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1 Introduction  

 
This document outlines the theory and methodology for generating the Visible Infrared 

Imaging Radiometer Suite (VIIRS) Level-2 VNP21 1-km land surface temperature and emissivity 

(LST&E) product using the Temperature Emissivity Separation (TES) algorithm. The VNP21 

product, will include the LST and emissivity for three VIIRS thermal infrared (TIR) bands M14 

(8.55 micron), M15 (10.76 micron), and M16 (12 micron), and will  be generated for data from the 

Suomi National Polar-orbiting Partnership (Suomi-NPP) and Joint Polar Satellite System (JPSS) 

platforms. This is version 1.0 of the ATBD and the goal is to maintain a ólivingô version of this 

document with changes made when necessary. 

1.1 Rationale for  the Product 
 

Land Surface Temperature and Emissivity (LST&E) data are critical variables for studying 

a wide variety of Earth surface processes and surface-atmosphere interactions such as 

evapotranspiration, land cover dynamics, and in water vapor retrieval schemes. LST&E have been 

identified as an important Earth System Data Record (ESDR) by NASA and many other 

international organizations (NASA Strategic Roadmap Committee #9, 2005; European Space 

Agency (ESA); Global Climate Observing System (GCOS), 2003; Climate Change Science 

Program (CCSP), 2006; IPCC, 2007; and the EarthTemp network (Merchant 2012). 

The land surface temperature and emissivity (LST&E) are derived from the surface 

radiance that is obtained by atmospherically correcting the at-sensor radiance. LST&E data are 

used for many Earth surface related studies such as surface energy balance modeling (Zhou et al. 

2003b) and land-cover land-use change detection (French et al. 2008), while they are also critical 

for accurately retrieving important climate variables such as air temperature and relative humidity 

(Yao et al. 2011). The LST is an important long-term climate indicator, and a key variable for 

drought monitoring over arid lands (Anderson et al. 2011a; Rhee et al. 2010). The LST is an input 

to ecological models that determine important variables used for water use management such as 

evapotranspiration and soil moisture (Anderson et al. 2011b). Multispectral emissivity retrievals 

are also important for Earth surface studies. For example, emissivity spectral signatures are 

important for geologic studies and mineral mapping studies (Hook et al. 2005; Vaughan et al. 

2005). This is because emissivity features in the TIR region are unique for many different types of 

materials that make up the Earthôs surface, such as quartz, which is ubiquitous in most of the arid 



regions of the world. Emissivities are also used for land use and land cover change mapping since 

vegetation fractions can often be inferred if  the background soil is observable (French et al. 2008). 

Accurate knowledge of the surface emissivity is critical for accurately recovering the LST, 

especially over land where emissivity variations can be large both spectrally and spatially. 

Both LST&E determine the total amount of longwave radiation emitted from the Earth's 

surface, and are therefore key variables in many energy balance models that estimate important 

surface biophysical variables such as evapotranspiration and plant-available soil moisture 

(Anderson et al. 2007; Moran 2003) that are ingested into drought monitoring systems such as the 

U.S. The National Integrated Drought Information System (NIDIS). LST&E data are also essential 

for balancing the Earth's surface radiation budget; for example an error of 0.1 in the emissivity 

will result in climate models having errors of up to 7 Wm-2 in their upward longwave radiation 

estimates ïa much larger term than the surface radiative forcing due to an increase in greenhouse 

gases (~2-3 Wm-2) (Zhou et al. 2003b). LST&E are also utilized in monitoring land-cover / land- 

use changes (French and Inamdar 2010; French et al. 2008), and in retrieving important climate 

variables such as air temperature and water vapor in atmospheric retrieval schemes (Seemann et 

al. 2003; Yao et al. 2011). 

Since the equation for retrieving LST&E is underdetermined, multiple retrieval methods 

have been developed that are optimized for a particular set of conditions. The simplest and efficient 

of these retrieval methods is the split-window (SW) algorithm, which is used to generate the 

heritage MODIS LST&E products (MOD/MYD11) and the current VIIRS LST Environmental 

Data Record (EDR). In the SW approach, emissivities are assigned according to a land 

classification scheme (Snyder et al. 1998), and atmospheric effects are compensated for by using 

the differential absorption features from two longwave window bands (11-12 µm). This approach 

has been used with much success over oceans to compute sea surface temperatures, and works 

well over densely vegetated areas and water where the assumption of single fixed emissivity is 

valid (Coll et al. 2009a). However, cold biases of 3-5 K are often found over semi-arid and arid 

regions because these regions have much higher emissivity variability (Hulley and Hook 2009a), 

and only one fixed emissivity from the 'barren' land class is assigned to these regions in the split- 

window approach. Recent validation of the VIIRS LST EDR product with ground-based 

measurements showed good accuracy over vegetated and water targets, but large cold biases of up 

to 5 K over arid targets. Performance is further degraded for high atmospheric water vapor content 



conditions where differences up to 15 K have been observed with the MYD11 heritage LST 

products. A further shortcoming in the current VIIRS LST algorithm is that the operational product 

does not produce a dynamically retrieved land surface emissivity product similar to the current 

MODIS MOD11B1 and MOD21 products, and the additional information from the VIIRS M14 

(8.5 µm) thermal infrared band is not utilized in the LST retrieval scheme. 

The second retrieval method is the physics-based Temperature Emissivity Separation 

(TES) algorithm, which uses an emissivity model based on the variability in the surface radiance 

data to dynamically retrieve both LST and spectral emissivity (Gillespie et al. 1998). This approach 

is used to generate the ASTER standard products (AST05, AST08), and also the MODIS MOD21 

product (to be released with Collection 6). The TES algorithm has consistent accuracy over all 

land cover types when combined with a Water Vapor Scaling (WVS) model and dynamically 

retrieves the spectral emissivity (bands 29, 31, and 32 for MODIS) at 1-km resolution. We will 

develop a VIIRS LST&E product based on the TES approach - VNP21. 

Several studies over the past decade have shown that the split-window and TES approaches 

are complementary, with the split-window approach being more stable over heavily vegetated 

regions and the physics-based TES approach working better over semi-arid and arid regions 

(Gottsche and Hulley 2012; Hulley and Hook 2009a; Hulley et al. 2010). By taking advantage of 

this fact, we will also develop a unified VIIRS LST product using a combination of the well- 

established and complementary TES and split-window algorithms (similar to MOD11/MOD21 

approaches). 

1.2 Intended User Community 

LST&E are key variables for explaining the biophysical processes that govern the balances 

of water and energy at the land surface. LST&E data are used in many research areas including 

ecosystem models, climate models, cryospheric research, and atmospheric retrieval schemes. Our 

team has been carefully selected to include expertise in these areas. The descriptions below 

summarize how LST&E data are typically used in these areas. 

