Visible Infrared Imaging Radiometer Suite (VIIRS)
Land Surface Temperature and Emissivity Product
Collectionl Algorithm TheoreticalBasisDocument

GlynnHulley, Tanvirlslam,RobertFreepartnerNabinMalakar

Jet Propulsion Laboratory, California Institute of Technology

National Aeronauticsand
Space Administration

Jet Propulsion Laboratory
Californialnstitute of Technology
Pasadena, California

December2016




VNP21LAND SURFACETEMPERATUREAND EMISSIVITY ATBD

Thisresearclwascarriedout atthe JetPropulsionLaboratory Californialnstituteof Technologyundera

contract with the National Aeronautics and Space Administration.
Referencédereinto anyspecificcommerciaproduct,processor serviceby tradename trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement by the Uatiésd St

Government or the Jet Propulsion Laboratory, California Institute of Technology.

© 2016.Californialnstituteof Technology Governmensponsorshigcknowledged.



VNP21LAND SURFACETEMPERATUREAND EMISSIVITY ATBD

Change History Log

Revision Effective Date Preparedby Description of Changes

Dratft 09/01/2015 GlynnHulley First Draft basecbon MOD21
ATBD

Dratft 01/03/2016 Tanvirlslam, Updated Atmospheric

GlynnHulley CorrectionandWVS Method

Sections

Draft 12/06/2016 GlynnHulley Updatedwith MODIS/VIIRS
continuityandmostrecent
validation results

Contacts

Readerseekingadditionalinformation aboutthis study may contactthe following:

GlynnC.Hulley (PI)

MS183-509

JetPropulsioriLaboratory
4800 Oak Grove Dr.
PasadenaCA 91109
Email:glynn.hulley@jpl.nasa.gov
Office:(818)354-2979



mailto:glynn.hulley@jpl.nasa.gov

Contents

1o o [8{ox 1 (o] o TP PPPPPPPR 6.
1.1 Rationalefor tNEPTOAUCL..........uuiiiiiiiiiiiii ittt 6.
1.2 IntendedUSerCOMMUNILY.......uuiiiiieeeeeeeeeeee e e ieees e e e e e e e e e e e e eeeeeeeeeer s mmmeeeeeeeeeeeesennennnaas 8.
1.2.1 Useof LST&E in Climate/Ecosystenviodels.............cccuveiiiiiiiiieesiiiiiiiiienee. 8
1.2.2 Useof LST&E in CryospheridResearch.........ccccooeeiiiiiiiiiiceeiiiiiiei e, 10
1.2.3 Useof LST&E in AtmospheridRetrievalSchemes...........cccccceviiiiiiiaccnnen. 11
LI =72 [ T 11 o S 11
2.1 TechnicalBackgroundandHeritage...........cccoovvriiiiiiiiimeee e 11
2.2  Algorithm DESCIIPLON. ......cccee e eeiiiieieeeeeee e ean 13
2.2.1 AtMOSPNEriACOIMECHION. .....cceeeiiiiiii i eeee e e e e 13
2.2.2 WaterVaporScalingMethod............cccooiiiiiiiiiiiieeecci e 20
2.2.3 TESAIGOMINML ...ttt 25
VIIRS and MODIS LST&E CONINUILY ......ccooiiiiiiiiiiiiiitieees e 35
Validation and ProduUCt ACCUIACY .......ccciieeeeeeiiiiiiiiiiieeee e e e e e eeeeeeeeeeeaavammme e eeeeennnnnnas 41
R V= 1] B | (=P PP 42
N L= o 1= = 1 (=T e 5] (= OSSP 44
4.3 PseudanvariantSandDUNESITES. .........uuuuiiiiiiiieeeeiieericiineeeeeeeeeeeeeeeeeevsieeneeeeeennn 4D
4.3.1 EMISSIVItyValidation...........coooiiiiiiiiiiiemme e 45
4.3.2 Emissivitycomparisorwith ASTERGED..............ooooiiiiiiiieeeiiee a7
4.3.3 LST VaAlIOALON.....uuiiiiiiiiiiiiiiiieee ettt rmnne e 50
DaAta FOIMALS ... .o er e ne et e et e e e e e e e e e e e na s 24
o T A o 1 0T | U UPPR TR PUPPPTRRPPIN 4
I @ N /[ =T - - T 55

R (=] (] g[S T TP 58



Figures

Figure 1. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere (blue)
in the 3i 12 um region.Also shownis the solarirradiancecontribUtioNVW/ImZ/m2: s 14

Figure2. Radiancesimulationsof the surfaceemittedradiance surfaceemittedandreflectedradianceandat-sensor
radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz emissivity
spectrum, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show placements of

theVIIRS TIR bandsVi14 (~8.55um), M15 (=11 pm), andM216 (=12 M) ....c.cuveieeriiiiiiireeeeiieeeeeieeeee 15
Figure3. VIIRS spectraresponséunctionsfor bandsM14 (blue),M15 (red),andM16 (yellow) ..............ccuveeeee. 16
Figure 4. WVS facto s computed for a VIIRS scene on 13 January 2014. The image has been interpolated and

CT 0 0ToT0]1 =T o OO P PRSPPI 21
Figure5. TPW Vs Skin Temperaturglot showingthewide distributionof inputprofiles.............ccocccoiviiiieeennn. 24
Figure6. Global SeeBoratabasshowingstationlocationsfor dayandnightsondes............cccccccevviiiiieeciieeen. 24

Figure 7. Flow diagram showing all steps in the retrieval process in generating the VIIRS VNP21 LST&E produc
startingwith TIR atsensoradiancesndprogressinghroughatmosphericorrection clouddetectionand

LI SIS Y= 1o o] 111211 o FE TSP PP ROPTPP 27
Figure8. Flow diagramof the TES algorithmin its entirety,includingtheNEM, RATIO, andMMD modules.
Detailsareincludedin thetext, includinginformationabouttherefinemenodf’ O f.@........cccocvevreenee. 28

