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l. Members of the team

This Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent-Product of
Australia, New Zealand, China, and Mongolia (GFSAD30AUNZCNMOCE) was produced by
the following team members. Their specific role is mentioned.

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute
(BAERI) at United States Geological Survey (USGS) led the GFSAD30AUNZCNMOCE prod-
uct generation effort. Dr. Teluguntla was instrumental in the designing, coding, computing, ana-
lyzing, and synthesis of the Landsat-8 derived nominal 30-m GFSAD30AUNZCNMOCE
cropland product of Australia, New Zealand and China for the nominal year 2015. He was also
instrumental in writing the manuscripts, ATBDs, and user documentations.

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Prin-
cipal Investigator (P1) of the GFSAD30 project. Dr. Thenkabail was instrumental in developing
the conceptual framework of the GFSAD30 project and the GFSAD30AUNZCNMOCE product.
He made significant contribution in writing the manuscripts, ATBDs, User documentations, and
providing scientific guidance throughout the GFSAD30 project.

Dr. Jun Xiong, Research Scientist, Bay Area Environmental Research Institute (BAERI) at
United States Geological Survey (USGS), participated in the intellectual discussions and in pro-
vided inputs and insights on GFSAD30AUNZCNMOCE 30-m cropland extent product genera-
tion and shared his expertise in cloud computing.

Dr. Murali Krishna Gumma, Senior Scientist at the International Crops Research Institute for
the Semi-Arid Tropics, helped collect reference data used in the machine learning algorithms.

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New
Hampshire, led the independent accuracy assessment of the entire GFSAD30 project including
GFSAD30AUNZCNMOCE 30-m cropland extent product of Australia, New Zealand and China.
Mr. Adam Oliphant, Geographer, United States Geological Survey (USGS), shared his exper-
tise in cloud computing and Random Forest algorithm implementation in Google Earth Engine
(GEE) for GFSAD30AUNZCNMOCE 30-m cropland extent product generation.

Mr. Justin Poehnelt, Computer Scientist with the United States Geological Survey, contributed
to the initial conceptualization and development of the croplands.org website.

Ms. Kamini Yadav, PhD student at the University of New Hampshire, made contributions to
the independent accuracy assessment directed by Prof. Russell G. Congalton.

Dr. Temuulen T. Sankey, Assistant Professor, Northern Arizona University, produced the Mon-
golia cropland product and also performed its validation.

Ms. Aparna Phalke, PhD student, University of Wisconsin, shared cloud-computing expertise.

Ms. Corryn Smith, Student developer, helped in development of the croplands.org website.
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I1. Historical Context and Background Information

Monitoring global croplands (GCs) is imperative for ensuring sustainable water and food security
for the people of the world in the Twenty-first Century. However, currently available cropland
products suffer from major limitations such as: (a) Absence of precise spatial location of the
cropped areas; (b) Coarse resolution nature of the map products with significant uncertainties in
areas, locations, and detail; (c) Uncertainties in differentiating irrigated areas from rainfed areas;
(d) Absence of crop types and cropping intensities; and (e) Absence of a dedicated web\data
portal for the dissemination of cropland products. Therefore, the Global Food Security-support
Analysis Data (GFSAD) project aimed to address these limitations by producing cropland maps
at 30m resolution covering the globe, referred to as Global food security support-analysis data
@ 30-m (GFSAD30) product.

This Algorithm Theoretical Basis Document (ATBD) provides a basis upon which the GFSAD30
cropland extent product was developed for the countries of Australia, New Zealand, China, Mon-
golia (GFSAD30AUNZCNMOCE, Table 1), produced using Landsat-8 and Landsat-7 time-se-
ries satellite sensor data.  This document provides comprehensive details of the
GFSAD30AUNZCNMOCE production scheme that includes remote sensing data, reference and
validation data, approaches, methods, machine learning algorithms, product generation, accuracy
assessments, and area calculations.

It must be noted that cropland mapping for Mongolia was conducted separately by Dr. Sankey.
A separate ATBD and user guide for Mongolia was not necessary as Mongolia only has about
0.06% to the global cropland areas, the methods and approaches mostly follow the one’s de-
scribed in this manuscript as well as in other continental studies.