1.2.1 Use of LST&E in Climate/Ecosystem Models 
 

Emissivity is a critical parameter in climate models that determine how much thermal 

radiation is emitted back to the atmosphere and space and therefore is needed in surface radiation 

budget calculations, and also to calculate important climate variables such as LST (e.g., Jin and 



Liang 2006; Zhou et al. 2003b). Current climate models represent the land surface emissivity by 

either a constant value or very simple parameterizations due to the limited amount of suitable data. 

Land surface emissivity is prescribed to be unity in the Global Climate Models (GCMs) of the 

Center for Ocean-Land-Atmosphere Studies (COLA) (Kinter et al. 1988), the Chinese Institute of 

Atmospheric Physics (IAP) (Zeng et al. 1989), and the US National Meteorological Center (NMC) 

Medium-Range Forecast (MRF). In the recently developed NCAR Community Land Model 

(CLM3) and its various earlier versions (Bonan et al. 2002; Oleson et al. 2004), the emissivity is 

set as 0.97 for snow, lakes, and glaciers, 0.96 for soil and wetlands, and vegetation is assumed to 

be black body. For a broadband emissivity to correctly reproduce surface energy balance statistics, 

it needs to be weighted both over the spectral surface blackbody radiation and over the downward 

spectral sky radiances and used either as a single value or a separate value for each of these terms. 

This weighting depends on the local surface temperatures and atmospheric composition and 

temperature. Most simply, as the window region dominates the determination of the appropriate 

single broadband emissivity, an average of emissivities over the window region may suffice. 

Climate models use emissivity to determine the net radiative heating of the canopy and 

underlying soil and the upward (emitted and reflected) thermal radiation delivered to the 

atmosphere. The oversimplified representations of emissivity currently used in most models 

introduce significant errors in the simulations of climate. Unlike what has been included in climate 

models up to now, satellite observations indicate large spatial and temporal variations in land 

surface emissivity with surface type, vegetation amount, and soil moisture, especially over deserts 

and semi-deserts (Ogawa 2004; Ogawa et al. 2003). This variability of emissivity can be 

constructed by the appropriate combination of soil and vegetation components. 

Sensitivity tests indicate that models can have an error of 5ï20 Wm-2 in their surface energy 

budget for arid and semi-arid regions due to their inadequate treatment of emissivity (Jin and Liang 

2006; Zhou et al. 2003b), a much larger term than the surface radiative forcing from greenhouse 

gases. The provision, through this proposal, of information on emissivity with global spatial 

sampling will be used for optimal estimation of climate model parameters. A climate model, in 

principle, constructs emissivity at each model grid square from four pieces of information: a) the 

emissivity of the underlying soil; b) the emissivity of the surfaces of vegetation (leaves and stems); 

c) the fraction of the surface that is covered by vegetation; and d) the description of the areas and 

spatial distribution of the surfaces of vegetation needed to determine what fraction of surface 



emission will  penetrate the canopy. Previously, we have not been able to realistically address these 

factors because of lack of suitable data. The emissivity datasets developed for this project will be 

analyzed with optimal estimation theory that uses the spatial and temporal variations of the 

emissivity data over soil and vegetation to constrain more realistic emissivity schemes for climate 

models. In doing so, land surface emissivity can be linked to other climate model parameters such 

as fractional vegetation cover, leaf area index, snow cover, soil moisture, and soil albedo, as 

explored in Zhou et al. (2003a). The use of more realistic emissivity values will greatly improve 

climate simulations over sparsely vegetated regions as previously demonstrated by various 

sensitivity tests (e.g., Jin and Liang 2006; Zhou et al. 2003b). In particular, both daily mean and 

day-to-night temperature ranges are substantially impacted by the modelôs treatment of emissivity. 

1.2.2 Use of LST&E in Cryospheric Research 
 

Surface temperature is a sensitive energy-balance parameter that controls melt and energy 

exchange between the surface and the atmosphere. Surface temperature is also used to monitor 

melt zones on glaciers and can be related to the glacier facies of (Benson 1996), and thus to glacier 

or ice sheet mass balance (Hall et al. 2006). Analysis of the surface temperature of the Greenland 

Ice Sheet and the ice caps on Greenland provides a method to study trends in surface temperature 

as a surrogate for, and enhancement of, air-temperature records, over a period of decades (Comiso 

2006). Maps of LST of the Greenland Ice Sheet have been developed using the MODIS 1-km LST 

standard product, and trends in mean LST have been measured (Hall et al. 2008). Much attention 

has been paid recently to the warming of the Arctic in the context of global warming. Comiso 

(2006) shows that the Arctic region, as a whole, has been warming at a rate of 0.72 ±0.10C̄ per 

decade from 1981ï2005 inside the Arctic Circle, though the warming pattern is not uniform. 

Furthermore, various researchers have shown a steady decline in the extent of the Northern 

Hemisphere sea ice, both the total extent and the extent of the perennial or multiyear ice (Parkinson 

et al. 1999). Increased melt of the margins of the Greenland Ice Sheet has also been reported 

(Abdalati and Steffen 2001). 

Climate models predict enhanced Arctic warming but they differ in their calculations of 

the magnitude of that warming. The only way to get a comprehensive measurement of surface- 

temperature conditions over the Polar Regions is through satellite remote sensing. Yet errors in 

the most surface temperature algorithms have not been well-established. Limitations include the 



assumed emissivity, effect of cloud cover, and calibration consistency of the longer-term satellite 

record. 

Comparisons of LST products over snow and ice features reveal LST differences in 

homogeneous areas of the Greenland Ice Sheet of >2 C̄ under some circumstances. Because there 

are many areas that are within a few degrees of 0C̄, such as the ice-sheet margin in southern 

Greenland, it is of critical importance to be able to measure surface temperature from satellites 

accurately. Ice for which the mean annual temperature is near the freezing point is highly 

vulnerable to rapid melt. 

1.2.3 Use of LST&E in Atmospheric Retrieval Schemes 
 

The atmospheric constituent retrieval community and numerical weather prediction 

operational centers are expected to benefit from the development of a unified land surface 

emissivity product. The retrieval of vertical profiles of air temperature and water vapor mixing 

ratio in the atmospheric boundary layer over land is sensitive to the assumptions used about the 

infrared emission and reflection from the surface. Even the retrieval of clouds and aerosols over 

land using infrared channels is complicated by uncertainties in the spectral dependence of the land 

surface emission. Moreover, weather models improve their estimates of atmospheric temperature 

and composition by comparisons between observed and model calculated spectral radiances, using 

an appropriate data assimilation (1D-Var) framework. The model generates forward calculation of 

radiances by use of their current best estimate of temperature profiles, atmospheric composition, 

and surface temperature and emissivity. If good prior estimates of infrared emissivity can be 

provided along with their error characterization, what would otherwise be a major source of error 

and bias in the use of the satellite radiances in data assimilation can be minimized. 