Figure 9. VIIRS calibration curve of minimuemissivity vs. MMD. The lab data (crosses) are computed 150n
spectraconsistingof abroadrangeof terrestrialmaterialgrocks, sandsoil, water,vegetationandice).32
Figure 10. Clockwise frortop left: VIIRS land surface emissivity for band M14 (8.55 pum); band M15 (10.76 um),
surfacetemperatur€K) andbandM15 emissivity(12 um); outputfrom the TESalgorithmover northeast
AFTICA ON L3 JANUAINR0TLA. ......eeiiiiiiiiiiiee ettt e e s s ee et e e e e e bbbt e e e s rmmee s e eb e e e e e e e nnenes 33
Figure 11.Differences between the VIIRS and MODIS LST products in K using the TES algorithm (top left) and
the splitwindow algorithm (top right). Corresponding VIIRS LST (bottom left) and MERRA
precipitable water vapor in cm (bottaight) are also shown. The granule overpass is on 11 August 2012
UTC 2040......cc ettt ettt ettt e ettt e e e e e ettt aeeet e e e e e e et bae e e e e e e stb e s aanseeeeeeanstbaeaeeessstbesannnreeaeeeannnrees 37
Figure 12. (Top) Histogram demonstrating the differences between VIIRS and MODIS LST products for all
observations over continental USA (CONUS) during Jan, Feb, Aug, and Sep 2048 thfferent
algorithms: TES and splivindow. The TES algorithm is currently used to produce the NASA LST&E
productsfor MODIS andVIIRS (MOD21 andVNP21),while the split-window algorithmis usedin theto
produce the heritage MOD11 product(s) and the NOAA VLST product. (Bottom) same as above except
only data for SUMMeEr tiMe (AUQ, SEPY .. cciiii e et e e e e e e e e e eeeee e e e e e e e e eeae it e eeenaeas 38
Figure 13. VIIRS minus MODIS LST RMSE for the sphtndow algorithms (top) and TES algorithm (bottom)
calculatedrom 4 monthsof MODIS andVIIRS S N O éver CONUSduringJan,Feb,Aug, andSep2012.
LST differences were grouped according to standard IGBP classification. Note large differences in the
split-window results especially for arid and seanid classes (shrublands, bare), while TESUlts are
consistent and less than 1 K across all COVEr tYPeS......uiiiiiiiiiiiiiieeee e 39
Figure 14. LST differences between MODIS and VIIRS vs total column water vapor and LST for thersfdil
algorithms (top), and TES algorithm (bottom). Differences in formulation, coefficient generation, and
emissivity assignment result in large differences between the current MODIS and VIIR&irsgditv
(IS I o] (0o 11Tt = PP PPPPPPPPPRPPRPRY 40
Figure15. Emissivityspectra comparisorms Junel5, 2000overthe SaltonSeabetweemASTER (3-band) ASTER
(5-band), and MODTES, using the TES algorithmnglavith lab spectra of water from the ASTER
spectral library. Results from the WVS method and the STD atmospheric correction are also shown. An
estimateof the PWV from theMODO7 atmospheriproductindicatesvery high humidity onthisday..... 43
Figure16.Scatterplobf VNP21retrievedLST vs JPLradiometelLST attheinlandwatervalidationsites........... A4
Figure 17. Laboratoryneasured emissivity spectra of sand samples collected at ten fiseaidant sand dune
validation sites in the southwestern United States. The sites cover a wide range of emissivities in the TIR
(= 1T ] o T PP OPPPPRPPI | o
Figure 18. The emissivity maps from the VNP21 retrieval (top left) and the ASTER GED (top right) at the VIIRS
band M14 (8.55 um). Corresponding emissivity difference map (bottom left) and the histogram of their
differences (bottom right) are also shown. The ASTER GED emissivity is adjusted to the VIIRS M14
band (~8.55 pum) for comparison. The granule overpass is on 19 June 2014 UTC.2050............ 49



Figure19. Emissivity spectracomparisorbetweerVNP21retrievedemissivityandthe ASTERGED v3 emissivities
thatwerespectrallyandspatiallyadjustedo matchVIIRS at4 pseudeinvariantsanddunesites............ 50

Figure20.An exampleof theR-based_ST validationmethodappliedto theVNP21(VTES) andNOAA VLST LST
productsover 3 pseudeinvariantsanddune sitegAlgodonesKelso,Little Sahaa) andtwo vegetatedites
(Redwood, Texas Grass) using all data during 2012. NCEP profiles antekdured emissivities from
samples collected at the sites were used for thaded calculadins...............ceevviiiiiiiiiiiiiiiiiiiienenn. B4



Tables

Table 1: Geophysical data available in the MERRFAeanalysis product. Columns under Mandatory specify if the
variabless needed fodeterminingatmosphericorrectionparametersDataareoutputin 6hranalysis for

42 pressurdevelsat 1/2 degreex 2/3 degreespatialresolution(longitude=576|atitude=361)............... 19
Table2. VIIRS bandmodelparameterfn @quation(B) ............c.couiuuririieiince ettt srmme e 24
Table 3. The core set of global validation sites according to IGBP class to be used for validation and calibration of
theVIIRS VNP21landsurfacetemperatur@andemissivityproduct............ccccevviviiierieeceeeiiiineeeeen 42
Table4. R-based_ST validationstatisticsfrom threepseudeinvariantsanddune siteandtwo vegetateditesusing
all VNP21andVLST LST retrievalsfrom 20122015 .. ......uuuiiiiiiiiiiieii et ee e e 52
Table5. The Scientific DataSets(SDSS)iN the VNP2LPIrOQUCT. .........vvviiiieiiiiiiee et 54

Table 6. Bit flags defined in the QC_Day and QC_Night SDS in the VNP21A2 product. (Note: Bit O is the least
SIGNIFICANT D) ot e e e rme et e e e e et e e e e e e ane e e 56



1 Introduction

This document outlines the theory and methodology for generating the Visible Infrared
ImagingRadiometeSuite(VIIRS) Level2 VNP21 1-km landsurfaceemperatur@andemissivity
(LST&E) product using the Temperature Emissivity Separation (TES) algorithm. The VNP21
product, will include the LST and emissivity for three VIIRS thermal infrared (TIR) bands M14
(8.55micron),M15 (10.76micron),andM16 (12 micron),andwill begeneratedor datafrom the
Suomi National Polaorbiting Partnership (SuoaNPP) and Joint Polar Satellite System (JPSS)
pl atfor ms. This is version 1.0 of the ATBD an

document with changes made whmtessary.

1.1 Rationalefor the Product

Land Surface Temperatuamd EmissivityLST&E) data are critical variables for studying
a wide variety of Earth surface processes and sudt@wesphere interactions such as
evapotranspirationandcoverdynamicsand in watervaporretrievalschemes. ST&E havebeen
identified as an important Earth System Data Record (ESDR) by NASA and many other
international organizations (NASA Strategic Roadmap Committee #9, 2005; EurSpaaa
Agency (ESA); Global Climate Observing System (GCOS), 2003; Climate Change Science
Program (CCSP), 2006; IPCC, 2007; and the EarthTemp net{Mekchant 2012

The land surface temperature and emissivity (LST&E) ameveld from the surface

radiance that is obtained by atmospherically correcting tiserstor radiance. LST&E data are
used for manyarth surface related studies such as surface ebhalgyce modelingZhou et al.
20030 and landcoverland-usechangedetection Frenchet al. 2008, while theyarealso critical
for accuratelyetrievingimportantclimatevariablessuchasair temperatur@andrelativehumidity
(Yao et al. 201L The LST is an important loAgrm climate indicator, and a key variable for
droughtmonitoringoverarid lands(Andersoretal. 20113 Rheeetal. 2010. TheLST is aninput
to ecological models that determine important variables used for water use management such as
evapotranspiration and soil moistudn@erson et al. 201)bMultispectral emissivity retrievals
are also important for Earth surface studies. For example, emissivity spectral signatures are
important for geologic studies and mineral mapping studiemK et al. 2005Vaughan et al.
2009. Thisis becaus@missivityfeaturesn the TIR regionareuniquefor manydifferenttypesof

materialsthatmake p t he Ear t hasgeartzwhichfisabiqeitpusirs noostdf thearid



regionsof theworld. Emissivitiesarealsousedfor landuseandland coverchangemappingsince
vegetatiorfractionscanoftenbeinferredif thebackgroundsoil is observabléFrenchetal. 2008).
Accurate knowledge of the surface emissivity is critical for accurately recovering the LST,
especially over land where emissivity variations can be large both spectrally and spatially.