Table 1. GFSAD30CE Products basic information for Australia, New Zealand, and China.

Product Name Short Name Spatial Temporal
resolution coverage
GFSAD30-m cropland Extent Product GFSAD30AUNZCNMOCE 30-m Nominal
of Australia, New Zealand, China, 2015
and Mongolia

Note: Nominal here means that the Landsat-8 16 day data used to produce the product is for two to three years
(2013-2015), but the product is reported as nominal year 2015.

I11. Rationale for Development of the Algorithms

Mapping the precise location of croplands enables the extent and area of agricultural lands to be
more effectively captured, which is of great importance for managing food production systems
and to study their inter-relationships with water, geo-political, socio-economic, health, environ-
mental, and ecological issues (Thenkabail et al., 2010). Further, accurate development of all
higher-level cropland products such as crop watering method (irrigated or rainfed), cropping in-
tensities (e.g., single, double, or continuous cropping), crop type mapping, cropland fallows, as
well as assessment of cropland productivity (i.e., productivity per unit of land), and crop water
productivity (i.e., productivity per unit of water) are all highly dependent on availability of pre-
cise and accurate cropland extent maps. Uncertainties associated with cropland extent maps af-
fect the quality of all higher-level cropland products reliant on an accurate cropland extent base
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map. However, precise and accurate cropland extent maps are currently nonexistent at the conti-
nental extent at a high spatial resolution (30-m or better). This lack of crop extent maps is partic-
ularly true for complex, small-holder dominant agricultural systems. By mapping croplands at a
high spatial resolution at the continental scale, the GFSAD30project has resolved many of the
shortcomings and uncertainties of other cropland mapping efforts.

The two most common methods for land-cover mapping over large areas using remote-sensing
images are manual classification based on visual interpretation and digital per-pixel classifica-
tion. The former approach delivers products of high quality, such as the European CORINE Land
Cover maps (Bdttner, 2014). Although the human capacity for interpreting images is remarkable,
visual interpretation is subjective (Lillesand et al., 2014), time-consuming, and expensive. Digital
per-pixel classification has been applied for land-cover mapping since the advent of remote sens-
ing and is still widely used in operational programs, such as the 2005 North American Land
Cover Database at 250-m spatial resolution (Latifovic, 2010). Pixel-based classifications such as
maximum likelihood classifier (MLC), neural network classification (NN), decision trees, Ran-
dom Forests (RF), and Support Vector Machines are powerful, and fast classifiers that help dif-
ferentiate distinct patterns of landscape. Both supervised and unsupervised classification ap-
proaches are adopted in pixel-based classifiers. However, per-pixel classification includes sev-
eral limitations. For example, the pixel’s square shape is arbitrary in relation to patchy or contin-
uous land features of interest, and there is significant spectral contamination among neighboring
pixels. As a result, per-pixel classification often leads to noisy classification outputs, the well-
known “salt-and-pepper” effect. There are other limitations of pixel-based classification meth-
ods: 1. they fail to capture the spatial information of high-resolution imagery such as from Land-
sat 30-m imagery, and 2. they often, classify the same field (e.g., a corn field) into different
classes, as a result of within-field variability. This may often result in a field with a single crop
(e.g., corn) classified as different crops.

We used supervised pixel-based classifier Random Forest (RF), which has been widely used in
agricultural cropland studies over the years (Myint et al., 2011) and which is considered powerful
and an ideal machine learning algorithm (Tian et al., 2016, Shi and Yang, 2015, Huang et al.,
2010). A description of how to classify cropland extent of Australia, New Zealand, and China is
provided in section 2.3 and its sub-sections.

This document describes, in detail, the development of the Global Food Security-support Anal-
ysis Data (GFSAD) @ 30-m for Australia, New Zealand, China, and Mongolia: Cropland Extent
Product (GFSAD30AUNZCNMOCE). The approach involves the use of a supervised Random
Forest (RF) algorithm to retrieve crop extent results from pixel-based classification (see overview
of the methodology in Figure 1).