 
2 The Algorithm  

 
2.1 Technical Background and Heritage 

The VNP21 algorithm derives its heritage from the ASTER TES algorithm (Gillespie et al. 

1998) and the MODIS MOD21 algorithm (Hulley et al. 2012). ASTER is a five-channel 

multispectral TIR scanner that was launched on NASAôs Terra spacecraft in December 1999 with 

a 90-m spatial resolution and revisit time of 16 days. The VNP21 LST&E products will be 

produced globally over all land cover types, excluding open oceans for all cloud-free pixels. It is 



anticipated that the Level-2 products will be merged to produce weekly, monthly, and seasonal 

products, with the monthly product most likely producing global coverage, depending on cloud 

coverage. The generation of the higher level merged products will  be considered a project activity. 

The VNP21 Level 2 products will  be initially  inter-compared with the standard VLST products to 

identify regions and conditions for divergence between the products, and validation will be 

accomplished using a combination of temperature-based (T-based) and radiance-based (R-based) 

methods over dedicated field sites. 

Maximum radiometric emission for the typical range of Earth surface temperatures, 

excluding fires and volcanoes, is found in two infrared spectral ñwindowò regions: the midwave 

infrared (3.5ï5 µm) and the thermal infrared (8ï13 µm). The radiation emitted in these windows 

for a given wavelength is a function of both temperature and emissivity. Determining the separate 

contribution from each component in a radiometric measurement is an ill-posed problem since 

there will  always be more unknownsðN emissivities and a single temperatureðthan the number 

of measurements, N, available. For VIIRS, we will be solving for one temperature and three 

emissivities (VIIRS TIR bands M14, M15, and M16). To solve the ill -posed problem, an additional 

constraint is needed, independent of the data. There have been numerous theories and approaches 

over the past two decades to solve for this extra degree of freedom. For example, the ASTER 

Temperature Emissivity Working Group (TEWG) analyzed ten different algorithms for solving 

the problem (Gillespie et al. 1999). Most of these relied on a radiative transfer model to correct at- 

sensor radiance to surface radiance and an emissivity model to separate temperature and 

emissivity. Other approaches include the SW algorithm, which extends the sea-surface temperature 

(SST) SW approach to land surfaces, assuming that land emissivities in the window region (10.5ï 

12 µm) are stable and well known. However, this assumption leads to unreasonably large errors 

over barren regions where emissivities have large variations both spatially and spectrally. The 

ASTER TEWG finally decided on a hybrid algorithm, termed the TES algorithm, which capitalizes 

on the strengths of previous algorithms with additional features (Gillespie et al. 1998). 

TES is applied to the land-leaving TIR radiances that are estimated by atmospherically 

correcting the at-sensor radiance on a pixel-by-pixel basis using a radiative transfer model. TES 

uses an empirical relationship to predict the minimum emissivity that would be observed from a 

given spectral contrast, or minimum-maximum difference (MMD) (Kealy and Hook 1993; 

Matsunaga 1994). The empirical relationship is referred to as the calibration curve and is derived 



from a subset of spectra in the ASTER spectral library (Baldridge et al. 2009). A VIIRS calibration 

curve, applicable to VIIRS TIR bands M14, M15, and M16 is computed. Numerical simulations 

have shown that TES is able to recover temperatures within 1.5 K and emissivities within 0.015 

for a wide range of surfaces and is a well-established physical algorithm that produces seamless 

images with no artificial discontinuities such as might be seen in a land classification type 

algorithm (Gillespie et al. 1998). 

2.2 Algorithm Description 

2.2.1 Atmospheric Correction 
 

2.2.1.1 Thermal Infrared Radiance 

The at-sensor measured radiance in the TIR spectral region (7ï14 µm) is a combination of 

three primary terms: the Earth-emitted radiance, reflected downwelling sky irradiance, and 

atmospheric path radiance. The Earth-emitted radiance is a function of temperature and emissivity 

and gets attenuated by the atmosphere on its path to the satellite. The atmosphere also emits 

radiation, some of which reaches the sensor directly as ñpath radiance,ò while some gets radiated 

to the surface (irradiance) and reflected back to the sensor, commonly known as the reflected 

downwelling sky irradiance. Reflected solar radiation in the TIR region is negligible (Figure 1) 

and a much smaller component than the surface-emitted radiance. One effect of the sky irradiance 

is the reduction of the spectral contrast of the emitted radiance, due to Kirchhoffôs law. Assuming 

the spectral variation in emissivity is small (Lambertian assumption), and using Kirchhoffôs law 

to express the hemispherical-directional reflectance as directional emissivity (”‗ = 1  ‗), the 

clear-sky at-sensor radiance can be written as three terms: the Earth-emitted radiance described by 

Planckôs function and reduced by the emissivity factor, ‗; the reflected downwelling irradiance; 

and the path radiance. 

 

ὒ‗(—) =  [‗ὄ‗(Ὕί) +  (1  ‗)ὒȢ ]†‗(—) +  ὒᴻ (—) 
‗ ‗ (1) 



‗ 

‗ 

 

Figure 1. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere 

(blue) in the 3ð12 µm region. Also shown is the solar irradiance contribution W/m2/µm2. 

Where: 

ὒ‗(—) = at-sensor radiance; 

‗ = wavelength; 

— = observation angle; 

‗ = surface emissivity; 

Ὕί = surface temperature; 

ὒȢ = downwelling sky irradiance; 

†‗(—)  = atmospheric transmittance; 

ὒᴻ (—) = atmospheric path radiance 

ὄ‗(Ὕί) = Planck function, described by Planckôs law: 
 

 

 
ὧ1 1 

ὄ‗ =  
“‗5 (  ὧ2 

) 
exp ( )  1 

‗Ὕ 

(2) 

 
 

ὧ1 = 2“Ὤὧ2= 3.74Ͻ 10 16 WϽm2 (1st radiation constant) 

h = 6.63Ͻ 10 34 WϽs2 (Planckôs constant) 

c2 = hϽc/k = 1.44× 104 µmϽK (2nd radiation constant) 

k = 1.38× 10 ςσ WϽsϽK-1 (Boltzmannôs constant) 

c = 2.99Ͻ ρπ8 mϽs-1 (speed of light) 



Figure 2 shows the relative contributions from the surface-emission term, surface radiance, 

and at-sensor radiance for a US Standard Atmosphere, quartz emissivity spectrum, and surface 

temperature set to 300 K. Vertical bars show the center placement of the three VIIRS TIR bands 

M14 (~8.55 µm), M15 (~11 µm), and M16 (~12 µm). The reflected downwelling term adds a 

small contribution in the window regions but will become more significant for more humid 

atmospheres. The at-sensor radiance shows large departures from the surface radiance in regions 

where atmospheric absorption from gases such as CO2, H2O, and O3 are high. 