Both LST&E determine the total amount of longwave radiation emfttad the Earth's
surface, and are therefore key variables in many energy balance models that estimate important
surface biophysical variables such as evapotranspiration andapkfgble soil moisture
(Andersoretal. 2007 Moran2003 thatareingestednto droughtmonitoringsystemsuchasthe
U.S.TheNationallntegratedDroughtinformationSystem(NIDIS). LST&E dataarealsoessential
for balancing the Earth's surface radiation btdfpg example an error of 0.1 in the emissivity
will result in climate models having errors of up to 7 Win their upward longwave radiation
estimates amuch larger term than trearface radiativéorcing due to an increase greenhouse
gases (~8 Wn1?) (Zhou et al. 2003b LST&E are also utilized in monitoringnd-cover / land
use changed=¢ench and Inamdar 201Brench et al. 2008 and in retrieving imprtant climate
variables such as air temperature and water vapor in atmospheric retrieval scheenesnh et
al. 2003 Yao et al. 2011

Since the equation for retrieving LST&E is underdetermined, multiple retrieval methods
havebeendevelopedhatareoptimizedfor aparticularsetof conditions.Thesimplestandefficient
of these retrieval methods is the splindow (SW) algorithm, whie is used to generate the
heritage MODIS LST&E products (MOD/MYD11) and the current VIIRS LST Environmental
Data Record (EDR). In the SW approach, emissivities are assigned according to a land
classification schemesiyder €al. 1998, and atmospheric effects are compensated farsbyg
thedifferentialabsorptiorfeaturefrom two longwavewindow bands(11-12 um). This approach
has been used with much success over oceans to compute sea surface temperatures, and works
well over densely vegetated areas and water where the assumption of single fixed emissivity is
valid (Coll et al. 2009p However, cold biases of8 K are often found over serarid and arid
regions because these regions haveminigher emissivityariability (Hulley and Hook 2009a
and onlyone fixed emissivityrom the ‘barren’ land class is assigned to these regions in the split
window approach. Recent validation of the VIIRS LST EDR produdh vgroundbased
measurementshowedgoodaccuracyovervegetatecindwatertargetsputlargecold biasef up

to 5K overaridtargetsPerformances furtherdegradedor highatmospherievatervaporcontent



conditions where differences up to 15 K have been observed with the MYD11 heritage LST
productsA furthershortcomingn thecurrentVIIRS LST algorithmis thattheoperationaproduct

does not produce a dynamically retrieved land surface emissivity girettoilar to the current
MODIS MOD11B1 and MOD21 products, and the additional information from the VIIRS M14
(8.5 um) thermal infrared band is not utilized in the LST retrieval scheme.

The second retrieval method is the phydiased Temperature EmisswiSeparation
(TES) algorithm, which uses an emissivitypdel based on the variability in the surface radiance
datato dynamicallyretrievebothLST andspectrakmissivity(Gillespieetal. 1998. Thisapproach
is usedto generatehe ASTER standargproductAST05,AST08),andalsotheMODIS MOD21
product (to be released with Collection 6). The TES algorithm has consistent accuracy over all
land cover types when combined with a Water Vapor Scaling (WVS) model and dymamical
retrieves the spectral emissivity (bands 29, 31, and 32 for MODISkiat resolution. We will
develop a VIIRS LST&E product based on the TES appreo&iiP21.

Severaktudiesoverthe pastdecadéhaveshownthatthe split-window and TES approaches
are complementary, with the spitindow approach being more stable over heavily vegetated
regions and the physidsased TES approach working better over sana and arid regions
(Gottsche and Hulle012 Hulley and Hook 2009aHulley et al. 201Q. By taking advantage of
this fact, we will also develop a unified VIIRS LST product using a combination of the well
established and complementary TES! aplitwindow algorithms (similar to MOD11/MOD21

approaches).

1.2 Intended User Community

LST&E arekeyvariablesfor explainingthebiophysicalprocessethatgovernthebalances
of water and energy at the land surface. LST&E data are used in many reseascim@uding
ecosystenmodelsclimatemodelscryospheriaesearchandatmosphericetrievalschemesOur
team has been carefully selected to include expertise in these areas. The descriptions below
summarize how LST&E data are typically used in tresas.

1.2.1 Useof LST&Ein Climate/Ecosysterlodels

Emissivity is a critical parameter in climate models that determine how much thermal
radiationis emittedbackto theatmospher@andspaceandthereforeis neededn surfaceradiation

budgetcalculationsandalsoto calculateimportantclimatevariablessuchasLST (e.g.,Jin and



Liang 2006 Zhou et al. 2003b Current climate models represent the land surface emissivity by
eithera constanvalueor very simpleparameterizationgdueto thelimited amountof suitabledata.

Land surface emissivity is prescribed to be unity in the Global Climate Models (GChs) of
Centerfor OceanLandAtmosphereStudies(COLA) (Kinter etal. 19898, the Chinesdnstituteof
Atmospherid®?hysicqIAP) (Zengetal. 1989, andtheUS NationalMeteorologicalCenterfNMC)
Medium-Range Forecast (MRF). In the recently developed NCAR Community Land Model
(CLM3) and its various earlier versiorBgnhan et al. 20020leson et al. 2004 theemissivityis

set as 0.97 for snow, lakes, and glaciers, 0.96 for soil and wetlands, and vegetation is assumed to
beblackbody.Forabroadbaneémissivityto correctlyreproducesurfaceenergybalancestatistics,

it needgo beweightedboth overthe spectral surfaceblackbodyradiationandoverthedownward
spectrakky radianceandusedeitherasasinglevalueor a separatealuefor eachof theseerms.

This weighting depends on the local surface temperatures and atmospheric composition and
temperature. Most simply, as the window region dominates the determination of the appropriate
single broadband emissivity, an average of emissivities overitftw region may suffice.

Climate models use emissivity to determine the net radiative heating of the canopy and
underlying soil and the upward (emitted and reflected) thermal radiation delivered to the
atmosphere. The oversimplified representations ofsgwity currently used in most models
introducesignificanterrorsin thesimulationsof climate.Unlike whathasbeenincludedin climate
models up to now, satellite observations indicate large spatial and temporal variations in land
surfaceemissivitywith surfacetype,vegetatioramount,andsoil moisture especiallyoverdeserts
and semideserts Qgawa 2004 Ogawa et al. 2003 This variability of emissivity can be
constructed by the appropriate combination of soil and vegetation components.

Sensitivitytestsindicatethatmodelscanhaveanerrorof 51 20 Wm 2 in their surfaceenergy
budgetfor aridandsemtaridregionsdueto theirinadequatéreatmentf emissivity(JinandLiang
2006 Zhou et al. 2003f a much larger term than the surface radiative forcing from greenhouse
gases. Me provision, through this proposal, of information on emissivity with global spatial
sampling will be used for optimal estimation of climate model parameters. A climate model, in
principle, constructs emissivigt each model grid square from four pieces of information: a) the
emissivityof theunderlyingsoil; b) theemissivityof thesurface®f vegetatior(leavesandstems);

c) thefraction ofthe surfacethat is covered byegetation; and dhedescription otheareas and

spatialdistribution of the surfacesof vegetationneededto determinewhat fraction of surface



emissiorwill penetratéhecanopy Previously we havenotbeenableto realisticallyaddresshese

factors because of lack of suitable data. The emisgiaitgsets developed ftitis project will be
analyzed with optimal estimation theory that uses the spatial and temporal variations of the
emissivitydataoversoil andvegetatiorto constrairmore realisticemissivityschemegor climate
models.In doingso,land surfaceemissivitycanbelinkedto otherclimatemodelparametersuch

as fractional vegetation cover, leaf area index, snow cover, soil moisture, and soil albedo, as
explored in Zhou et al20033. The use of more realistic emissivity values will greatly improve
climate simulations ovesparsely vegetated regions as previously demonstrated by various
sensitivity tests (e.gJin and Liang 2006Zhou et al. 2003b). In particular, both daily mean and

day-to-nighttemperatureangesaresubstantiallympactedoy themo d ereabngenbf emissivity.
1.2.2 Useof LST&Ein CryospheridResearch