V. Algorithm Description

An overview of the algorithm description is provided in Figure 1. The methodology used in this
project (Figure 1) is briefly described in this paragraph to provide an overview of methods pre-
sented in detail in sub-sequent sections of this ATBD document. The process (Figure 1) involved
combining year 2014-2015 16-day time-series Landsat-8 30-m data along with Landsat-7 30-m
data. The process included several well designed steps (Figure 1). First, the data were pre-pro-
cessed by cloud mask and gap filling on Google Earth Engine (GEE). Second, median value
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composites were created for 4 to 6 periods based on cloud-free or near-cloud-free wall-to-all
coverage. Such a seasonal mosaic aided in achieving cloud free clear images of the continent.
Each composite mosaic contained 8 bands as listed in Figure 1. Third, reference data were gen-
erated throughout the study area to train the RF algorithms. There are 3348 reference samples for
this purpose. Fourth, the result of the pixel-based RF algorithm was to obtain the cropland extent
product for Australia, New Zealand, and China. Fifth, the cropland product of Australia, New
Zealand, and China was evaluated for accuracy using 3372 test samples. The process was iterated
until adequate accuracies were attained. Accuracy assessments were performed by Dr. Russell
Congalton and his PhD student, Kamini Yadav, independent of the production team. In this pro-
cess, the validation data were only available to the accuracy assessment team and were hidden
from the production team. As a result, there was completely independent accuracy assessment.
Finally, the GFSAD30AUNZCNMOCE product was made available on croplands.org.

LC8 L1T _TOA
30m Data (GEE)

Training samples (2014-2015)

q) \‘

E2 Random forest
= |E .

L classifier
E-E’ —

= o

—HE |

Accuracy
Assessment

Verification

30m Crop extent

product

Figure 1. Flowchart of mapping methods for Landsat-8 derived cropland extent-product of Aus-
tralia, New Zealand, and China for the nominal year 2015.

a. Input data

I. Region Definition

The study was conducted for the countries Australia, New Zealand and China (see Figure 2,
Figure 5, Figure 6, and Figure 7). The country boundaries were determined by the Global Ad-
ministrative Unit Layers (GAUL) of United Nations (http://www.fao.org/geonet-
work/srv/en/metadata.show?id=12691&currTab=simple).
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Il. Reference Croplands Samples

Reference data are required for both training the machine learning algorithms (see section 2.3)
as well as for validating the final products. First, we conducted an extensive field survey during
September and October of 2014, the peak crop-growing season for crops in Australia. More than
4000 ground samples were collected from New South Wales (NSW), Victoria (VIC), South Aus-
tralia (SA), and Western Australia (WA) regions of Australia following the specific guidelines
on collecting ground reference data (Congalton, 2015). The sampling sites included various crop
fields: such as Cereal crops (Wheat, Barley, and Oats), Legumes (Lupin, Lentils, Peas, and
Beans), Oilseeds (Canola), Vegetables, Continuous crops (Orchard crops), Fodder crops (Alfalfa
and sown pastures) and some fallow lands. Similarly, we obtained ground reference data for
China through collaboration with the Chinese Academy of Agricultural Sciences (CAAS) who
collecting field data that were spatially well spread out throughout agricultural cropland areas of
China. The field survey gathered a total of 2120 ground samples including: (1) Location of sam-
ples (GPS position, location name, date of collection); crop properties (2) Croplands versus non-
croplands; (3) irrigated or rainfed; (4) Crop intensity (single, double, triple, continuous cropping
in 12 months); (5) Crop type (major crop types mentioned above, others); and (6) Digital photo-
graphs of each sample.

The ground data samples were collected from three main sources.

First, field surveys (or ground data) were collected during 2014 and 2015. The field-surveyed
data were divided into three independent datasets with each set containing 1/3rd of the total
samples (e.g., Table 2). The first set was used for training machine-learning algorithms (e.g.,
Random Forest). The second set was used to test the product. The third set was set aside and
was used for independent accuracy assessment. In addition, we obtained reference-training
data from the following reliable sources in addition to our own field data collections.