 

Figure 2. Radiance simulations of the surface-emitted radiance, surface-emitted and reflected radiance, and 

at-sensor radiance using the MODTRAN 5.2 radiative transfer code, US Standard Atmosphere, quartz 

emissivity spectrum, surface temperature = 300 K, and viewing angle set to nadir. Vertical bars show 

placements of the VIIRS TIR bands M14 (~8.55 µm), M15 (~11 µm), and M16 (~12 µm). 

Equation (1) gives the at-sensor radiance for a single wavelength,‗, while the measurement 

from a sensor is typically measured over a range of wavelengths, or band. The at-sensor radiance 

for a discrete band, Ὥ, is obtained by weighting and normalizing the at-sensor spectral radiance 



calculated by equation (1) with the sensorôs spectral response function for each band, Ὓὶ‗, as 

follows: 

 

 ᷿Ὓὶ‗(i)  Ͻ ὒ‗(—) Ͻ dʇ 
ὒὭ(—) =  

Ὓὶ (i)  Ͻ dʇ 
‗ 

(3) 

Using equations (1) and (2), the surface radiance for band Ὥ can be written as a combination 

of two terms: Earth-emitted radiance, and reflected downward irradiance from the sky and 

surroundings: 

ὒὭ(—)  ὒᴻ(—) 
ὒ =   ὄ (Ὕ ) + (ρ   )ὒȢ =   Ὥ  
ί,Ὥ Ὥ  Ὥ ί Ὥ Ὥ †Ὥ(—)

 
(4) 

The atmospheric parameters, ὒȢ , †‗(—) , ὒᴻ (—) , are estimated with a radiative transfer 
‗ ‗ 

model such as RTTOV discussed in the next section, using input atmospheric fields of air 

temperature, relative humidity, and geopotential height. Figure 3 shows VIIRS spectral response 

functions for bands M14, M15 and M16 plotted for a mid-latitude summer atmosphere. 

 

Figure 3. VIIRS spectral response functions for bands M14 (blue), M15 (red), and M16 (yellow). 
 

2.2.1.2 Emissivity 

The emissivity of an isothermal, homogeneous emitter is defined as the ratio of the actual 

emitted radiance to the radiance emitted from a black body at the same thermodynamic temperature 

(Norman and Becker 1995), ‗= Ὑ‗/ὄ‗. The emissivity is an intrinsic property of the Earthôs 

surface and is an independent measurement of the surface temperature, which varies with 



irradiance and local atmospheric conditions. The emissivity of most natural Earth surfaces for the 

TIR wavelength ranges between 8 and 12 ɛm and, for a sensor with spatial scales <100 m, varies 

from ~0.7 to close to 1.0. Narrowband emissivities less than 0.85 are typical for most desert and 

semi-arid areas due to the strong quartz absorption feature (reststrahlen band) between the 8- and 

9.5-ɛm range, whereas the emissivity of vegetation, water, and ice cover are generally greater than 

0.95 and spectrally flat in the 8ï12-ɛm range. 
 

2.2.1.3 Radiative Transfer Model 

The current choice of radiative transfer model for atmospherically correcting VIIRS TIR 

data is the Radiative Transfer for TOVS (RTTOV). The RTTOV is a very fast radiative transfer 

model for nadir-viewing passive visible, infrared and microwave satellite radiometers, 

spectrometers and interferometers (Saunders et al. 1999). RTTOV is a FORTRAN-90 code for 

simulating satellite radiances, designed to be incorporated within users' applications. RTTOV was 

originally developed at ECMWF in the early 90's for TOVS (Eyre and Woolf 1988). Subsequently 

the original code has gone through several developments (Matricardi et al. 2001; Saunders et al. 

1999), more recently within the EUMETSAT NWP Satellite Application Facility (SAF), of which 

RTTOV v11 is the latest version. It is actively developed by ECMWF and UKMET. 

A number of satellite sensors are supported from various platforms (https://nwp-

saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/). RTTOV has been 

sufficiently tested and validated and is conveniently fast for full scale retrievals (Matricardi 

2009). Given an atmospheric profile of temperature, water vapor and optionally other trace gases 

(for example ozone and carbon dioxide) together with satellite and solar zenith angles and surface 

temperature, pressure and optionally surface emissivity and reflectance, RTTOV will compute 

the top of atmosphere radiances in each of the channels of the sensor being simulated. Users can 

also specify the selected channels to be simulated. 

Mathematically, in vector notation, given a state vector, x, which describes the 

atmospheric/surface state as a profile and surface variables the radiance vector, y, for all the 

channels required to be simulated is given by (Saunders et al. 1999): 

y = H(x) (5) 

where H is the radiative transfer model, i.e. RTTOV (also referred to as the observation 

operator in data assimilation parlance). This is known as the 'direct' or 'forward' model. 

https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/
https://nwp-saf.eumetsat.int/site/software/rttov/documentation/platforms-supported/


In RTTOV, the transmittances of the atmospheric gases are expressed as a function of 

profile dependent predictors. This parameterization of the transmittances makes the model 

computationally efficient. The RTTOV fast transmittance scheme uses regression coefficients 

derived from accurate Line by Line computations to express the optical depths as a linear 

combination of profile dependent predictors that are functions of temperature, absorber amount, 

pressure and viewing angle (Matricardi and Saunders 1999). The regression coefficients are 

computed using a training set of diverse atmospheric profiles chosen to represent the range of 

variations in temperature and absorber amount found in the atmosphere (Chevallier 2000; 

Matricardi 2008, 2009; Matricardi and Saunders 1999). The selection of the predictors is made 

according to the coefficients file supplied to the program. 

2.2.1.4 Atmospheric Profiles 
 

The general methodology for atmospherically correcting VIIRS TIR data is based on the 

methods that were developed for the ASTER (Palluconi et al. 1999) and MODIS approaches 

(Hulley et al. 2012). 

Currently two options for atmospheric profile sources are available: 1) interpolation of data 

assimilated from NWP models, and 2) retrieved atmospheric geophysical profiles from remote- 

sensing data. The NWP models use current weather conditions, observed from various sources 

(e.g., radiosondes, surface observations, and weather satellites) as input to dynamic mathematical 

models of the atmosphere to predict the weather. Data are typically output in 6-hour increments, 

e.g., 00, 06, 12, and 18 UTC. Examples include the Global Data Assimilation System (GDAS) 

product provided by the National Centers for Environmental Prediction (NCEP) (Kalnay et al. 