Surfacetemperatureés a sensitiveenergybalanceparametethatcontrolsmeltandenergy
exchange between the surface and the atmosphere. Surface temperature is also used to monitor
meltzoneson glaciersandcanberelatedto theglacierfaciesof (Bensonl996, andthusto glacier
or ice sheet mass balae Hall et al. 200%. Analysis ofthe surfacetemperaturef the Greenland
Ice Sheet andheice capson Greenlandgrovides anethod tostudytrends insurfacetemperature
asasurrogatdor, andenhancemerdf, air-temperatureecordspveraperiodof decadegComiso
2006. Mapsof LST of theGreenlandce SheehavebeendevelopedisingtheMODIS 1-km LST
standardproduct,andtrendsin mean LSThavebeenmeasuredHall et al. 2008. Much attention
has been paid recently to the warming of the Arctic in the context of global warming. Comiso
(2006 shows that the Arctic region, as a whole, has been warming at a rate of 0.7Z#8et0
decade from 1982005 inside the Arctic Circle, though the warming pattern is not uniform.
Furthermore, various researchers have shown a steady decline in the extent of the Northern
Hemisphereeaice, boththetotal extentandtheextentof theperenniabr multiyearice (Parkinson
et al. 1999. Increased melt of the margins of the Greenland Ice Sheet has also been reported
(Abdalati and Steffen 2001

Climate models predict enhanced Arctic warming but they differ in their calculations of
the magnitude of that warming. The only way to get a comprehensive measurement of surface
temperature conditions over the Polar Regions is through satellite remsiggséfet errors in

the mostsurfacetemperature algorithnmsavenot beenwell-established Limitations includethe



assumed emissivity, effect oioud coverand calibration consistenof thelongertermsatellite
record.

Comparisons of LST products over snow and ice features reveal LST differences in
homogeneouareasof the Greenlandce Sheebf >2 C undersomecircumstancesBecausehere
are many areas that are within a few degrees ©f Such as the iegheet marginn southern
Greenland, it is of critical importance to be able to measure surface temperature from satellites
accurately. Ice for which the mean annual temperature is near the freezing point is highly

vulnerable to rapid melt.
1.2.3 Useof LST&Ein AtmospheridRetrievalSchemes

The atmospheric constituent retrieval community and numerical weather prediction
operational centers are expected to benefit from the development of a unified land surface
emissivity product. The retrieval of vertical profiles of air temgiure and water vapor mixing
ratio in the atmospheric boundary layer over land is sensitive to the assumptions used about the
infrared emission and reflection from the surface. Even the retrieval of clouds and aerosols over
landusinginfraredchannelss complicatedoy uncertaintiesn thespectraldependencef theland
surface emission. Moreover, weather models impthee estimates of atmospheric temperature
andcompositiorby comparisondetweerobservedaindmodelcalculatedspectraradiancesiising
anappropriatelataassimilation(1D-Var) framework.Themodelgenerateforwardcalculationof
radiances by use of their current best estimate of temperature profiles, atmospheric composition,
and surface temperature and emissivity. lbdjgrior estimates of infrared emissivity can be
providedalongwith their errorcharacterizationyyhatwould otherwisebe a majorsourceof error

and bias in the use of the satellite radiances in data assimilation can be minimized.

2 The Algorithm

2.1 Technical Background and Heritage

TheVNP21lalgorithmderivesits heritagefrom the ASTERTESalgorithm(Gillespieetal.
1998 and the MODIS MOD21 algorithmHglley et al. 2012 ASTER is a fivechannel
multispectralTIR scannethatwaslaunchebnN A S ATersaspacecrafin Decembed 999with
a 90m spatial resolution and revisit time of 16 days. The VNP21 LST&E products will be
producedylobally overall land covertypes,excludingopenoceandor all cloud-free pixels. |t is



anticipated that the Lev@ products will be merged to produce weekly, monthly, and seasonal
products, with the monthly product most likely producing global coverage, depending on cloud
coverageThegeneratiorof thehigherlevel mergedoroductswill beconsidered projectactivity.
TheVNP21Level 2 productswill beinitially inter-comparedvith thestandard/LST productsto
identify regions and conditions for divergence between the products, and validation will be
accomplished using combination ofemperaturébased (Thased) andadiancebased (Rbased)
methods over dedicated field sites.

Maximum radiometric emission fothe typical range of Earth surface temperatures,
excluding fires and volcanoes, is found in tw
infrared (3.55 um) and the thermal infraredi(83 um). The radiation emitted in these windows
for agivenwavdengthis afunctionof bothtemperaturandemissivity.Determiningthe separate
contribution from each component in a radiometric measurement is@wsdt problem since
therewill alwaysbemoreunknown® N emissivitiesanda singletemperaturé thanthe number
of measurements, N, available. For VIIRS, we will be solving for one temperature and three
emissivitiegVIIRS TIR bandavi14,M15, andM16). To solvetheill -posedoroblem,anadditional
constrainis neededindependentf the data.Therehavebeennumerougheoriesandapproaches
over the past two decades to solve for this extra degree of freedom. For example, the ASTER
Temperature Emissivity Working Group (TEWG) analyzed ten different algorithms for solving
theproblem(Gillespieetal. 1999. Most of thesereliedon aradiativetransfemodelto correctat-
sensor radiance to surface radiance and an emissivity model to separate temperature and
emissivity.Otherapproachescludethe SW algorithmwhich extendsthe seasurfacetemperature
(SST)SW approacho landsurfacesassuminghatlandemissivitiesin thewindow region(10.5
12 um) are stable and well known. However, this assumption leads to unreasonably large errors
over barren regions where emissivities have large variations both spatially and spectrally. The
ASTERTEWGfinally decidedonahybridalgorithm termedheTESalgarithm, which capitalizes
on the strengths of previous algorithms with additional feat@#ékegpie et al. 1998

TES is applied to the lad@aving TIR radiances that are estimated by atmospherically
correcting the asenso radiance on a pixddy-pixel basis using a radiative transfer model. TES
uses an empirical relationship to predict the minimum emissivity that would be observed from a
given spectral contrast, or minimumaximum difference (MMD) Kealy and Hook 1993
Matsunagd 994. The empirical relationshiis referredto asthe calibrationcurveandis derived



from asubsebf spectran the ASTERspectralibrary (Baldridgeetal. 2009. A VIIRS calibration

curve, applicable to VIIRS TIR bands M14, M15, and M16 is computed. Numerical simulations
have shown that TES is able to recover temperatures within 1.5 K and emissivities witbin 0.01
for a wide range of surfaces and is a vesltablished physical algorithm that produces seamless
images with no artificial discontinuities such as might be seen in a land classification type
algorithm Gillespie et al. 1998

2.2 Algorithm Description
2.2.1 Atmospheric Correction

2.2.1.1 Thermal Infrared Radiance

Theatsensomeasuredadiancen the TIR spectrakregion(7i 14 um) is a combinationof
three primary terms: the Eartmitted radiance, reflected downwelling sky irradiance, and
atmospheripathradianceThe Earth-emittedradianceas afunctionof temperatur@ndemissivity
and gets attenuated by the atmosphere on its path to thetesalidie atmosphere also emits
radiation, some of which reaches the sensordirecdy ipat h radi ance, 0 whil
to the surface (irradiance) and reflected back to the sensor, commonly known as the reflected
downwelling sky irradiance. Reflesd solar radiation in the TIR region is negligible (Figure 1)
anda muchsmallercomponenthanthe surfaceemittedradiance Oneeffectof theskyirradiance
is thereductionof the spectralcontrastof theemittedradiancedueto K i r ¢ h lawe. Asutning
the spectral variation in emissivity is smal/|
to express the hemispherigahitectional reflectance as directional emissivity € 1 7_), the
clearsky atsensoradiancecanbewritten asthreeterms:the Earthemittedradiancedescribedy
Pl anckds function and 1fe thareflected downwellihgeirradiamde;s s i v i
and the path radiance.

