	No

Table 2-3: ECOSTRESS Specific Local Attributes

1.9 Data Definition Standards

The following sections of this document specify the characteristics and definitions of every data element stored in the ECOSTRESS data products. Table 2-4 defines each of the specific

characteristics that are listed in those sections. Some of these characteristics correspond with the ECOSTRESS HDF5 Attributes that are associated with each Dataset. Data element characteristics that correspond to ECOSTRESS HDF5 Attributes bear the same name. The remaining characteristics are descriptive data that help users better understand the data product content.

In some situations, a standard characteristic may not apply to a data element. In those cases, the field contains the character string 'n/a'. Hexadecimal representation sometimes indicates data content more clearly. Numbers represented in hexadecimal begin with the character string '0x'.

Characteristic	Definition
Туре	The data representation of the element within the storage medium. The
	storage class specification must conform to a valid ECOSTRESS type.
Units	Units of measure. Typical values include "deg", "degC", "Kelvin",
	"meters/second", "meters", "m**2", "seconds" and "counts".
	Appendix A includes references to important data measurement unit
	symbols.

 Table 2-4: Data Element Characteristic Definitions

1.9.1 Double Precision Time Variables

ECOSTRESS double precision time variables contain measurements relative to the J2000 epoch. Thus, these variables represent a real number of Standard International (SI) compatible seconds since 11:58:55.816 on January 1, 2000 UTC.

1.9.2 Array Representation

This document employs array notation to demonstrate and clarify the correspondence among data elements in different product data elements. The array notation adopted in this document is similar to the standards of the Fortran programming language. Indices are one based. Thus, the first index in each dimension is one. This convention is unlike C or C++, where the initial index in each dimension is zero. In multidimensional arrays, the leftmost subscript index changes most rapidly. Thus, in this document, array elements ARRAY(15,1,5) and ARRAY(16,1,5) are stored contiguously.

HDF5 is designed to read data seamlessly regardless of the computer language used to write an application. Thus, elements that are contiguous using the dimension notation in this document will appear in contiguous locations in arrays for reading applications in any language with an HDF5 interface.

This document differentiates among array indices based on relative contiguity of storage of elements referenced with consecutive numbers in that index position. A faster or fastest moving index implies that the elements with consecutive numbers in that index position are stored in relative proximity in memory. A slower or slowest moving index implies that the elements referenced with consecutive indices are stored more remotely in memory. For instance, given array element ARRAY(15,1,5) in Fortran, the first index is the fastest moving index and the third index is the slowest moving index. On the other hand, given array element array[4][0][14] in C, the first index is the slowest moving index and the third index is the fastest moving index.

ECOSTRESS PRODUCT FILES

The ECOSTRESS product file will contain at least 3 groups of data: A standard metadata group that specifies the same type of contents for all products, a product specific metadata group that specifies those metadata elements that are useful for defining attributes of the product data, and the group(s) containing the product data. (Note: A product metadata is not to be confused with a HDF5 object metadata.)

All product file names will have the form:

ECOSTRESS <PROD TYPE> <00000> <SSS> <YYYYMMDD>T<hhmmss> <BBbb> <VV>.<TYPE>

Where:

PROD_TYPE: Product type = LOA_FLEX, Raw instrument data packets (non-distributed) LOA_HK, Raw instrument engineering and housekeeping packets (non-distributed) L1A_PIX, Time-tagged, image frames formed from L0A_FLEX packets L1A_BB, Calibration black body pixels recorded from instrument with each image frame L1A_ENG, Orbital engineering data L1B RAD, Calibrated at-sensor radiance image frames L1B MAP RAD, L1B RAD product mapped projected to fixed 70 meter pixels L1B GEO, Geolocation parameters of image frames L1B_ATT, Refined spacecrafts orbital attitude and ephemeris parameters L2 LSTE, Land surface Temperature and Emissivity data L2 CLOUD, Level 2 Cloud mask data L3 ET PT-JPL, Evapotranspiration generated by JPL with PT-JPL L3 ET ALEXI, Evapotranspiration generated by JPL with ALEXI/DisALEXI L3_ET_ALEXI-USDA, Evapotranspiration generated by USDA with ALEXI/DisALEXI L4_ESI_PT-JPL, Evaporative Stress Index generated by JPL with PT-JPL L4 ESI ALEXI, Evaporative Stress Index generated by JPL with ALEXI/DisALEXI L4_ESI_ALEXI-USDA, Evaporative Stress Index generated by USDA with ALEXI/DisALEXI L4 WUE, Water Use Efficiency generated by JPL L3 L4 QA, Quality Assessment fields for all ancillary data used in L3 and L4 products generated by JPL OOOOO: Orbit number; starting at start of mission, ascending equatorial crossing SSS: Scene ID; starting at first scene of first orbit YYYYMMDD: Year, month, and day of data start hhmmss: Hour, minute, and second of data start BBbb: Build ID of software that generated product, Major+Minor (2+2 digits) VV: Product version number (2 digits) TYPE: File type extension= h5 for the data file

h5.met for the metadata file.

1.10 Standard Metadata

This is the minimal set of metadata that must be included with each L3_ET_PT-JPL product file. The standard metadata consists of the following:

Name	Туре	Size	Example	
Group	Standard	StandardMetadata		
AncillaryInputPointer	String	variable	Group name of ancillary file list	
AutomaticQualityFlag	String	variable	PASS/FAIL (of product data)	
BuildId	String	variable		
CollectionLabel	String	variable		
DataFormatType	String	variable	NCSAHDF5	
DayNightFlag (??)	Ŭ	variable		
EastBoundingCoordinate	LongFloat	8		
HDFVersionId	String	variable	1.8.16	
ImageLines	Int32	<mark>4</mark>	5632	
ImageLineSpacing	Float32	<mark>4</mark>	68.754	
ImagePixels	Int32	<mark>4</mark>	5400	
ImagePixelSpacing	Float32	<mark>4</mark>	65.536	
InputPointer	String	variable		
InstrumentShortName	String	variable	ECOSTRESS	
LocalGranuleID	String	variable		
LongName	String	variable	ECOSTRESS	
NorthBoundingCoordinate	LongFloat	8		
PGEName	String	variable	L3_ET_PT_JPL	
PGEVersion	String	variable		
PlatformLongName	String	variable	ISS	
PlatformShortName	String	variable	ISS	
PlatformType	String	variable	Spacecraft	
ProcessingLevelID	String	variable	2	
ProcessingLevelDescription	String	variable	Level 3 Evapotranspiration PT-JPL	
ProducerAgency	String	variable	JPL	
ProducerInstitution	String	variable	Caltech	
ProductionDateTime	String	variable		
ProductionLocation	String	variable		
CampaignShortName	String	variable	Primary	
RangeBeginningDate	String	variable		
RangeBeginningTime	String	variable		
RangeEndingDate	String	variable		
RangeEndingTime	String	variable		
SceneID	String	variable		
ShortName	String	variable	L3_ET_PT-JPL	
SISName	String	variable		
SISVersion	String	variable		
SouthBoundingCoordinate	LongFloat	8		
StartOrbitNumber	String	variable		
StopOrbitNumber	String	variable		
WestBoundingCoordinate	LongFloat	8		

Table 3-1: Standard Product Metadata

1.11 Product-Specific Metadata

Any additional metadata necessary for describing the L3 ET product will be recorded in this group.

