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1.  Introduction 
 

This document describes the methods used to derive global Vegetation Continuous Fields (VCF) 

Earth Science Data Records (ESDRs). Section 1 discusses the rationale for generating the ESDR. 

Section 2 provides an overview of the products and technical background information. Section 3 

provides details of the methods used to generate the output products. Specifically, it describes the 

input data, the preprocessing steps used to prepare it, and the methods used for creating training 

data for supervised model building. It then describes the data mining algorithms and software 

used to create the regression trees. Finally, it contains a description of the output products, 

including format, metadata, and error measures. 

 

The following references supply further information about the history and development of VCF 

products:  
Carroll, M. L., John R. Townshend, Charlene M. DiMiceli, Praveen Noojipady, and R. A. 

Sohlberg. "A new global raster water mask at 250 m resolution." International Journal of Digital 

Earth 2, no. 4 (2009): 291-308. 

DeFries, Ruth, Matthew Hansen, and John Townshend. "Global discrimination of land cover 

types from metrics derived from AVHRR Pathfinder data." Remote Sensing of Environment 54, 

no. 3 (1995): 209-222. 

DeFries, Ruth, Matthew Hansen, Marc Steininger, Ralph Dubayah, Robert Sohlberg, and John 

Townshend. "Subpixel forest cover in Central Africa from multisensor, multitemporal data." 

Remote Sensing of Environment 60, no. 3 (1997): 228-246. 

DeFries, R. S., J. R. G. Townshend, and M. C. Hansen. "Continuous fields of vegetation 

characteristics at the global scale at 1‐km resolution." Journal of Geophysical Research: 

Atmospheres (1984–2012) 104, no. D14 (1999): 16911-16923. 
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DeFries, R. S., M. C. Hansen, and J. R. G. Townshend. "Global continuous fields of vegetation 

characteristics: a linear mixture model applied to multi-year 8 km AVHRR data." International 

Journal of Remote Sensing 21, no. 6-7 (2000): 1389-1414. 

Hansen, M. C., R. S. DeFries, John RG Townshend, and Rob Sohlberg. "Global land cover 

classification at 1 km spatial resolution using a classification tree approach." International 

Journal of Remote Sensing 21, no. 6-7 (2000): 1331-1364. 

Hansen, M. C., R. S. DeFries, J. R. G. Townshend, R. Sohlberg, C. Dimiceli, and M. Carroll. 

"Towards an operational MODIS continuous field of percent tree cover algorithm: examples 

using AVHRR and MODIS data." Remote Sensing of Environment 83, no. 1 (2002a): 303-319. 

Hansen, M. C., R. S. DeFries, J. R. G. Townshend, L. Marufu, and R. Sohlberg. "Development 

of a MODIS tree cover validation data set for Western Province, Zambia." Remote Sensing of 

Environment 83, no. 1 (2002b): 320-335. 

Hansen, Matthew C., and Ruth S. DeFries. "Detecting long-term global forest change using 

continuous fields of tree-cover maps from 8-km Advanced Very High Resolution Radiometer 

(AVHRR) data for the years 1982–99." Ecosystems 7, no. 7 (2004): 695-716. 

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau 

et al. "High-resolution global maps of 21st-century forest cover change." Science 342, no. 6160 

(2013): 850-853. 

Pedelty, Jeffrey, Sadashiva Devadiga, Edward Masuoka, Molly Brown, Jorge Pinzon, Compton 

Tucker, D. Roy et al. "Generating a long-term land data record from the AVHRR and MODIS 

instruments." In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE 

International, pp. 1021-1025. IEEE, 2007. 

Sexton, Joseph O., Xiao-Peng Song, Min Feng, Praveen Noojipady, Anupam Anand, Chengquan 

Huang, Do-Hyung Kim et al. "Global, 30-m resolution continuous fields of tree cover: Landsat-

based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error." 

International Journal of Digital Earth 6, no. 5 (2013): 427-448. 

Song, Xiao-Peng, Chengquan Huang, Min Feng, Joseph O. Sexton, Saurabh Channan, and John 

R. Townshend. "Integrating global land cover products for improved forest cover 

characterization: An application in North America." International Journal of Digital Earth ahead-

of-print (2013): 1-16. 