1990), the Modern Era Retrospective-analysis for Research and Applications (MERRA) product 

provided by the Goddard Earth Observing System Data Assimilation System Version 5.2.0 

(GEOS-5.2.0) (Bosilovich et al. 2008), and the European Center for Medium-Range Weather 

Forecasting (ECMWF), which is supported by more than 32 European states. Remote-sensing data, 

on the other hand, are available real-time, typically twice-daily and for clear-sky conditions. The 

principles of inverse theory are used to estimate a geophysical state (e.g., atmospheric temperature) 

by measuring the spectral emission and absorption of some known chemical species such as carbon 

dioxide in the thermal infrared region of the electromagnetic spectrum (i.e. the observation). 

Examples of current remote sensing data include the Atmospheric Infrared Sounder (AIRS) 



(Susskind et al. 2003) and Moderate Resolution Imaging Spectroradiometer (MODIS) (Justice and 

Townshend 2002), both on NASA's Aqua satellite launched in 2002. 

The VIIRS TES algorithm uses the MERRA-2 reanalysis data for atmospheric correction. 

The MERRA profiles are first interpolated in time to the VIIRS observation using the [00 06 12 

18] UTC analysis observation hours before ingesting into the RTTOV. 

Table 1: Geophysical data available in the MERRA-2 reanalysis product. Columns under Mandatory specify if 

the variables is needed for determining atmospheric correction parameters. Data are output in 6hr analysis for 

42 pressure levels at 1/2 degree x 2/3 degree spatial resolution (longitude=576, latitude=361). 

 

MERRA Analysis Data (inst6_3d_ana_Np) 

Geophys ical fields Required? Available? Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

nlev nLevel Yes Yes  

p Pressure Yes Yes  

t Temperature Yes Yes  

q Specific Humidty Yes Yes  

sp Surface Pressure Yes Yes  

skt Skin Temperature Yes No T value at the first valid level above 

surface is used. 

t2 Temperature at 2 m Yes No T value at the first valid level above 

surface is used 

q2 Specific Humidty at 2 

m 

Yes No Q value at the first valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

el Elevation Yes No Auxiliary database 

The RTTOV output data are then gridded to the VIIRS swath resolution using a bicubic 

interpolation approach. It should be noted that the data interpolation could potentially introduce 

errors, especially in humid regions where atmospheric water vapor can vary on smaller spatial 

scales than 1°. The propagation of these atmospheric correction errors would result in band- 

dependent surface radiance errors in both spectral shape and magnitude, which in turn could result 

in errors of retrieved Level-2 products such as surface emissivity and temperature. As a result, a 

Water Vapor Scaling (WVS) model is further employed to improve the accuracy of the 



atmospheric correction during atmospheric conditions with high water vapor loadings. The WVS 

approach is discussed in the following section. 

2.2.2 Water Vapor Scaling Method 
 

The accuracy of the TES algorithm is limited by uncertainties in the atmospheric 

correction, which result in a larger apparent emissivity contrast. This intrinsic weakness of the 

TES algorithm has been systemically analyzed by several authors (Coll et al. 2007; Gillespie et al. 

1998; Gustafson et al. 2006; Hulley and Hook 2009b; Li  et al. 1999), and its effect is greatest over 

graybody surfaces that have a true spectral contrast that approaches zero. In order to minimize 

atmospheric correction errors, a Water Vapor Scaling (WVS) method has been introduced to 

improve the accuracy of the water vapor atmospheric profiles on a band-by-band basis for each 

observation using an Extended Multi-Channel/Water Vapor Dependent (EMC/WVD) algorithm 

(Tonooka 2005), which is an extension of the Water Vapor Dependent (WVD) algorithm (Francois 

and Ottle 1996). The EMC/WVD equation models the at-surface brightness temperature, given the 

at-sensor brightness temperature, along with an estimate of the total water vapor amount: 

ὲ 

ὝὫ,Ὥ =  Ὥ,0 +  В Ὥ,ὯὝὯ 
Ὧ=1  

Ὥ,Ὧ =  ὴὭ,Ὧ +  ήὭ,Ὧὡ +  ὶὭ,Ὧὡ
2, 

 

(6) 

where: 

Ὥ Band number 

ὲ Number of bands 

ὡ Estimate of total precipitable water vapor (cm) 

ὴ, ή, ὶ Regression coefficients for each band 

ὝὯ Brightness temperature for band k (K) 

ὝὫ,Ὥ Brightness surface temperature for band, Ὥ 

The coefficients of the EMC/WVD equation are determined using a global-based 

simulation model. 

The scaling factor, , used for improving a water profile, is based on the assumption that 

the transmissivity, †Ὥ , can be expressed by the Pierluissi double exponential band model 

formulation. The scaling factor is computed for each gray pixel on a scene using ὝὫ,Ὥ computed 

from equation (4) and †Ὥ computed using two different  values that are selected a priori: 



Ὥ 

  ᴻ 1
Ὥ2

Ὥ 

†Ὥ(—, 2)
1 Ὥ ὄὭ(ὝὫ,Ὥ)  ὒὭ(—, 1)/(1   †Ὥ(—, 1)) ln ( Ͻ ( ) ) 

† (—,  )2
Ὥ ὒ  ὒᴻ(—,  )/(1   † (—,  )) 

Ὥ 1 Ὥ Ὥ 1 Ὥ 1 
Ὥ =  

ln(  †Ὥ(—, 2)/†Ὥ(—, 1)) 

 

(7) 

 

where: 

Ὥ Band model parameter 

1, 2 Two appropriately chosen  values 

†Ὥ(—, 1,2) Transmittance calculated with water vapor profile scaled by  

ὒᴻ(—, 1,2) Path radiance calculated with water vapor profile scaled by  

Typical values for  are 1 = 1 and 2 = 0.7. Tonooka (2005) found that the  calculated 

by equation (7) will  not only reduce biases in the water vapor profile, but will  also simultaneously 

reduce errors in the air temperature profiles and/or elevation. Figure 4 shows an example of a  

image. 

 

 

 

 
Figure 4. WVS factor ♬ computed for a VIIRS scene on 13 January 2014. The image has been interpolated and 

smoothed. 



Ὥ 

2.2.2.1 Scaling Atmospheric Parameters 

Once the RTTOV run has completed and the  image has been calculated, the atmospheric 

parameters transmittance †Ὥ and path radiance ὒᴻ are modified as follows: 

Ὥ2
Ὥ 1

ὭὭ 
† (—, ) =  † (—,  )1

Ὥ2
Ὥ Ͻ † (—,  )1

Ὥ2
Ὥ

 
Ὥ Ὥ 1 Ὥ 2 

(8) 

ὒᴻ(—, ) =  ὒᴻ(—,  ) Ͻ 
 1  †Ὥ(—, )

 
Ὥ Ὥ 1 1  †Ὥ(—, 1) 

 

(9) 

Once the transmittance and path radiance have been adjusted using the scaling factor, the surface 

radiance can be computed using equation (1). 