Second, random samples were obtained by interpreting sub-meter to 5-meter very high spatial
resolution imagery (VHRI) data throughout Australia, New Zealand, and China available to US
Government entities through the sub-meter to 5-m imagery obtained from the National Geospa-
tial Agency (NGA). For this, we collected 1420 reference and 2710 validation samples.

Third, reference data were obtained from other reliable sources such as Geo Science Australia,
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). The ref-
erence training data were used to “train” the Random Forest algorithm to separate croplands from
non-croplands. This required us to keep adding training samples until optimal classification re-
sults were obtained (see section 2.3 and its sub-sections). A total of 2130 representative samples
were used to “train” and separate croplands from non-croplands in China, 958 samples in Aus-
tralia, and 260 samples in New Zealand (see Figure 2 showing the distribution of these samples)
(Table 3).

The whole set of reference data including primary and secondary data were made available, at
the following website: https://croplands.org/app/data/search.
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Table 2. Ground data samples over Australia for the year 2014. The ground data samples
were randomly split into reference or training (N1=1458 samples), validation set 1 for testing
accuracies (N2=1488), independent validation set 2 for testing accuracies (N3=1465).

Crop Reference Validation Validation  Total
Code Description or training Set#l Set#?2 number
N1 N2 N3 N
1 Alfafa 4 3 4 11
2 Barley 154 153 154 461
3 Beans 30 29 29 88
4 Canola 186 185 186 557
5 Lentils 65 65 65 195
6 Lupin 34 33 35 102
7 Oats 73 72 73 218
8 Peas 27 26 26 79
9 Wheat 283 283 284 850
10  Orchards 55 60 54 169
11 Sown-pasture 95 98 96 289
12 Season-2 Crops 20 16 18 54
13 Crop-harvested 9 9 10 28
14 Vegetables 1 1 1 3
15  Plantation 4 3 3 10
16  Cropland,others 30 29 25 84
20  Grazing/pastures 118 117 117 352
30  Noncroplands 145 165 155 465
40  Fallow 125 141 130 396
Total 1458 1488 1465 4411

Table 3. Number of reference samples used for training the Random Forest (RF) machine-learn-
ing algorithm and number of validation samples used for independent accuracy assessment.

Country Class Training samples Validation samples

Crop 530 80
Australia No Crop 428 820

Total 958 900

Crop 114 120
NewZealand No Crop 146 380

Total 260 500

Crop 1346 340
China No Crop 784 1632

Total 2130 1972

Note: The number of training and validation samples depended on the results. When optimal results obtained, we
stopped adding further samples. The process requires starting with a certain sample number initially and progres-
sively increasing sample number until optimal accuracies are reached.
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iii. Image Stratification

The cropland versus non-cropland classification was carried out using the Random Forest (RF)
machine-learning algorithm by stratifying the study area into refined agro-ecological zones
(AEZs) (Figure 2). The AEZs were developed by the United Nation’s Food and Agricultural
Organization (UN FAQO). However, this results in too many zones (which is not necessary given
many zones have only a very small proportion of crops). Therefore, we combined some of these
zones into broader refined AEZs (RAEZs) based on the convenience, and speed of applying the
RF algorithm. This resulted in six broad RAEZs across China, Australia, and New Zealand (Fig-
ure 2). RF algorithm were trained for separating croplands from non-croplands in each of these
RAEZs (Figure 2) using the reference training data falling within these zones. Working within
each RAEZ also helped in data management and classification speed.
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Figure 2. Stratification of the study area into distinct and broad refined agro-ecological zones
(RAEZs). The figure also shows the distribution of the reference training data used in the Ran-
dom Forest (RF) machine-learning algorithm. The Random Forest (RF) pixel-based supervised
machine learning algorithm used in this study was “trained” using reference training data falling
within each of these zones to separate croplands from non-croplands.
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iv. Satellite Imagery: Landsat-8 and Landsat-7