Name	Туре	Size	Example
Group		T-JPL	Metadata
AncillaryFiles	Int	4	100
AncillaryFileSurfacePressure	String	255	
AncillaryFileSurfacePressureFill	String	255	
AncillaryFileAirTemperatureNWP	String	255	
AncillaryFileAirTemperatureRS	String	255	
AncillaryFileDewpointTemperatureNWP	String	255	
AncillaryFileDewpointRS	String	255	
AncillaryFileVaporPressure	String	255	
AncillaryFileWaterMask	String	255	
AncillaryFileSnowMask	String	255	
AncillaryFileIceMask	String	255	
AncillaryFileNDVI	String	255	
AncillaryFileAerosolOpticalDepth	String	255	
AncillaryFileCOT	String	255	
AncillaryFileCloudFraction	String	255	
AncillaryFileCloudHeight	String	255	
AncillaryFileCloudMask	String	255	
AncillaryFileLandcover	String	255	MOD10A1.A2012129.h01v08.005.20121310607 18.hdf
AncillaryFileBRDF_qc	String	255	
AncillaryFileWhiteSkyAlbedo	String	255	
AncillaryFileBlackSkyAlbedo	String	255	
AncillaryFileTemperatureProfile	String	255	
AncillaryFileAlbedo	String	255	
AncillaryFileEVI	String	255	
AncillaryFileFPAR	String	255	
AncillaryFileLAI	String	255	
AncillaryFileUWND	String	255	
AncillaryFileVWND	String	255	
AncillaryFileTmin	String	255	

Table 3-2: Product Specific Metadata

1.12 Product Data

The product data will be stored in this group.

Field Name	Туре	units	Field Data	valid min	valid max	fill
GROUP	EVAPOT	RANSPI	RATION PT-JPL			
ETinst	Float32	W/m ²	Instantaneous Evapotranspiration	0	2000	NaN
ETdaily	Float32	W/m ²	Daily Evapotranspiration	0	2000	NaN
ETcanopy	Float32	%	Canopy ET	0	100	NaN
ETsoil	Float32	%	Soil ET	0	100	NaN
ETinterception	Float32	%	ET Interceptions	0	100	NaN
ETinstUncertainty	Float32	W/m ²	ET Instantaneous Uncertainty	0	2000	NaN

units, valid_min, valid_max, and fill values are provided in HDF5 dataset attributes

1.13 Product Metadata File

The product metadata for each product file will be generated by the PCS from the metadata contents of each product file. The metadata will be converted into extensible markup language (XML). These will be used by the DAAC for cataloging. Exact contents and layout to be defined by PCS.

1.14 Quality Assessment Product

The QA product provides the quality flags as reported verbatim by all ancillary data products listed in Table 3-2, resampled onto the ECOSTRESS pixel coordinates (see Table 3-4). This is for the convenience of the end user, to aid in analyzing the ET science data product. Fields that contain temporal averages of ancillary data are excluded from this product. For the decoding of the quality flags we refer the user to the original documentation for the ancillary data products. The Standard Product Metadata for the L3_L4_QA product contains the same entries as Table 3-1.

Output Dataset	Source Product	Source Dataset	No- Data	Bit- width
GROUP	L3_L4_QA			
ECOSTRESS_L2_QC	ECOSTRESS L2	SDS/CloudMask	255	8-bit
Landsat_8_QC	Landsat 8	BQA	1	16-bit
MCD12Q1_QC	MCD12Q1	Land_Cover_Type_QC	255	8-bit

Table 3-4: L3_L4_QA Quality Assessment Product Fields

MCD43A3_QC	MCD43A3	BRDF_Albedo_Band_Mandatory_Qua lity_shortwave	255	8-bit
MOD04_QC	MOD04	Quality_Assurance_Land	255	8-bit
MOD06_5km_QC	MOD06	Quality_Assurance_5km	255	8-bit
MOD06_1km_QC	MOD06	Quality_Assurance_1km	255	8-bit
MOD07_QC	MOD07	Quality_Assurance	255	8-bit
MOD13Q1_QC	MOD13Q1	250m 16 days VI Quality	65535	16-bit
MOD17A2H_QC	MOD17A2H	Psn_QC_500m	255	8-bit
MOD44W_QC	MOD44W	water_mask_QA	253	8-bit