O (=00 M+ (1 TIVN(F+ (5 (1)
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Figure 1. Simulated atmospheric transmittance foStad@ard Atmosphere (read tropical atmosphere
(blue) in the@&.2 um region. Also shown is the solar irradiance contributiGfut/m
Where:
0_(— = atsensoradiance;
= wavelength;

— = observatiorangle;

T_ = surfaceemissivity;
Y = surfacetemperature;
0° = downwellingsky irradiance;

t_( = atmospheri¢cransmittance;
0"(— = atmospheripathradiance
0_("Y) = Planckfunction,describecoyP | a nlanwk 6 s

" (Q 1
-7 i( exp(iI?—,)Y P @
= 2“"@3=3.7410 16 W (1% radiation constant)
h =6.63010 ¥*WX( Pl anckds constant)
c2  =hd/k=1.44< 104 umX (2" radiationconstant)
k =13% 10 cW3K!( Bol t zmannds constant)

c =2.90 &mn@! (speed ofight)



Figure2 showstherelativecontributionsrom the surfaceemissiornterm,surfaceradiance,
and atsensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and surface
temperature set to 300 K. Vertical bars show the center placement of the three VIIRS TIR bands
M14 (~8.55 um), M15 (~11 um), and M16 (~12 um). The re¢#tdcdownwelling term adds a
small contribution in the window regions but will become more significant for more humid
atmospheres. The-aensor radiance shows large departures from the surface radiance in regions

where atmospheric absorption from gases© acCQ, H20, and Q are high.
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Figure 2. Radiance simulations of the swdauéed radiance, surfaeenitted and reflected radiance, and

atsensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz
emissivity spectmm, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show
placements of the VIIRS TIR bands M14 (~8.55 pum), M15 (~11 pym), and M16 (~12 pm).

Equation(1) givestheat-sensoradiancdor asinglewavelength,, while themeasurement
from a sensor is typicalljneasured ovea rangeof wavelengths, or band. Tlasensor radiance

for a discreteband,Qis obtainedby weightingand normalizingthe at-sensorspectralradiance



calculatedby equation(1) with the sers o rsgestralresponsefunction for eachband,”Yi, as
follows:

sy - YL D0 (O
P =T ©

Usingequationg1) and(2), thesurfaceradiancdor band’Qcanbewrittenasacombination
of two terms: Earttemitted radiance, and reflected downward irradiance from the sky and
surroundings:
06y O
—y

The atmosphericparameters)’ , t_(—, 0" (=, are estimatedwith a radiative transfer

b= T HLN (o 10 @

model such as RTTOV discussed in the next section, using input atmospheric fields of air
temperature, relative humidity, and geopotential height. Figure 3 shows VIIRS spectral response

functions for lands M14, M15 and M16 plotted for a Matitude summer atmosphere.
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Figure3.VIIRSpectraresponsdunctionsfor bandsM14(blue) M15red) andM16(yellow).

2.2.1.2 Emissivity

Theemissivityof an isothermal, homogeneous emittedefined as the ratio die actual
emittedradianceo theradianceemittedfrom a blackbodyat the samethermodynamit¢emperature
(Norman and Becker 1995 = 'Y /0_. The emissivity is an intri

surfaceand is an independentmeasurementf the surfacetemperaturewhich varies with



irradianceandlocal atmosphericonditions.The emissivityof mostnatural Eartrsurfaces fothe

TIR wavelengtirangeshetween 8 and 2  andj for asensor witrspatial scales100 m,varies

from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and
semtarid areas duéo thestrongquartz absorption featufeeststrahlen band)etween the -8and

9.5¢ nrange whereagheemissivityof vegetationwater,andice coveraregenerallygreateithan
0.95and spectrallylat in the § 12-¢ nrange.

2.2.1.3 Radiative Transfer Model

The current choice of radiative transfer model for atmospherically correcting VIIRS TIR
data is the Radiative Transfer for TOVS (RTTOVhe RTTOVis a very fast radiative transfer
model for naduiviewing passive visible, infrared and microwave satellite radiometers,
spectrometers and interferometeganders et al. 199RTTOV is a FORTRAMNIO code for
simulatingsatllite radiancesgesignedo beincorporatedvithin usersapplications.RTTOV was
originally developecat ECMWEFin the early90'sfor TOVS (EyreandWoolf 1988. Subsequently
the original code has gone through several agreénts Matricardi et al. 2001Saunders et al.
1999, morerecentlywithin the EUMETSAT NWP SatelliteApplicationFacility (SAF), of which
RTTOV v11 is the latest versiolit is actively developed by ECMWF and UKMET.

A number of satellite sensors are supported from various platfohttgs:(/nwp

saf.eumetsat.int/site/software/rttov/documentation/platfesupported.  RTTOV has been

sufficiently tested and validated and is conveniently fast for full scale retrieMaisicardi

2009. Given an atmospheric profile of temperature, water vapor and optiotiadly toace gases

(for example ozonandcarbondioxide)togethemwith satelliteandsolarzenithanglesandsurface
temperature, pressure and optionally surface emissivity and reflectance, RTTOV will compute
the top of atmospheradiancesn eachof the channelsof the sensobeingsimulated.Userscan
alsospecify the selected channels to be simulated.

Mathematically, in vector notation, given a state vector, x, which describes the
atmospheric/surface state as a profile and surface variableadia@ce vector, y, for all the
channels required to be simulated is given®gunders et al. 1999

y =H(x) (5)
whereH is the radiative transfer model, i.e. RTTOV (also referred to as the observation

operator in data assimilation parlance). This is known as the ‘direct’ or ‘forward" model.


https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/
https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/

In RTTOV, the transmittances of the atmospheric gases are expressednasica fof
profile dependent predictors. This parameterization of the transmittances makes the model
computationally efficient.The RTTOV fast transmittance scheme uses regression coefficients
derived from accurate Line by Line computations to expressofitieal depths as a linear
combination of profile dependent predictors that are functions of temperature, absorber amount,
pressure and viewing angl®étricardi and Saunders 1999The regression coefficients are
computed usg a training set of diverse atmospheric profiles chosen to represent the range of
variations in temperature and absorber amount found in the atmos@@tereallier 2000
Matricardi 2008,2009 Matricardi and Saunders 1999 he selection of the predictors is made

according to the coefficients file supplied to the program.
2.2.1.4 Atmospheric Profiles

The general methodology for atmospherically correcting VIIRS TIR data is based on the
methods that were developed for the ASTHRluconi et al. 1999and MODIS approaches
(Hulley et al. 201}

Currently two options for atmospheric profile sources are available: 1) interpolation of data
assimilated from NWP models, and 2) retrieved atmospheric geophysical profiles from-remote
sensing data. The NWP models use current weather conditions, abfemwevarious sources
(e.g.,radiosondessurfaceobservationsandweathersatellites)asinput to dynamicmathematical
models of the atmosphere to predict the weather. Data are typically outpbour Bicrements,

e.g., 00, 06, 12, and 18 UTC. Exanwlaclude the Global Data Assimilation System (GDAS)
product provided by the National Centers for Environmental Prediction (NG&R)ay et al.

1990, the Modern Era Retrospectramalysis forResearch and Applications (MERRA) product
provided by the Goddard Earth Observing System Data Assimilation System Version 5.2.0
(GEOS5.2.0) Bosilovich et al. 2008 and the European Center for Medi®ange Weather
Forecastig (ECMWF), whichis supportedby morethan32 EuropearstatesRemotesensinglata,

on the other hand, are available reade, typically twicedaily and for cleasky conditions. The
principlesof inversetheoryareusedto estimateageophysicastate(e.g.,atmospheritemperature)

by measuringhespectrakmissiorandabsorptiorof someknownchemicalkspeciesuchascarbon
dioxide in the thermal infrared region of the electromagnetic spectrum (i.e. the observation).