In order to cover crop dynamics in different periods, Landsat-8 OLI (Roy et al., 2014) satellite
data have been used for Australia, New Zealand, and China. In addition, Landsat-7 has been
used to fill some data gaps (Irons et al., 2012) for China, aiming to provide seamless 30-m data
for all time periods. There is a 16-day revisit time per Landsat-8 OLI and Landsat-7 ETM+ 30-
m data. It is difficult to get continuous 8 to 16-day cloud free time-series data for wall-to-wall
coverage for any part of the region. To overcome this limitation and to ensure cloud-free or near-
cloud-free wall-to-all coverage, bi/tri-monthly composites, depending on the cloudiness of the
countries\regions, were composed (e.g., Figures 3a and 3b). Finally, 30-m mega-file data-cubes
(MFDCs) were created as per the following steps leading to a 48-band MFDC (Figure 3a) for
Australia and New Zealand from 6 periods and a 32-band MFDC for China (Figure 3b) from 4
periods. A systematic detail of the MFDC composition is described below.

The goal of the time-composites was to achieve cloud-free or near cloud-free wall-to-wall com-
posites over the entire study area (e.g., Figures 3a and 3b). This we wanted to achieve, using as
many time-periods as possible as to get temporal stacks that can monitor phenology. However,
the time-periods are decided by the ability to achieve cloud-free or near cloud-free images over
a time-period. In Australia and New Zealand (Figure 3a) we were able to achieve the cloud-free
or near cloud-free images at much shorter time-periods leading to 6 time-periods (period1: Julian
days 1-60, period 2: Julian days 61-120, period 3: Julian days 121-180, period 4: Julian days 181-
240, period 5: Julian days 241-300, period 6: Julian days 301-365; Figure 3a). In comparison,
China (Figure 3b) required longer time-periods to achieve cloud-free or near cloud-free wall-to-
wall coverage due to greater number of cloudy days over the country. As a result, there were 4
periods (periodl: Julian days 1-90, period 2: Julian days 91-180, period 3: Julian days181-270,
period 4: Julian days 271-365; Figure 3b).

The process involved gathering all the Landsat-8 16-day images over Australia and New Zealand
(Figure 3a), and all the Landsat-8 as well as Landsat-7 images over China (Figure 3b) available
for each time-period (e.g., period 1: 1-60 Julian days for Australia and New Zealand), and com-
positing each of the 8 bands by taking median value of each pixel of each band. These composites
are called median value composites for each period for each band. The eight bands used in this
study were (Figure 3a, 3b): blue (0.45-0.51um), green (0.53-0.59um), red 0.63-0.69um), NIR
(0.85-0.89um), SWIR1 (1.55 1.65um), SWIR2 (2.1-2.3 um), and TIR1 (10.60-11.19um) bands
along with Normalized Difference in Vegetation Index (NDVI). Thereby, for Australia and New
Zealand, eight median value bands composed over 6 time-periods resulted in a 48 band MFDC
(Figure 3a). Whereas for China, eight median value bands composed over 4 time-periods resulted
in a 32 band MFDC (Figure 3b). The band stack, and time-periods leading to MFDC are shown
in Table 4 as well as in Figures 3a and 3b. All compositions were performed on the Google Earth
Engine (GEE) cloud-based geospatial platform for planetary-scale data analysis (Gorelick et al,,
2017). Landsat top of atmosphere (TOA) products were used instead of surface reflectance (SR)
due to the limited temporal availability of Landsat-7 and Landsat-8 surface reflectance imagery
on GEE.
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Landsat-8, 8 Bands of data

Multi 1 i -
Every 16-days for 2013-2015 ulti year seasonal composites 30-m Data cube

Total: 48 bands, all @ 30-m

.
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Blue band 8 Median. value ban

(0.45- 0.51pum)
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[—
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lue bands
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Period 6 (Julian days 301-365

8 Median. value bands

Figure 3a. 30-m Data-cube for the Australia and New Zealand regions composited for 6 time-
periods using 2013-2015 Landsat-8 data. For each period (e.g., period 1: Julian days 1-1-60),
eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, and NDVI Landsat-8) were compo-
sited, taking median value of a given pixel over the period 1. From 6 periods, there was a 48 band
mega file data cube (MFDC).