 

2.  Overview 
 

Vegetation mosaics occur at all spatial scales on the earth’s land surface. At the landscape scale, 

patches of trees, grass, and bare ground are distributed heterogeneously across the land surface. 

At the local scale, mixtures exist even within plots of several square meters. While boundaries 

between vegetation types may be fairly abrupt in some locations, such as the boundary between a 

forest and an alpine meadow at a tree line, gradients in vegetation usually occur gradually across 

the landscape, with no sharp boundary between types. 
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Vegetation continuous fields (VCFs) are continuous representations of vegetation canopy cover. 

For each pixel in a satellite image, percent cover is given for each vegetation category; there are 

four basic categories in the MEaSUREs ESDR products:  tree cover, non-tree vegetation, bare 

ground, and water.  The tree cover layer is subdivided into additional categories:  evergreen, 

deciduous, broadleaf and needleleaf.  Figure 1 depicts an example of VCF percent tree cover in 

the Amazon basin at decadal intervals derived from the Land Long-Term Data Record (LTDR). 

Earth science research requires global characterization of vegetation parameters such as 

fractional cover, biomass, albedo, leaf area index, and photosynthetic capacity. Given the 

difficulty of making direct measurements of these variables, estimates must be based on remote 

sensing data. Traditionally, land cover maps divide vegetation cover into discrete ecosystem 

types; researchers then assign constant vegetation parameters to each type. Deriving vegetation 

characteristics in this manner has inherent flaws:  1) vegetation density and species composition 

vary significantly within an ecosystem and are not well represented by a single value; 2) 

category definitions and boundaries vary from map to map, making them difficult to compare 

and interpret; 3) parameters change abruptly across ecosystem boundaries; and 4) mixtures of 

vegetation types are poorly characterized by discrete classifications.  

VCFs were developed to overcome these flaws and provide the improved depiction of vegetation 

cover needed for many applications. The most direct application of VCF products is the 

quantification of deforestation and forest degradation over time, providing the ability to monitor 

global forests in a consistent and objective manner [Hansen et al. 2013, Huang et al. 2009]. 

VCFs are also being used to parameterize climate and land surface models, estimate biomass and 

fluxes for carbon modeling, and determine anthropogenic land cover change [Tang and Bartlein, 

2008; van der Werf, 2006, 2010; Hansen and Defries, 2004; Giglio, et al., 2009]. They provide 

fundamental base maps for studies of fire risk, ecosystem functioning, and biodiversity. 

A number of methods have been used to derive subpixel vegetation cover using remotely sensed 

data. Early approaches include: (1) fuzzy membership functions [1994; Foody and Cox, 1994]; 

(2) isolines in red and near infrared scatter plots inferred from geometric models of plant cover 

[Jasinski, 1996]; (3) empirical relationships derived from high resolution data [DeFries et al., 

1997; Iverson et al., 1989, 1994; Zhu and Evans, 1992, 1994]; (4) aggregations of discrete 

classifications [Mayaux and Lambin, 1997]; and (5) linear mixture modeling [Adams et al., 

1995; Bierwirth, 1990; Pech et al., 1986; Quarmby et al., 1992; Settle and Drake, 1993]. There 

were a number of limitations to these approaches:  single-scene analysis did not capture 

phenological clues; models had only local applicability; algorithms used only one or two bands 

or indices; models defined linear relationships between bands and vegetation density; and 

methods depended on human interpretation and tuning. 

Over the last 15 years, data mining methods have been developed for VCF production that 

greatly improve upon these earlier methods.  In particular, regression tree model methods have 

evolved to successfully derive global VCF products using AVHRR, MODIS and Landsat data 

[Defries et al. 1999, Hansen et al. 2003, Sexton et al. 2013, Hansen et al. 2013].  Regression tree 

models provide a non-linear fit to the data, resulting in more accurate predictions over widely 
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100 

Figure 1. Time series of VCF tree cover for the Amazon Basin from the MEaSUREs VCF ESDR project. (a) 1990, (b) 
2000, (c) 2010.  Increasing deforestation can be noted in “arc of deforestation” shown in the lower and right 
sides of the images. 
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varying land cover types.  Increased computer processing power and the availability of robust 

open source data mining software make it possible to apply these models to the large datasets 

now available from satellite instruments, in this case, to the LTDR.  A further advantage lies in 

the ability to fully automate the process. 