Examplesof current remote sensingdata include the Atmosphericinfrared Sounder(AIRS)



(Susskincetal. 2003 andModerateResolutionmagingSpectroradiometéMODIS) (Justiceand
Townshend 2002 both on NASA's Aqua satellite launched in 2002.

TheVIIRS TESalgorithmusesthe MERRA-2 reanalysisiatafor atmosphericorrection.
The MERRA profiles are first interpolated in time to the VIIRS observation using the [00 06 12
18] UTC analysis observation hours before ingesting into the RTTOV.

Table 1: Geophysical data available in the MERE&aRalysis product. ColumnslanMandatory specify if
thevariabless neededor determiningatmosphericorrectiorparameterdataareoutputin 6hranalysisor
42 pressure levels at 1/2 degree x 2/3 degree spatial resolution (longitude=576, latitude=361).

MERRA Analysis Data (inst6_3d_ana_Np)

Geophy, ical fields Required? Available? Remarks

time Time Yes Yes

lat Latitude Yes Yes
m Longitude Yes Yes
nLevel Yes Yes
_ Pressure Yes Yes
Temperature Yes Yes
_ Specific Humidty Yes Yes
Surface Pressure Yes Yes

skt Skin Temperature Yes No T value at the first valid level above

surface is used.

—

S

2 Temperature at 2 m Yes No T value at the first valid level above
surface is used
o} Specific Humidty at2  Yes No Q value at the first valid level above

surface is used

sm Land Sea Mask Yes No Auxiliary database
Elevation Yes No Auxiliary database

The RTTOV output data are then gridded to the VIIRS swath resolution using a bicubic
interpolation approach. It should be noted that the data interpolation could potentially introduce
errors, especially in humid regions where atmospheric water vapor paorvamaller spatial
scales than 1°. The propagation of these atmospheric correction errors would result-in band
dependensurfaceradianceerrorsin bothspectrashapeandmagnitudewhichin turncouldresult
in errors of retrieved Level products sth as surface emissivity and temperature. As a result, a

Water Vapor Scaling (WVS) model is further employedto improve the accuracyof the



atmosphericorrection duringatmosphericonditions with high watevaporloadings. The WVS

approach is discussed in the following section.
2.2.2 Water Vapor Scaling Method

The accuracy of the TES algorithm is limited by uncertainties in the atmospheric
correction, which result in a larger apparent emissivity contrast. This intiesikness of the
TESalgorithmhasbeensystemicallyanalyzedoy severakbuthorgColl etal. 2007 Gillespieetal.

1998 Gustafsoretal. 2006 Hulley andHook 2009k Li etal. 1999, andits effectis greatesbver
graybody surfaces that have a true spectral contrast that approachel order to minimize
atmospheric correction errors, a Water Vapor Scaling (WVS) method has been introduced to
improve the accuracy of the water vapor atmospheric profiles on ablyavahd basis for each
observation using an Extended Mu@hannel/Watr Vapor Dependent (EMC/WVD) algorithm
(Tonooka2005, whichis anextensiorof theWaterVaporDependenfWVD) algorithm(Francois
andOttle 1996. TheEMC/WVD equatiormodelstheat-surfacebrightnessemperaturegiventhe
at-sensor brightness temperature, along with an estimate of the total water vapor amount:

&

@1

= Nt Mg + 1a?

where:

Q Bandnumber

3 Numberof bands

W Estimateof total precipitablewatervapor(cm)
N, N, i Regressiomroefficientsfor eachband

Yo Brightnesgemperaturdor bandk (K)

“Yao Brightnesssurfacetemperaturdéor band, Q

The coefficients of the EMC/WVD equation are determined using a ghasad
simulation model.

The scaling factor,, used for improving a water profile, is based on the assumption that
the transmissivity,fo, can be expressed by the Pierluissi doudtponential band model
formulation. The scaling factor is computed for each gray pixel on a scene ¥gicgmputed

from equation (4) anftacomputed using two differeptvalues that are selectadoriori:
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| Bandmodelparameter
[1,l 2 Two appropriatelychoseri values

to—T 1,2 Transmittancealculatedvith watervaporprofile scaledby|

04(—T 1.2) Pathradiancecalculatedwith watervaporprofile scaledoyr

Typical valuedor[ aref 1 = 1 and’ 2 = 0.7. Tonooka2009 foundthat the calculated

by equation(7) will notonly reducebiasesn thewatervaporprofile, butwill alsosimultaneously

reduce errors in the air temperature profiles and/or elevation. Figure 4 sinoxample of [a

image.
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2.2.2.1 Scaling Atmospheric Parameters

OncetheRTTOV runhascompletedandthel imagehasbeencalculatedtheatmospheric

parameters transmittant¢eand path radianag are modified as follows:

F(f) = Tt JTREROr (—f YT ®
1 e
() = 0 ) o) ©
0 T )

Oncethe transmittancand path radiandeavebeen adjusted usirthe scalingactor, the surface
radiance can be computed using equation (1).

2.2.2.2 Calculating the EMC/WVD Coefficients

TheEMC/WVD coefficients( p, g, I ) in Eq.(6) aredeterminedisingaglobalsimulation
modelwith input atmospheriparameterérom SeeBoV5.0 databas@rovidedby the University
of WisconsinMadison Hook et al. 2018 The SeeBor data consists of 15704 global profiles of
uniformly distributed global atmospheric soundings temperature, moisture, and ozone at 101
presure levels for clear sky conditions, acquired both day and night in order to capture-the full
scale natural atmospheric variability. These profiles are taken from N&AAn ECMWF 60L
trainingset, TIGR-3, 0zonesondesom 8 NOAA ClimateMonitoringandDiagnosticd_aboratory
(CMDL) sites, and radiosondes from 2004 in the Satlesart. Th&Seebodata arecurated with
the following quality criteria: for clear sky conditions, the relative humidity (RH) value of the
profiles must be less than 99 % atk level below the 250 hPa presdeneel. It also is required
thatthe originaltop of soundingpressuréoe no greaterthan 30hPafor temperatur@ndmoisture
profiles and 10 hPa for ozone, and for each profile in the data set a physically based
characterization of the surface skin temperature and surface emissivity are asagyribd.
radiosondesnaydrift towardswaterbody, we furtherfilter the datacontainng atleast50%of the
recordson theland. This resulted into theamplesizeto 9136 dataoints. When classified based
upon the local sunise and swset times the day and night profiles are nearly equilyibuted
in countsat4990and4142respectivelyFigure5 showsthedistributionof thesurfaceemperature
with the total precipitalel water (tpw) in cm for the profiles used in the simulation.

Figure6 showsthe globaldistributionof the profile locationswhich havebeenindicated

astheday/nightprofilesbaseduponthesunrise/sunsettime atthetime of the profile recordings.



In order to perform the simulations, we consider the emissivity spectra from the ASTER
spectral library consisting of 102 samples that includes a variety of materials such as water,
snow/ice vegetationrocks,soils,andsandsTheemissivity of thesamplesovera broadrangeof
emissivitieswith evendistributionrangingfrom ~0.6to 1. Theselectedspectrarethenconvolved
totheVI | RS6s s p efanctiora(8 bamde MPApoMiLS, and M1B)order to perform the
simulation. Atotal of 931,872 simulations (9136 profiles x 102 samples) are simulated with the

RTTOV radiativetransfer modelor thesetof 11 Gaussiarview anglegbetweerD-70 ), andfor

the three VIIRS TIR bands.Using the simulatedat-sensor T, , and atsurfaceTg calculated

brightness temperatures, and an estimate of the total precipitable water vapor, the best fit
coefficients in Eg. (3) are found by using a linear least squares method, and dependent on four
independenvariables:day/nightcase view angle minimumbandemissivity in intervalsof 0.05,

and precipitable water vapor. Simulatistow that for all of these cases the RMSE error for the
simulation was less than 1 K. Finally, a falimensional lookup table (LUT) is produced
consistingof theregressiorcoefficientsfor thethreeTIR bandsandthefour independentariables.