2.2.2.2 Calculating the EMC/WVD Coefficients 

The EMC/WVD coefficients, ( p, q, r ) in Eq. (6) are determined using a global simulation 

model with input atmospheric parameters from SeeBor V5.0 database provided by the University 

of Wisconsin-Madison (Hook et al. 2013). The SeeBor data consists of 15704 global profiles of 

uniformly distributed global atmospheric soundings temperature, moisture, and ozone at 101 

pressure levels for clear sky conditions, acquired both day and night in order to capture the full- 

scale natural atmospheric variability. These profiles are taken from NOAA-88, an ECMWF 60L 

training set , TIGR-3, ozonesondes from 8 NOAA Climate Monitoring and Diagnostics Laboratory 

(CMDL) sites, and radiosondes from 2004 in the Sahara desert. The Seebor data are curated with 

the following quality criteria: for clear sky conditions, the relative humidity (RH) value of the 

profiles must be less than 99 % at each level below the 250 hPa pressure level. It also is required 

that the original top of sounding pressure be no greater than 30 hPa for temperature and moisture 

profiles and 10 hPa for ozone, and for each profile in the data set a physically based 

characterization of the surface skin temperature and surface emissivity are assigned. As the 

radiosondes may drift towards water body, we further filter the data containing at least 50% of the 

records on the land. This resulted into the sample size to 9136 data points. When classified based 

upon the local sun-rise and sun-set times the day and night profiles are nearly equally distributed 

in counts at 4990 and 4142 respectively. Figure 5 shows the distribution of the surface temperature 

with the total precipitable water (tpw) in cm for the profiles used in the simulation. 

Figure 6 shows the global distribution of the profile locations, which have been indicated 

as the day/night profiles based upon the sun-rise/sun-set time at the time of the profile recordings. 



In order to perform the simulations, we consider the emissivity spectra from the ASTER 

spectral library consisting of 102 samples that includes a variety of materials such as water, 

snow/ice, vegetation, rocks, soils, and sands. The emissivity of the samples cover a broad range of 

emissivities with even distribution ranging from ~0.6 to 1. The selected spectra are then convolved 

to the VIIRSôs spectral response function (3 bands: M14, M15, and M16) in order to perform the 

simulation. A total of 931,872 simulations (9136 profiles x 102 samples) are simulated with the 

RTTOV radiative transfer model for the set of 11 Gaussian view angles (between 0-70̄ ), and for 

the three VIIRS TIR bands. Using the simulated at-sensor Tk , and at-surface Tg calculated 
 

brightness temperatures, and an estimate of the total precipitable water vapor, the best fit 

coefficients in Eq. (3) are found by using a linear least squares method, and dependent on four 

independent variables: day/night case, view angle, minimum band emissivity in intervals of 0.05, 

and precipitable water vapor. Simulations show that for all of these cases the RMSE error for the 

simulation was less than 1 K. Finally, a four-dimensional look-up table (LUT) is produced 

consisting of the regression coefficients for the three TIR bands and the four independent variables. 

The EMC/WVD LUT is then used on a pixel-by-pixel basis for calculating the Tg (and ɔ), given 

estimates of the view angle, emissivity, and PWV. Note that the EMC/WVD coefficients are 

mapped to all VIIRS pixels in a granule through bi-cubic interpolation of the coefficients derived 

from the four factors: day/night case, view angle, minimum band emissivity, and precipitable water 

vapor. ASTER GED v3 emissivities are first spectrally adjusted to VIIRS TIR bands and 

interpolated onto the VIIRS granule, and then the minimum band emissivity is calculated at each 

VIIRS pixel in order to assign the correct coefficients. Bi-cubic interpolation assures smooth 

transitions in the EMC/WVD coefficients across the pixels. Table 2 shows the band model 

parameter coefficients used in equation (7) to calculate the water vapor scaling factor. 



 
 

 

Figure 5. TPW Vs Skin Temperature plot showing the wide distribution of input profiles. 
 
 
 

 

 
Figure 6. Global SeeBor database showing station locations for day and night sondes. 

 
 

Table 2. VIIRS band model parameters in equation (6). 
 

Band Parameter 

M14 1.4522 

M15 1.8103 

M16 1.8056 
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2.2.3 TES Algorithm 
 

TES combines the NEM, the ratio, and the MMD algorithm to retrieve temperature and a 

full emissivity spectrum. The NEM algorithm is used to estimate temperature and iteratively 

remove the sky irradiance, from which an emissivity spectrum is calculated, and then ratioed to 

their mean value in the ratio algorithm. At this point, only the shape of the emissivity spectrum is 

preserved, but not the amplitude. In order to compute an accurate temperature, the correct 

amplitude is then found by relating the minimum emissivity to the spectral contrast (MMD). Once 

the correct emissivities are found, a final temperature can be calculated with the maximum 

emissivity value. Additional improvements involve a refinement of άὥὼ in the NEM module and 

refining the correction for sky irradiance using the ‐άὭὲ-MMD final emissivity and temperature 

values. Finally, a quality assurance (QA) data image is produced that partly depends on outputs 

from TES such as convergence, final άὥὼ, atmospheric humidity, and proximity to clouds. More 

detailed discussion of QA is included later in this document. 

Numerical modeling studies performed by the ASTER TEWG showed that TES can 

recover temperatures to within 1.5 K and emissivities to within 0.015 over most scenes, assuming 

well-calibrated, accurate radiometric measurements (Gillespie et al. 1998). 

2.2.3.1 TES Data Inputs 

Inputs to the TES algorithm are the surface radiance, ὒί,Ὥ, given by equation (4) (at-sensor 

radiance corrected for transmittance and path radiance), and downwelling sky irradiance term, ὒȢ 

, which is computed from the atmospheric correction algorithm using a radiative transfer model 

such as RTTOV. Both the surface radiance and sky irradiance will  be output as a separate product. 

The surface radiance is primarily used as a diagnostic tool for monitoring changes in Earthôs 

surface composition. Before the surface radiance is estimated using equation (4), the accuracy of 

the atmospheric parameters, ὒȢ , †‗(—) , ὒᴻ (—) , is improved upon using a WVS method (Tonooka 
‗ ‗ 

2005) on a band-by-band basis for each observation using an extended multi-channel/water vapor 

dependent (EMC/WVD) algorithm. 

2.2.3.2 TES Limitations 

As with any retrieval algorithm, limitations exist that depend on measurement accuracy, 

model errors, and incomplete characterization of atmospheric effects. Currently, the largest source 

of uncertainty for ASTER data is the residual effect of incomplete atmospheric correction. 