 

The LTDR data provide a long, consistently-processed time series of surface reflectance, 

brightness temperature and normalized difference vegetation index (NDVI) from 1981 to the 

present.  This gives us the opportunity to create a corresponding time series of annual VCF 

products over 30 years for multiple vegetation types, which has not been done before.  These 

products will be of particular importance to the climate and carbon modeling communities, both 

in benchmarking dynamic vegetation models and as more accurate parameterization of land 

surface models.   

 

3.  MEaSURES VCF ESDR Method 
 

Figure 2 outlines the method used to create the VCF ESDRs.  Each step will be discussed in 

greater detail in the following paragraphs. 

 

 

 

 
Figure 2.  Flowchart of generating the annual AVHRR vegetation continuous fields (VCF) land cover product. 
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3.1  Definitions 

Vegetation continuous fields (VCF) represent land surface as a fractional combination of 

vegetation functional types that can be remotely sensed from satellites [Defries et al., 1995]. 

Consistent with previous research [DeFries, Townshend, & Hansen 1999; Hansen et al. 2003; 

Hansen et al. 2002; Hansen et al. 2005; Hansen et al. 2011], the VCF product developed in this 

study consists of percentages of tree canopy (TC) cover, short vegetation (SV) cover and bare 

ground (BG) cover. Trees are defined as all vegetation taller than 5 meters in height. TC refers to 

the proportion of the ground covered by the vertical projection of tree crowns [Jennings, Brown, 

and Sheil 1999; Korhonen et al. 2006]. SV characterizes the proportion of the ground covered by 

vegetation other than trees, including shrubs, herbaceous vegetation, and mosses, while BG 

represents the proportion of the land surface not covered by vegetation. Both SV and BG are 

quantified from nadir view at top of canopy [Ying et al. 2017, Hansen et al. 2011, Hansen et al. 

2014]. TC, SV and BG were mapped during the local annual peak of a growing season. TC is not 

equivalent to forest cover, although forest cover may be defined based on TC. For example, the 

FAO defines forest as a parcel or unit of land of at least 0.5 hectares in size which is covered by 

10% or more trees that are 5 meters or taller [FAO 2015]. 

3.2  Generation of AVHRR VCF 

The Advanced Very High Resolution Radiometer (AVHRR) instruments on-board NOAA 

satellites remain an important data source for studying long-term changes in land surface 

properties as they provide the longest time-series of global satellite measurements [Pinzon & 

Tucker 2014, Tucker et al. 2005, Franch et al. 2017]. We used the version 4 Long Term Data 

Record (LTDR) to generate the annual VCF products [Franch et al. 2017, Pedelty et al. 2007]. 

The LTDR was compiled from AVHRR observations through a series of processing steps 

including radiometric calibration, geolocation correction, atmospheric correction and bi-

directional reflectance effect correction [Franch et al. 2017]. The daily LTDR surface reflectance 

data contain 5 multi-spectral layers of AVHRR channels 1-5 and the normalized difference 

vegetation index (NDVI) layer computed from channels 1 and 2 [Tucker 1979]. Each pixel is 

0.05° × 0.05° in size. We implemented an improved version of the operational Moderate 

Resolution Imaging Spectroradiometer Vegetation Continuous Field (MODIS VCF) approach to 

convert daily LTDR to yearly VCF [Hansen et al. 2003].  

Daily AVHRR was first aggregated into monthly composites based on the maximum NDVI 

value in the month. Maximum NDVI composition can minimize cloud contamination, reduce bi-

directional and off-nadir viewing effects, minimize band-correlated atmospheric effects and 

enhance vegetation discrimination [Holben 1986]. The technique has been widely adopted for 

generating NDVI and land cover products from daily satellite data for sensors such as AVHRR, 

MODIS and VEGETATION [Tucker 2005, Loveland et al. 2000, Hansen et al. 2000, Defries et 

al. 1998, Bartholomé 2005].   

Monthly composites were subsequently converted to annual phenological metrics [Hansen et al. 