The EMC/WVD LUT is then used on a pixey-pixel basis for calculating th& (and2), given
estimates of the view angle, emissivity, and PWV. Note that the EMC/WVD coefficients are
mappedo all VIIRS pixelsin agranule through bcubicinterpolation of theoefficientsderived

from thefour factors:day/nightcaseyiew angle minimumbandemissivity, andprecipitablevater

vapor. ASTER GED v3 emissivities are first spectrally adjusted to VIIRS TIR bands and
interpolated onto the VIIRS granule, and then the minimum band emissivity is calculated at each
VIIRS pixel in order to assign the correct coefficients-cBbic irterpolation assures smooth
transitions in the EMC/WVD coefficients across the pixels. Table 2 shows the band model

parameter coefficients used in equation (7) to calculate the water vapor scaling factor.



Total Precipitable Water [cm]

0 o
200 250 300 350
Skin Temperature [K]
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Table2.VIIRS®»andmodelparameterin equation(6).

Band Parameter

M14 1.4522
M15 1.8103
M16 1.8056




2.2.3 TES Algorithm

TES combines the NEM, the ratio, and the MMD algorithm to retrieve temperature and a
full emissivity spectrum. The NEM algorithm is used to estimate temperature and iteratively
remove the sky irradiance, from which an emissivity spectrum is calculatethemndatioed to
theirmean valuen theratio algorithm. At thigoint, onlythe shapeof the emissivityspectrum is
preserved, but not the amplitude. In order to compute an accurate temperature, the correct
amplitudeis thenfoundby relatingthe minimumemissivityto the spectrakontrasfyMMD). Once
the correct emissivities are found, a final temperature can be calculated with the maximum
emissivityvalue.Additional improvementgvolve arefinemendf « o win theNEM moduleand
refining the correction for sky irradiance using theodMMD final emissivity and temperature
values. Finally, a quality assurance (QA) data image is produced that partly depends on outputs
from TES such as convergence, finak satmospheri@iumidity, and proximityto clouds. More
detailed discussion of QA is included later in this document.

Numerical modeling studies performed by the ASTER TEWG showed that TES can
recovertemperature$o within 1.5K andemissivitiesto within 0.0150vermog scenesassuming

well-calibrated, accurate radiometric measuremeaiite€pie et al. 1998

2.2.3.1 TES Data Inputs
Inputs to theTES algorithm ar¢he surfaceadiancei - given byequation (4) (asensor

radiance corrected for transmittance and path radiance), and downwelliingdiance termi,‘f’=
, Which is computedrom the atmosphericorrectionalgorithmusinga radiativetransfermodel
suchasRTTOV. Boththesurfaceradianceandsky irradiancewill beoutputasaseparatg@roduct.
The surface radiance iIs primarily wused as a

surfacecomposition Beforethe surfaceradiances estimatedusingequation(4), the accuracyof
the atmospheriparameters)’, T_(—, 0" (=, is improveduponusinga WVS method(Tonooka

2005 onabandby-bandbasisfor eachobservatiorusinganextendednulti-channel/watevapor
dependent (EMC/WVD) algorithm.

2.2.3.2 TES Limitations

As with any retrieval algorithm, limitations exist that depend on measurement accuracy,
modelerrors,andincompletecharacterizationf atmospherieffects.Currently,thelargestsaurce
of uncertaintyfor ASTER datais the residual effect of incompleteatmosphericcorrection.



Measurement accuracy and precision contribute to a lesser degree. This problem is compounded
for graybodies, which have low spectral contrast andtla@esfore more prone to errors in
A a p p aMMDnwhiohis overestimatedueto residuakensonoiseandincompleteatmospheric
correction. A threshold classifier was introduced by the TEWG to partly solve this problem over
graybody surfacednsteadof usingthe calibrationcurveto estimate 4« ‘ofrom MMD, avalueof
-a oz 0.983 was automatically assigned witba spectral contrast or MMD in emissivity was
smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this caused artificial
step discontinuities in emissivity between vegetated and arid areas.

At the request of users, two parameteargies were made to the ASTER TES algorithm
on 1 August 2007, first described in Gustafson et28l0Q. Firstly, the threshold classifier was
removed as it caused contours and artificial boundaries in the images, whicltaigdraot
tolerate in their analyses. The consequence of removing the threshold classifier was a smoother
appearanctor all images buttthe costof TES underestimatinghe emissivityof graybodyscenes,
suchas wateby up to 3% andvegetatiorby up to 2% (Hulley etal. 2008. Thesecondparameter
changeemovedheiterativecorrectionfor reflecteddownwellingradiation which alsofrequently
failed due to inaccurate atmospheric correctidBsstafson et al. 2006Using only the first

iteration resulted in improved spectral shape and performance of TES.

2.2.3.3 TES Processing Flow

Figure 7 shows the pressing flow diagram for the generation of the cloud masks; land
leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 8 shows
amoredetailedprocessingdlow of the TESalgorithmitself. Eachof the stepswill bepresentedn
sufficient detail in the following section, allowing users to regenerate the code. TES uses input
image data of surface radianée;e and sky irradiance)” , to solve the TIR radiative transfer
equation. The output images will consists of three emissiviigesT(-¢p correspondingo VIIRS

bands M14, M15, M16, and one surface temperature image (T).
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Details are included in the text, including information about the refinément of



2.2.3.4 NEM Module

TheNEM buildsuponthe modelemissivityalgorithm(Lyon 1965 by allowing theinitial
T & o wvalueto beconsistentor all wavelengthsTherole of NEM is to computethe surfacekinetic
temperature], anda correctshapeor the emissivityspectrumAn initial valueof 0.99is setfor
T & @ wwhich is typical for most vegetated surfaces, snow, and water. For geologic materials such
asrocksandsandf « o wvaluesaresetlower thanthis, typically 0.96,andthis valueremaingfixed.
For all other surface types, a modification to the original NEM allows for optimizatipa @
usinganempiricallybasedprocessFor the majority of materialsn the ASTER spectralibrary, a
typicalrangeforT & & ws 0.94<T & & w< 1.0. Thereforefor amaterialat 300K, themaximumerrors
that NEM temperatures should have are ~£1.5 K, assuming the reflected sky irradiance has been

estimated correctly.

2.2.3.5 Subtracting Downwelling Sky Irradiance

Generallytheeffectsof skyirradiancearesmallwith typical correctionsof <1 K (Gillespie
et al. 1998 However, the contribution becomes larger for pixels with low emissivity (high
reflectance) or in humid conditions when the sky is warmer than the surface. Over graybody
surfacegwaterandvegetation)the effectsaresmallbecaus®f their low reflectivity in all bands.
The first step of the NEM module is to estimate greandtted radiance, which is found by
subtracting the reflected sky irradiance from the surface radiance term

Y= ()I,E"?,Q 1 Ta (I))o[): (10)

TheNEM temperatureywhichwe call ¥ oy is thenestimatedy inverting the Planckfunctionfor
each band usings o wand the grounémitted radiance and then taking the maximum of those
temperatures. The maximum temperature will most likely be closest to the actual surface

temperature in the presence of uncompensated atmospheric effects.