‗ 

Measurement accuracy and precision contribute to a lesser degree. This problem is compounded 

for graybodies, which have low spectral contrast and are therefore more prone to errors in 

ñapparentò MMD, which is overestimated due to residual sensor noise and incomplete atmospheric 

correction. A threshold classifier was introduced by the TEWG to partly solve this problem over 

graybody surfaces. Instead of using the calibration curve to estimate ‐άὭὲ from MMD, a value of 

‐άὭὲ= 0.983 was automatically assigned when the spectral contrast or MMD in emissivity was 

smaller than 0.03 for graybody surfaces (e.g., water, vegetation). However, this caused artificial 

step discontinuities in emissivity between vegetated and arid areas. 

At the request of users, two parameter changes were made to the ASTER TES algorithm 

on 1 August 2007, first described in Gustafson et al. (2006). Firstly, the threshold classifier was 

removed as it caused contours and artificial boundaries in the images, which users could not 

tolerate in their analyses. The consequence of removing the threshold classifier was a smoother 

appearance for all images but at the cost of TES underestimating the emissivity of graybody scenes, 

such as water by up to 3% and vegetation by up to 2% (Hulley et al. 2008). The second parameter 

change removed the iterative correction for reflected downwelling radiation, which also frequently 

failed due to inaccurate atmospheric corrections (Gustafson et al. 2006). Using only the first 

iteration resulted in improved spectral shape and performance of TES. 

2.2.3.3 TES Processing Flow 

Figure 7 shows the processing flow diagram for the generation of the cloud masks, land- 

leaving radiance, VNIR reflectances, and TES temperature and emissivity, while Figure 8 shows 

a more detailed processing flow of the TES algorithm itself. Each of the steps will  be presented in 

sufficient detail in the following section, allowing users to regenerate the code. TES uses input 

image data of surface radiance, ὒί,Ὥ, and sky irradiance, ὒȢ , to solve the TIR radiative transfer 

equation. The output images will consists of three emissivity images (Ὥ) corresponding to VIIRS 

bands M14, M15, M16, and one surface temperature image (T). 



 

 

Figure 7. Flow diagram showing all steps in the retrieval process in generating the VIIRS VNP21 LST&E product 

starting with TIR at-sensor radiances and progressing through atmospheric correction, cloud detection, and 

the TES algorithm. 
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Figure 8. Flow diagram of the TES algorithm in its entirety, including the NEM, RATIO, and MMD modules. 

Details are included in the text, including information about the refinement of □ꜗ╪●. 
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2.2.3.4 NEM Module 

The NEM builds upon the model emissivity algorithm (Lyon 1965) by allowing the initial 

άὥὼ value to be consistent for all wavelengths. The role of NEM is to compute the surface kinetic 

temperature, T, and a correct shape for the emissivity spectrum. An initial value of 0.99 is set for 

άὥὼ, which is typical for most vegetated surfaces, snow, and water. For geologic materials such 

as rocks and sand, άὥὼ values are set lower than this, typically 0.96, and this value remains fixed. 

For all other surface types, a modification to the original NEM allows for optimization of άὥὼ 

using an empirically based process. For the majority of materials in the ASTER spectral library, a 

typical range for άὥὼ is 0.94 < άὥὼ < 1.0. Therefore, for a material at 300 K, the maximum errors 

that NEM temperatures should have are ~±1.5 K, assuming the reflected sky irradiance has been 

estimated correctly. 

2.2.3.5 Subtracting Downwelling Sky Irradiance 

Generally the effects of sky irradiance are small with typical corrections of <1 K (Gillespie 

et al. 1998). However, the contribution becomes larger for pixels with low emissivity (high 

reflectance) or in humid conditions when the sky is warmer than the surface. Over graybody 

surfaces (water and vegetation), the effects are small because of their low reflectivity in all bands. 

The first step of the NEM module is to estimate ground-emitted radiance, which is found by 

subtracting the reflected sky irradiance from the surface radiance term: 

ὙὭ =  ὒᴂ  (1  άὥὼ) ὒȢ 
ί,Ὥ ‗ (10) 

The NEM temperature, which we call ὝὔὉὓ, is then estimated by inverting the Planck function for 

each band using άὥὼ and the ground-emitted radiance and then taking the maximum of those 

temperatures. The maximum temperature will most likely be closest to the actual surface 

temperature in the presence of uncompensated atmospheric effects. 

1 
ὧ2 ὧ1άὥὼ 

ὝὭ =  
‗ 

(ὰὲ ( 
“Ὑ ‗5 +  1))  

Ὥ Ὥ  Ὥ 

 
(11) 

ὝὔὉὓ =  max(ὝὭ) (12) 

The NEM emissivity spectrum is then calculated as the ratio of emitted radiance to that of a 

blackbody with a temperature estimated by ὝὔὉὓ: 

ᴂ =  
 ὙὭ  

Ὥ ὄὭ(ὝὔὉὓ) 
(13) 



The new emissivity spectrum is then used to re-calculate Ὑᴂ =  ὒᴂ  (1  ᴂ) ὒȢ , and the process 
Ὥ ί,Ὥ Ὥ ‗ 

is repeated until convergence, which is determined if  the change in ὙὭ between steps is less than a 

set threshold, ὸ2, which is set as the radiance equivalent to NEȹT of the sensor. The process is 

stopped if the number of iterations exceeds a limit N, set to 12. Execution of the NEM module is 

also aborted if the slope of ὙὭ versus iteration, ὧ, increases such that Ў2Ὑᴂ/Ўὧ2 > ὸ1, where ὸ1 is 

also set to radiance equivalent of NEȹT for the sensor (~0.05 K for VIIRS). In this case, correction 

is not possible, TES is aborted, and NEM values of Ὥ and ὝὔὉὓ are reported in the QA data plane, 

along with an error flag. TES is also aborted and an error flag recorded if, for any iteration, the 

values of Ὥ fall out of reasonable limits, set to 0.5 < Ὥ < 1.0. See Figure 8 for a detailed 

description of these steps. 

2.2.3.6 Refinement of □ꜗ╪● 

Most pixels at VIIRS resolution (750 m) will contain a mixed cover type consisting of 

vegetation and soil, rock and water. The effective maximum emissivity for such pixels will 

therefore vary across the scene and depend on the fractional contribution of each cover type. For 

these cases, the initial άὥὼ = 0.99 may be set to high and refinement of άὥὼ is necessary to 

improve accuracy of ὝὔὉὓ. The optimal value for άὥὼ minimizes the variance, ’, of the NEM 

calculated emissivities, Ὥ. The optimization of άὥὼ is only useful for pixels with low emissivity 

contrast (near graybody surfaces) and therefore is only executed if the variance for άὥὼ= 0.99 is 

less than an empirically determined threshold (e.g., ὠ1 = 1.7 ×  10 4 for ASTER ) (Gillespie et al. 