2013, Hansen et al. 2003, Lloyd 1990, Reed 1994, Defries et al. 1995]. Metrics are statistical 

transformations of pixel time-series that can capture the salient features of vegetation phenology 

while maintaining high spatial and temporal data consistency. Metrics thus provide a unique 

advantage to large-area land cover mapping and monitoring. We created a total of 735 annual 

metrics from a combination of 5 multi-spectral bands and one NDVI layer, each available as 

time-series of 12 months. 
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An empirical normalization procedure was applied to enhance the year-to-year consistency of the 

AVHRR metrics. Time-series data from AVHRR are known to have systematic discrepancies 

due to different satellite platforms, orbital drift, changes in sensor design and sensor degradation 

[Pinzon & Tucker 2014, Tucker et al. 2005, Latifovic et al. 2012]. The systematic differences are 

particularly pronounced before and after year 2000; beginning with NOAA-16 in 2000, satellite 

orbits were stabilized and a major improvement was introduced in the sensor design to increase 

sensitivity at the low end of radiance [Pinzon & Tucker 2014]. Research has also shown that the 

varying observational solar zenith angle as a result of orbital drift affects reflectance more than 

NDVI and is negatively related to leaf area or positively related to soil exposure [Kaufmann et al. 

2000]. That is, dense vegetation is less affected than sparse vegetation. Additionally, remaining 

atmospheric effects in the AVHRR surface reflectance can also cause inconsistency between 

years. The normalization was designed to remove these artifacts unrelated to actual surface 

change. 

A rich literature exists on calibration of AVHRR time series. One commonly used method is to 

apply calibration coefficients estimated from “stable targets” such as deserts, oceans, clouds or 

rainforests [Kaufman & Holben 1993, Vermote & Kaufman 1995, Los 1998, Myneni et al. 1998, 

Gutman 1999, Vermote & Saleous 2006, Donohue et al. 2008]. For example, earlier works by 

Myneni et al. [1997, 1998],  used the Sahara desert as reference to adjust global NDVI. Gutman 

[1999] used global deserts and rainforests to correct reflectances as well as NDVI. Recently, data 

from well-calibrated sensors such as MODIS and SPOT were used as reference for anchoring 

AVHRR-based NDVI time series [Pinzon & Tucker 2014, Tucker et al. 2005].  

To normalize annual metrics, we designed a two-step approach, using MODIS data as reference. 

The first step was to apply a dark object subtraction (DOS) to remove systematic biases for 

vegetated surfaces, especially forest. DOS is also a simple and effective method of removing 

atmospheric contamination in remotely sensed data [Hansen et al. 2008, Potapov et al. 2012, 

Chavez 1989, Song et al. 2001, Woodcock 2001]. We used the intact forest landscapes (IFL) 

[Potapov et al. 2017] of the tropical rainforest biome (i.e. the minimally disturbed tropical 

rainforests, average tree cover 97%) as the dark stable target, which was also considered a 

spectral end-member. The second step was to apply a slope-based adjustment for pixels that 

contain visible bare ground. This step involved the use of tropical, subtropical and temperate 

deserts with 100% Landsat-based bare ground cover [Ying et al. 2017] as the bright stable target, 

or the other spectral end-member. Biases over other land surfaces are assumed to be within these 

two extreme end-members [Gutman 1999]. To create the MODIS reference data, an identical 

procedure was applied to daily MODIS LTDR [Franch et al. 2017] to derive annual metrics for 

years 2000 through 2016. The 17-year median values for each metric were subsequently derived 

and used as reference. 

DOS was conducted by applying the following equations:  

𝑦𝑚,𝑡,𝑖 = 𝑥𝑚,𝑡,𝑖 − 𝐵̅𝑚,𝐼𝐹𝐿         (1) 

𝐵̅𝑚,𝐼𝐹𝐿 =
∑ (𝑥𝑚,𝑡,𝑗

𝑛𝐼𝐹𝐿
𝑗=1

− 𝑟𝑚,𝑗)

 𝑛𝐼𝐹𝐿
         (2) 
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where, 𝑥𝑚,𝑡,𝑖 is the original AVHRR value of metric m in year t and pixel i,  𝑦𝑚,𝑡,𝑖 is the DOS-

adjusted AVHRR value, 𝐵̅𝑚,𝐼𝐹𝐿is the mean bias of metric m over a total of  𝑛𝐼𝐹𝐿 IFL pixels 

indexed by j, 𝑟𝑚,𝑗 is the MODIS reference value of metric m in IFL pixel j. 