1

@ off & o

Y= (0, 5t 1) 11
=0 g
¥ o= max(" @ (12)

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a
blackbody with a temperature estimated ¥yo i
Yo

15 54607 (13)



Thenewemissivityspectrums thenusedto recalculate‘\@;: 08,9"9 @ 7 %D“,andtheprocess
L, =

is repeatedintil convergencewhichis determinedf thechangen "Yobetweerstepss lessthana

set threshold¢, which is set as the radiance equivalent tapl©f the sensor. The process is
stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is
also aborted if the slope &foversus iterationy increases such that2' ¢y > &, wheredr is
alsosetto radiancesquivalenof N E ¢pfdr thesenso~0.05K for VIIRS). In thiscasecorrection

is notpossible TESis abortedandNEM valuesof -eand™¥ oo arereportedn the QA dataplane,

along with an error flag. TES is also aborted and an error flag recorded if, for any iteration, the
values off ofall out of reasonable limits, set @5 < [o< 1.0. See Figure 8 for a detailed

description of these steps.

2.2.3.6 Refinementof’ L,

Most pixels at VIIRS resolution (750 m) will contain a mixed cover type consisting of
vegetation and soil, rock and water. The effective maximum emissivity for such pixels wil
therefore vary across the scene and depend on the fractional contribution of each cover type. For
these cases, the initiah o o= 0.99 may be set to high and refinement ©f wis necessary to
improve accuracy ofY os The optimal value fdra o eminimizes the variance,, of the NEM
calculated emissivities;o The optimization of « & iS only useful for pixels with low emissivity
contrast (near graybodsurfaces) and therefore is ordyecuted if the variance foe o & 0.99 is
lessthananempiricallydeterminedhresholde.g.,cx = 1.7 x 10 4 for ASTER) (Gillespieetal.

1998. If the variance is greater thanm, then the pixel is assumed to predominately consist of
either rock or soil. For this case, » wis reset to 0.96, which is a good first guess for most rocks
andsoilsin the ASTER spectralibrary, whichtypically fall betweerthe0.94and0.99range For

VIIRS thef & o wvalues is set to 0.97, a typical value for bare surfaces in the 12 um range. If the
first condition is met, and the pixel is a ngmaybody, then values fp& & «0f 0.92, 0.95, 0.97,

and 0.99 are used to compute the varéafor each corresponding NEM emissivity spectrum. A
plot of variance versuseach & ¢ walueresultsin an upwardfacing parabolawith the optimal

T & o ovaluedeterminedy the minimumof theparabolacurvein therange0.9 < T« wa< 1.0. This
minimum is setto a newf « owalue,andthe NEM moduleis executedagainto computea new

“¥ oo Further tests are used to see if a reliable solution can be found for the Trefingd the

parabolais too flat, or too steep thenrefinementis abortedandthe originalj & & awalueis used.



The steepness condition is met if the first derivative (slope @$.7 & o }.iS greater than a set
threshold (e.gg» = 1.0 x 10 3 for ASTER) and the flatness conditions is nfe¢he second
derivativeis lessthanasetthresholde.g.,as = 1.0x 10 3 for ASTER).Finally, if theminimum

T & wccorresponds taverylow ', thenthespectrunis essentiallyflat (graybody)andthe original

T & o= 0.99is used.This conditionis metif ’ ¢ o< ou (€.9.,a2 = 1.0x 10 4).

2.2.3.7 Ratio Module
In theratiomodule, theNEM emissivitiesareratioedto their average value talculatea

I aspectrumasfollows:
TQ

=

Typical ranges for tHeeemissivities ar®.75 < | o< 1.32, given that typical emissivities range

(14

from 0.7 to 1.0. Errors in tHeaospectrum due to incorrect NEM temperatures are systematic.

2.2.3.8 MMD Module
In theMMD module, thé -oemissivitiesarescaledto an actual emissivitgpectrum using
informationfrom thespectralkcontrasior MMD of thel -ospectrumTheMMD canthenberelated
to theminimumemissivity ] & ‘a:in thespectrunusinganempiricalrelationshipdeterminedrom
lab measurements of a variety of different spectra, including rocks, soils, vegetation, water, and
snow/ice. Fron & 'otthe actual emissivity spectrum can be found bycading thé ospectrum.
First, the MMD of thé ospectrum igound by:
00 0O=max(f ¢ min(f (15)
ThenMMD canberelatedto] & ‘eaisinga powerlaw relationship:
Taos=|1 | 20 0 03, (16)
where -carecoefficientsthatareobtainedby regressiorusinglab measurements.
The relationship between MMD arnids ¢ is physically reasonable and is
determined using a set of laboratory spectra in the ASTER spectral libraryBe®d@dge et al.
2009 and referred tas the calibration curve. The original ASTER regression coefficients were
determined from a set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and
snow supplied by.W. Salisburyrom Johns Hopkins University. One question thadssl to be
answered was whether using a smaller or larger subset of this original set of spectra changed the
resultsin anymannerEstablishingareliableMMD vs.T « -asrelationshipwith a subsebf spectral

representingll typesof surfacess acritical assumptiorior thecalibrationcurve.Thisassumption



was tested using various combinations and numbers of different spectra (e.g., Australian rocks,
airbornedata,anda subsebf 31 spectrérom Salisbury) andall yieldedvery similar resultsto the
original 86 spectra.

ForVIIRS, theoriginal 86 spectravereupdatedo includeadditionalsandspectrausedto
validatetheNorth AmericanASTER Land SurfaceEmissivity DatabaséNAALSED) (Hulley and
Hook 2009h and additional spectra for vegetation from the MODIS spectral library and ASTER
spectral library v2.0, giving a total of 150 spectra. The data were convolved to the three VIIRS
TIR bands and« a:andf -aspectrecalculated usingquation (20) for esh sample. Th&MD for
each spectrum was then calculated fromfthespectra and regressed to theaq:values. The
relationship follows a simple power law given by equation (22), with regression coeffjcients
0.997, 2 = 0.7050, and 3 = 0.7430 (graybody), and gds1=0.9864| > = 0.7711,and 3 =
0.8335 (desert). Figure 9 shows the powaw relationship between MMD and -:using the
150 lab spectra.

8¢ <— Vegetation, Ice, Water,Snow | x Labdata
4 . e \/|IRS fi
0,95 * _ Sfit ||

Soils

o
0

0.85! Rocks, Sands

Minimum Emissivity
o
®

0.75¢
0.7+

0 0.1 0.2 0.3 0.4 0.5
Minimum-Maximum Difference (MMD)
Figure 9. VIIRS calibration curve of minimum emissivity vs. MMD. The lab data (crosses) are computed from

150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, vegetation, and ice).

TheTESemissivitiesarethencalalatedby re-scalingthel -egemissivities:

fvowy (40



NPP/VIIRS M14 TES Emissivity NPP/VIIRS M15 TES Emissivity

Figurel0.Clockwisdromtopleft: VIIRSandsurfaceemissivityfor bandM14(8.55um);bandM15(10.76m),
surfaceemperaturéK)andbandM15emissivity12um);outputfromthe TESalgorithmover northeasifrica
on 13 January 2014.

An example VNP21 emissivitgutput image for band M14 (8.55 um) is shown in Figure
10 for one VIIRS granule on 13 January 2015 overShleara desert. Bare areas generally have
emissivity<0.85,while graybodysurfacesavehigheremissivities >0.95.Correspondiny NP21
surface temperature output image is shown in Figure 10.

Note that, for pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of
MMD calculatedrom TESis compromisedndapproacheavaluethatdepend®n measurement
errorandresidualerrorsfrom incompleteatmosphericorrection.For ASTER,whichhasaN E (p T
of 0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was
exploredto correcttheapparenMMD usingMonte CarlosimulationsForVIIRS ( N E qf D.05
K), we expect measurement errdos be minimal and atmospheric effects to be the largest
contributionto MMD errors.A furtherproblemfor graybodysurfacess alossof precisionfor low

MMD values.This is dueto the shapeof the powerlaw curve off & o&s. MMD at low MMD


























































