2.0 APPENDIX A: ABBREVIATIONS AND ACRONYMS

ALEXI	Atmospheric-Land Exchange Inversion
ARS	Agricultural Research Service
ASD	Algorithm Specifications Document
ATBD	Algorithm Theoretical Basis Document
CCB	Change Control Board
CDR	Critical Design Review
CF	Climate and Forecast (metadata convention)
СМ	Configuration Management
CONUS	Continental United States
COTS	Commercial Off The Shelf
DAAC	Distributed Active Archive Center
dB	DeciBel
DCN	Document Change Notice
deg	Degrees
deg/sec	Degrees per Second
DEM	Digital Elevation Model
DisALEXI	ALEXI Disaggregation algorithm
DN	Data Number
EASE	Equal Area Scalable Earth
ECI	Earth Centered Inertial coordinate system
ECR	Earth Centered Rotating coordinate system
ECS	EOSDIS Core System
ECOSTRESS	ECOsystem Spaceborne Thermal Radiometer on Space Station
EOS	Earth Observing System
EOSDIS	EOS Data and Information System
ESDIS	Earth Science Data and Information System
ESDT	Earth Science Data Type
ESI	Evaporative Stress Index
ET	Evapotranspiration

FOV	Field of View
FSW	Flight Software
GB	gigabytes, 109 bytes
GDS	Ground Data System
GHA	Greenwich Hour Angle
GHz	Gigahertz, 109 hertz
GMAO	Global Modeling and Assimilation Office
GMT	Greenwich Mean Time
GPP	Gross Primary Production
GSE	Ground Support Equipment
GSFC	Goddard Space Flight Center
HDF	Hierarchical Data Format
HK	Housekeeping (telemetry)
HRSL	Hydrology and Remote Sensing Laboratory
Hz	Hertz
HSD	Health and Status Data
I&T	Integration and Test
ICD	Interface Control Document
I/O	Input/Output
IOC	In-Orbit Checkout
IPA	Inter-Project Agreement
ITAR	International Traffic in Arms Regulation
JPL	Jet Propulsion Laboratory
K	Kelvin
KHz	Kilohertz
Km	kilometer, 1000 meters
L0 - L4	Level 0 through Level 4
LAN	Local Area Network
LEO	Low Earth Orbit
LOE	Level of Effort
LOM	Life of Mission
LP	Land Processes
LSTE	Land Surface Temperature and Emissivity
m	meter
MB	megabytes, 106 bytes
Mbps	Mega bits per second
MHz	Megahertz
MMR	Monthly Management Review
MOA	Memorandum of Agreement
MODIS	Moderate Resolution Imaging Spectroradiometer
MOS	Mission Operations System
m/s	meters per second
ms	milliseconds
MS	Mission System
NASA	National Aeronautics and Space Administration
NCEP	National Centers for Environmental Protection

NCSA	National Center for Supercomputing Applications
netCDF	Network Common Data Format
NISN	NASA Integrated Services Network
NOAA	National Oceanic and Atmospheric Administration
OA	Operations Agreement
ODL	
OODT	Object Description Language
	Object Oriented Data Technology
ORR ORT	Operational Readiness Review
-	Operational Readiness Test
PDR	Preliminary Design Review
percent	%, per hundred
PR	Problem Report
PSD	Product Specifications Document
PT-JPL	Priestly-Taylor-JPL
QA	Quality Assurance
rad	radians
RDD	Release Description Document
RFA	Request For Action
S/C	Spacecraft
SCP	Secure Copy
SDP	Software Development Plan
SDS	Science Data System
sec, s	seconds
SITP	System Integration and Test Plan
SMP	Software Management Plan
SOM	Software Operators Manual
TAI	International Atomic Clock
T _b	Brightness Temperature
TBD	To Be Determined
TBS	To Be Specified
TOA	Time of Arrival
TPS	Third Party Software
USDA	United State Department of Agriculture
USGS	United States Geological Society
UTC	Coordinated Universal Time
V&V	Verification and Validation
WUE	Water Use Efficiency
XML	Extensible Markup Language