Landsat-7 & Landsat-8, 8 Bands of data

. . 30-m Data cub
Every 16-days for 2013-2015 Multi year seasonal composites m Data cube

Total: 32 bands, all @ 30-m

» Blue band (0.45- 0.51pm) Periodil (Julian days 1-90):
! 4 Green band (0.53- 0.59um)! 8 Median. value bands

; Red band (0.63- 0.69um) Periogh 2 (Julian dayS 91-180):
& 8 Median. value bands

Periofh3 (Julian day 181-240
8 Median. value bands

SWIR? band (2.1- 2.29um)

TEw . ' .6-11.2 Periofl 4 (Julian days 241-365):

Figure 3b. 30-m Data-cube for China composited for 4 time-periods (e.g., period 1: Julian days
1 to 90) using every 16-day data of Landsat-8 and Landsat-7 for the years 2013-2015. For each
period eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1 and NDVI Landsat-8) were
composited, taking median value of a given pixel over the period. From the 6 periods, there was
a 32 band MFDC.
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Table 4. The process of mega file data cube (MFDC) composition for the study areas based on
median value composition of 8 Landsat-8 and\or Landsat-7 bands over 2013-2015 for 4 to 6 time-
periods.

Landsat Years

Region/ Time-com- «~ Mega-file Data
products/ of L Bands used .
Country : . posited Data Cube Provider
image Series data
Julian days
over which
satellite, Landsat # of bands Total # of
name Years bands in name
sensor data are for each
g MFDC
time-compo-
sited
C1:1-60 Blue, green
Australia & 2014 & ggiélligo Red, NIR ,
New Zea- Landsat-8 : SWIR-1, 48 USGS
2015 C4:181-240
land : SWIR-2, TIR-1
C5:241-300 and NDVI
C6:301-365
2013, G110 Igzeliial\gl] [?een’
China & Landsat-7 & 2014 & C2591—180 SWIR-1, 30 USGS
Mongolia Landsat-8 C3:181-270
2015 : SWIR-2, TIR-1
C4:271-365
and NDVI

* C1:1-60 = composite 1 over Julian dates 1 to 60. Given Landsat-8 is acquired over every 16 days,

there will be 4 images in first 60 days.

Then each band (e.g., blue) is derived using maximum value from these 4 images. Similarly for all bands.
similarly composite 2 C2:61-120 = taking images available during Julian day 61 and 120

**NIR - near-infrared, SWIR = short-wave infrared, TIR-1= thermal infrared

NDVI = normalized difference vegetation index,

b. Theoretical Description

I. Definition of Croplands

For all products within GFSAD30 cropland extent map, cropland extent was defined as, “lands
cultivated with plants harvested for food, feed, and fiber, including both seasonal crops (e.g.,
wheat, rice, corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa,
and oil palms). Cropland fallows are lands uncultivated during a season or a year but are farm-
lands and are equipped for cultivation, including plantations (e.g., orchards, vineyards, coffee,
tea, and rubber)” (Teluguntla et al., 2015). Cropland extent also includes areas equipped for crop-
ping but may not be cropped in a particular season or year. These are cropland fallows. So
cropland extent includes all planted crops plus cropland fallows. Non-croplands include all other
land cover classes other than croplands and cropland fallows.
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Croplands +

V“\l -
Figure 4. Illustration of definition of cropland mapping. Croplands included: (a) standing crop,
(b) cropland fallows, and (c) permanent plantation crops. Note: + sign means adding. Means total
net croplands= standing crops + cropland fallows + plantations.

il. Algorithm

The study used one machine-learning algorithm to create the cropland extent product, which is
the pixel-based supervised classifier Random Forest (RF). The algorithm is described in detail
below. New Zealand was stratified into two separate refined FAO agro-ecological zones, China
stratified into three zones and Australia as a single zone (Figure 2) to facilitate the optimal clas-
sification.