1998). If the variance is greater than ὠ1, then the pixel is assumed to predominately consist of 

either rock or soil. For this case, άὥὼ is reset to 0.96, which is a good first guess for most rocks 

and soils in the ASTER spectral library, which typically fall between the 0.94 and 0.99 range. For 

VIIRS the άὥὼ values is set to 0.97, a typical value for bare surfaces in the 12 µm range. If the 

first condition is met, and the pixel is a near-graybody, then values for άὥὼ of 0.92, 0.95, 0.97, 

and 0.99 are used to compute the variance for each corresponding NEM emissivity spectrum. A 

plot of variance ’ versus each άὥὼ value results in an upward-facing parabola with the optimal 

άὥὼ value determined by the minimum of the parabola curve in the range 0.9 < άὥὼ < 1.0. This 

minimum is set to a new άὥὼvalue, and the NEM module is executed again to compute a new 

ὝὔὉὓ. Further tests are used to see if a reliable solution can be found for the refined άὥὼ. If the 

parabola is too flat, or too steep, then refinement is aborted and the original άὥὼ value is used. 



The steepness condition is met if the first derivative (slope of ’ vs. άὥὼ) is greater than a set 

threshold (e.g., ὠ2 = 1.0 ×  10 3 for ASTER) and the flatness conditions is met if the second 

derivative is less than a set threshold (e.g., ὠ3 =  1.0 ×  10 3 for ASTER). Finally, if  the minimum 

άὥὼ corresponds to a very low ’, then the spectrum is essentially flat (graybody) and the original 

άὥὼ = 0.99 is used. This condition is met if ’άὭὲ <  ὠ4 (e.g., ὠ2 =  1.0 ×  10 4). 

2.2.3.7 Ratio Module 

In the ratio module, the NEM emissivities are ratioed to their average value to calculate a 

Ὥ spectrum as follows: 
 

Ὥ 
Ὥ =  

Ӷ
 (14) 

Typical ranges for the Ὥ emissivities are 0.75 < Ὥ < 1.32, given that typical emissivities range 

from 0.7 to 1.0. Errors in the Ὥ spectrum due to incorrect NEM temperatures are systematic. 

2.2.3.8 MMD Module 

In the MMD module, the Ὥ emissivities are scaled to an actual emissivity spectrum using 

information from the spectral contrast or MMD of the Ὥ spectrum. The MMD can then be related 

to the minimum emissivity, άὭὲ, in the spectrum using an empirical relationship determined from 

lab measurements of a variety of different spectra, including rocks, soils, vegetation, water, and 

snow/ice. From άὭὲ, the actual emissivity spectrum can be found by re-scaling the Ὥ spectrum. 

First, the MMD of the Ὥ spectrum is found by: 

ὓὓὈ =  max(Ὥ)  min(Ὥ) (15) 

Then MMD can be related to άὭὲ using a power-law relationship: 
 

άὭὲ =  1  2ὓὓὈ3 , (16) 

where Ὦ are coefficients that are obtained by regression using lab measurements. 

The relationship between MMD and άὭὲ is physically reasonable and is 

determined using a set of laboratory spectra in the ASTER spectral library v2.0 (Baldridge et al. 

2009) and referred to as the calibration curve. The original ASTER regression coefficients were 

determined from a set of 86 laboratory reflectance spectra of rocks, soils, water, vegetation, and 

snow supplied by J.W. Salisbury from Johns Hopkins University. One question that needed to be 

answered was whether using a smaller or larger subset of this original set of spectra changed the 

results in any manner. Establishing a reliable MMD vs. άὭὲ relationship with a subset of spectral 

representing all types of surfaces is a critical assumption for the calibration curve. This assumption 



was tested using various combinations and numbers of different spectra (e.g., Australian rocks, 

airborne data, and a subset of 31 spectra from Salisbury), and all yielded very similar results to the 

original 86 spectra. 

For VIIRS, the original 86 spectra were updated to include additional sand spectra used to 

validate the North American ASTER Land Surface Emissivity Database (NAALSED) (Hulley and 

Hook 2009b) and additional spectra for vegetation from the MODIS spectral library and ASTER 

spectral library v2.0, giving a total of 150 spectra. The data were convolved to the three VIIRS 

TIR bands and άὭὲ and Ὥ spectra calculated using equation (20) for each sample. The MMD for 

each spectrum was then calculated from the Ὥ spectra and regressed to the άὭὲ values. The 

relationship follows a simple power law given by equation (22), with regression coefficients 1= 

0.997, 2 = 0.7050, and 3 = 0.7430 (graybody), and as 1= 0.9864, 2 = 0.7711, and 3 = 

0.8335 (desert). Figure 9 shows the power-law relationship between MMD and άὭὲ using the 

150 lab spectra. 

 

Figure 9. VIIRS calibration curve of minimum emissivity vs. MMD. The lab data (crosses) are computed from 

150 spectra consisting of a broad range of terrestrial materials (rocks, sand, soil, water, vegetation, and ice). 

 
 

The TES emissivities are then calculated by re-scaling the Ὥ emissivities: 
 

ὝὉὛ =   (
 άὭὲ  

) 
Ὥ Ὥ  min(Ὥ) 

 

(17) 



 

  
 

 

 

 

 
 

Figure 10. Clockwise from top left: VIIRS land surface emissivity for band M14 (8.55 µm); band M15 (10.76 µm), 

surface temperature (K) and band M15 emissivity (12 µm); output from the TES algorithm over northeast Africa 

on 13 January 2014. 

An example VNP21 emissivity output image for band M14 (8.55 µm) is shown in Figure 

10 for one VIIRS granule on 13 January 2015 over the Sahara desert. Bare areas generally have 

emissivity <0.85, while graybody surfaces have higher emissivities, >0.95. Corresponding VNP21 

surface temperature output image is shown in Figure 10. 

Note that, for pixels with low spectral contrast (e.g., graybody surfaces), the accuracy of 

MMD calculated from TES is compromised and approaches a value that depends on measurement 

error and residual errors from incomplete atmospheric correction. For ASTER, which has a NEȹT 

of 0.3 K at 300 K, measurement error contributes to the apparent contrast, and a method was 

explored to correct the apparent MMD using Monte Carlo simulations. For VIIRS (NEȹT of 0.05 

K), we expect measurement errors to be minimal and atmospheric effects to be the largest 

contribution to MMD errors. A further problem for graybody surfaces is a loss of precision for low 

MMD values. This is due to the shape of the power-law curve of άὭὲ vs. MMD at low MMD 




























