The soil-induced bias was then corrected relative to the desert end-member, which has maximum 

residual bias after DOS correction, as well as the IFL end-member, which has minimum residual 

bias. Dense vegetation is largely immune to this correction. The correction is summarized by the 

following equations: 

𝑧𝑚,𝑡,𝑖 = 𝑦𝑚,𝑡,𝑖 − 𝐵̅𝑚,𝐷𝐸𝑆 ∗  
(𝑣𝑡,𝑖−𝑉̅𝑡,𝐼𝐹𝐿)

(𝑉̅𝑡,𝐷𝐸𝑆−𝑉̅𝑡,𝐼𝐹𝐿)
       (3) 

𝐵̅𝑚,𝐷𝐸𝑆 =
∑ (𝑦𝑚,𝑡,𝑘

𝑛𝐷𝐸𝑆
𝑘=1

− 𝑟𝑚,𝑘)

 𝑛𝐷𝐸𝑆
         (4) 

𝑉̅𝑡,𝐼𝐹𝐿 =
∑ 𝑣𝑡,𝑗

𝑛𝐼𝐹𝐿
𝑗=1

 𝑛𝐼𝐹𝐿
          (5) 

𝑉̅𝑡,𝐷𝐸𝑆 =
∑ 𝑣𝑡,𝑘

𝑛𝐷𝐸𝑆
𝑘=1

 𝑛𝐷𝐸𝑆
          (6) 

where, 𝑧𝑚,𝑡,𝑖 is the slope-adjusted AVHRR value of metric m in year t and pixel i, 𝑦𝑚,𝑡,𝑖 is the 

DOS-adjusted value from equation (1), 𝐵̅𝑚,𝐷𝐸𝑆 is the mean bias of metric m over a total of  𝑛𝐷𝐸𝑆 

desert (DES) pixels indexed by k, 𝑣𝑡,𝑖 is the peak growing season NDVI value of pixel i in year t, 

𝑉̅𝑡,𝐼𝐹𝐿 is the mean peak growing season NDVI value of all IFL pixels, 𝑉̅𝑡,𝐷𝐸𝑆 is the mean peak 

growing season NDVI value of all desert pixels, and 𝑟𝑚,𝑘 is the MODIS reference value of 

metric m in desert pixel k. Here we use peak growing season NDVI, which is one of the metrics 

and computed as the mean of all NDVI values between 75 and 100 percentiles, in the slope term 

instead of the annual mean NDVI as used in Gutman [1999], because our annual VCF represents 

the vegetation state of the local peak growing season. Using this annual metric (before any 

correction) dynamically optimizes AVHRR data for the growing season of each year.  

Adjusted annual metrics were used as input to supervised regression tree models to generate the 

annual TC and BG product. This non-parametric machine learning method was chosen as it can 

accommodate nonlinear relationships between the dependent variable (percent TC or percent 

BG) and independent variables (AVHRR metrics); in addition, the decision rules are easily 

interpretable [Hansen et al. 1996, Friedl & Brodley 1997, Breiman et al. 1984]. Training data for 

TC were obtained by spatially averaging the circa-2000 Landsat-based percent TC product from 

0.00025° × 0.00025° to 0.05° × 0.05°, which was in turn trained using very-high spatial 

resolution images [Hansen et al. 2013]. Likewise, training data for BG were obtained by 

spatially averaging the circa-2000 Landsat-based percent BG product [Ying et al. 2017]. Model 

training and prediction were performed separately for TC and BG. We pooled two years of 

AVHRR metrics before and after 2000 (i.e. 1999 and 2001) as input features to train 21 bagged 

regression tree models to account for the remaining inter-annual bias of AVHRR metrics, if any, 

as well as to avoid over-fitting of the regression tree algorithm. The 21 trained models were 

applied to annual AVHRR metrics to generate percent TC and BG for each year. Due to missing 

data in years 1994 and 2000, TC and BG maps in these two years were not produced from 

AVHRR, but were linearly interpolated using antecedent and subsequent annual TC or BG 
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estimates on a per pixel basis. Following the MODIS VCF approach [Hansen et al. 2003], annual 

SV was derived as the residual term by subtracting TC and BG percentages from 100. Permanent 

water surfaces were excluded based on the Landsat-derived permanent surface water product 

[Hansen et al. 2013]. 

3.2  Accuracy assessment 

The generated TC product was validated against a stratified random sample of TC estimates 

produced from n = 475 sample blocks distributed across the globe [Pengra et al. 2015, Olofsson 

et al. 2012, Stehman et al. 2012]. This sample dataset was developed by the United States 

Geological Survey (USGS). Each sample block was 5-km × 5-km (~0.05° × 0.05°) in size. Sub-

meter resolution multi-spectral images including QuickBird, WorldView, IKONOS and GeoEye 

between years 2002 and 2014, depending on each block, were classified to categorical land cover 

classes including tree cover [Pengra et al. 2015]. The percent TC for each block was computed 

from these data to provide the reference values for comparison to the AVHRR percent TC. The 

USGS reference data were developed in Universal Transverse Mercator (UTM) projection and 

the footprints of the 5-km × 5-km reference sample blocks did not exactly overlap with AVHRR 

pixels, which were in Geographical Latitude / Longitude projection. This geolocation mismatch 

inevitably introduced some error in the validation results. Thus, we also evaluated AVHRR TC 

using the Landsat-based TC estimates.  Because the spatial units of the Landsat estimates were 

spatially aligned with the AVHRR pixels, this comparison is free from geolocation error. For BG 

and SV, due to the lack of reliable high-resolution reference data, we used Landsat-based BG 

and SV (computed as 100% – Landsat-based BG% – Landsat-based TC%) estimates at the 

USGS sample locations as reference data for estimating accuracy.  These BG and SV reference 

data were obtained for the same stratified sample of blocks used to evaluate the AVHRR TC 

product [Olofsson et al. 2012, Stehman et al. 2012].  

The paired AVHRR and reference VCF values were used to calculate four accuracy metrics 

including root-mean-square-error (RMSE), mean absolute error (MAE), mean error (ME) and r2 

[Stehman et al. 2012, Willmott 1982]: 

𝑅𝑀𝑆𝐸 =  √
∑ 𝑤𝑖∗(𝑝𝑖−𝑟𝑖)2𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

         (7) 

𝑀𝐴𝐸 =
∑ 𝑤𝑖∗|𝑝𝑖−𝑟𝑖|𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

           (8) 

𝑀𝐸 =  
∑ 𝑤𝑖∗(𝑝𝑖−𝑟𝑖)𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

          (9) 

𝑟2 =  1 −
∑ (𝑝𝑖−𝑟𝑖)2𝑛

𝑖=1

∑ (𝑝𝑖−𝑟̅)𝑛
𝑖=1

          (10) 

where pi, ri and wi are estimated VCF, reference VCF and sample weight (inverse of inclusion 

probability of the sample block for the stratified design) at a location i in a sample of size n; 𝑟̅ is 

the estimated mean of the reference values.  

We also computed the conventional confusion matrices including overall accuracy (OA), user’s 

accuracy (UA) and producer’s accuracy (PA) using the paired AVHRR and reference VCF 

values and a general ratio estimator [Stehman et al. 2012, Cochran 1977]:  
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𝑅̂ =  
∑ 𝑁ℎ∗𝑦̅ℎ

𝐻
ℎ=1

∑ 𝑁ℎ∗𝑥̅ℎ
𝐻
ℎ=1

          (11) 

Where, H is the total number of strata; 𝑁ℎ is the total number of 5-km × 5-km blocks within 

stratum h; 𝑦̅ℎ and 𝑥̅ℎ are the sample means of variables y and x in stratum h and the specific 

identity of y and x depends on the accuracy metric being estimated. To estimate OA, y = area of 

agreement between AVHRR and reference for a VCF class c in each sample block (i.e. 

overlapped area) and x = area of the sample block. To estimate UA, y = area of agreement 

between AVHRR and reference for a VCF class c and x = area of class c mapped by AVHRR. 

To estimate PA, y = area of agreement between AVHRR and reference for a VCF class c and x = 

area of class c given by reference. 

The estimated variance of 𝑅̂ is: 

𝑉̂(𝑅̂) =  
1

𝑋̂2  ∑ 𝑁ℎ
2(1 − 𝑛ℎ/𝑁ℎ)(𝑠𝑦ℎ

2 +  𝑅̂2 ∗ 𝑠𝑥ℎ
2 − 2 ∗ 𝑅̂ ∗ 𝑠𝑥𝑦ℎ)/𝑛ℎ

𝐻
ℎ=1    (12) 

where 𝑋̂2 =  ∑ 𝑁ℎ ∗ 𝑥̅ℎ
𝐻
ℎ=1 , 𝑛ℎ is the number of sample blocks selected from population within 

stratum h, 𝑠𝑦ℎ
2  and 𝑠𝑥ℎ

2  are the sample variances of y and x for stratum h and 𝑠𝑥𝑦ℎ is the sample 

covariance of the variables of x and y for stratum h. The standard error of 𝑅̂ is the square root of 

the estimated variance. As noted above, the identity of x and y depends on the accuracy metric 

being estimated.  

 

3.3  Description of output files 

 

One VCF ESDR product file is created for each year for tree cover, non-tree vegetation cover 

and bare ground. Every five years an additional product is produced containing the remaining 

four layers. The output files are in the geographic projection at 0.05° resolution using the same 

grid as the Land ESDRs, so these files will overlay. The annual product contains three data 

layers, a fractional water reference layer, a quality layer and three uncertainty layers 

corresponding to the three vegetation cover layers, each containing a value for every pixel 

containing land or inland water: 

 
 

• Percent tree cover 

• Percent non-tree vegetation cover 

• Percent bare ground (includes rock, soil, permanent ice and snow, and inland water 

bodies) 

• Percent water reference layer 

• Quality flags 

• Continuous confidence value layers, one for each cover layer (3 layers total) 

 

The 5-year product contains four data layers, a fractional water reference layer, a quality layer 

and four uncertainty layers corresponding to the four vegetation cover layers, each containing 

a value for every pixel containing land or inland water: 
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• Percent evergreen 

• Percent deciduous 

• Percent needleleaf 

• Percent broadleaf 

• Percent water reference layer 

• Quality flags 

• Continuous confidence value layers, one for each cover layer (4 layers total) 

 
The fractional water layer is derived from the current MODIS land/water map averaged and 

reprojected to the geographic 0.05° LTDR grid and stored as the fraction of the pixel classified as 

water. Quality and confidence layers are discussed in the next section. 

 

Layers are stored as scientific datasets (SDS) in the HDF format. We store metadata in the file 

with version information, information about the input files, projection and file size, and overall 

quality. Data layers, ancillary layers and metadata are accessible to users through a number of 

software packages (e.g., ENVI, ArcGIS, PCI Geomatica, GDAL). 

 
NOTE MEaSURES VCF version 1.0 has only 3 data layers and is distributed as a GeoTIFF.  Future 

versions will contain additional data layers (evergreen/deciduous tree cover, broadleaf/needleleaf tree 

cover) and quality layers. 

Data from years 1981, 1985, 1994, and 2000 were excluded due to lack of data in the Long Term 

Data Record (LTDR) v4. 
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Figure 3.  Accuracy assessment of AVHRR tree canopy (TC) cover, bare ground (BG) cover and short vegetation 
(SV) cover, based on a validation sample of 475 AVHRR pixels. (a) Spatial distribution of the validation sample 
(red dot) overlaid on long-term (1982-2016) mean tree cover. The USGS tree cover reference data (5-km × 5-km, 
Universal Transverse Mercator projection) have greater spatial details (colored squares in b and c) due to their 
sub-meter resolution but have geolocation mismatch with the AVHRR product (0.05° × 0.05°, gray-scale squares in 
b and c) due to different projections. (d) Temporal distribution of the USGS tree cover sample. (e) Scatter plots of 
AVHRR tree cover against USGS reference tree cover. AVHRR and reference are matched by year and center 
coordinates. (f-h) Scatter plots of AVHRR TC, BG and SV (year 2001) against Landsat-based estimates, which are 
free from geolocation mismatch. (i) Quantitative error metrics, including conventional confusion matrices as well 
as root-mean-square-error (RMSE), mean absolute error (MAE), mean error (ME) and r2. The standard error (SE) 
for the estimated error metrics is provided in the parentheses.  
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