c. Practical Description

I. Random Forest Classifier (RF)

The Random Forest classifier is more robust, relatively faster, and easier to implement than many
other classifiers (Pelletier et al., 2016). The Random Forest classifier uses bootstrap aggregating
(bagging) to form an ensemble of decision trees by searching random subspaces from the given
data (features) and the best splitting of the nodes by minimizing the correlation between the trees.
All supervised pixel-based classifications rely heavily on the input training samples. To discrim-
inate croplands under various environments and condition, the sample size of the initial training
dataset needs to be large, especially in complex regions. All samples were selected to represent
a 90-m x 90-m polygon. First, we made extensive field campaigns in Australia during the 2014-
crop growing season when data were collected on precise cropland locations as well as non-
cropland locations. This effort led to collection of more than 628 samples spread across Australia
(e.g., Table 3). Second, we absorbed the ground data from previous efforts for China and other
reliable sources. Third, sub-meter to 5-m very high spatial resolution imagery, available for us
for the entire study region, was used to generate croplands versus non-cropland interpretations
by multiple analyses across China, Australia, and New Zealand and a total of ~1490 data samples
were used from these interpretations. To move forward with a larger sample size, an iterative
sample selection procedure was introduced with the following steps for training the Random
Forest (RF) machine-learning algorithm as illustrated in Figure 1.
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1. Build Random Forest classifier using existing training samples. Initially we start with a small
number of samples and slowly increase the sample size till we reach high degree of accuracy
and the accuracy plateaus at certain sample size;

2. Based on established classifier, classify 30-m MFDC using Random Forest algorithm in GEE
cloud,

3. Visual assessment of classification results are compared with existing reference maps as well
as sub-meter to 5-m very high spatial resolution imagery (VHRI); The process (Figure 1) was
iterated until sufficient correspondence is achieved;

4. Added (see Figure 1) ‘crop' samples in missing area and ‘non-crop' samples by referencing
sub-meter to 5-m very high spatial imagery from Google Earth Imagery. For cases hard to tell
by interpretation (fallow-land or abandoned fields), historical Landsat Images and MODIS
NDVI time-series are also referenced. All the samples selected to represent a 90-m x 90-m
polygon.

5. Loop step 1-4 with enlarged training dataset until classification becomes stable.

The number of iterations required for the training sample selection is a function of the complexity

of the area. China was divided into three zones; New Zealand was divided into two zones to carry

out classification (Figure 2): the iterative selection will have to loop ~4-5 times to improve the
initial classified results.

Il. Programming and codes

The pixel-based supervised machine-learning algorithm (RF) was coded on GEE using Python
and Java Scripts using Application Programming Interface (API). The codes are made available
in a zip file and are available for download along with this ATBD.

. Results

The machine learning algorithms (RF), discussed in previous sections, were trained to separate
croplands versus non-croplands for each of the zones (Figure 2) based on knowledge generated
using reference data. The machine learning algorithms were then run on the Google Earth Engine
(GEE) cloud-computing environment using a Landsat-8 collection for each of the zones to sepa-
rate croplands versus non-croplands. The process was iterated and knowledge in the algorithms
tweaked several times, before getting accurate results of croplands versus non-croplands. This
process led to producing the Global Food Security-support Analysis Data @ 30-m cropland ex-
tent for China (Figure 5), Australia (Figure 6), and New Zealand (Figure 7) product. This product
is available through the Land Processes Distributed Active Archive Center (LP DAAC). The
same dataset is also available for visualization at https://croplands.org/app/map.

Zoom-in views show complete resolution of the imagery that shows individual farms (Figure 5,
6, 7, and 8). Full resolution of 30-m cropland extent can be visualized in croplands.org by zoom-
ing-in to specific areas as illustrated in right panel (b) and (c) of Figures 5, 6, 7, and 8. For any
area in Australia, China, New Zealand, or Mongolia croplands can be visualized by zooming into
specific areas in croplands.org. The background sub-meter to 5-m imagery, available for the re-
gions on Google Earth helps evaluate the precision of the cropland extent product (“zoom in”
and “toggle” cropland “on” and “off” to see the sub-meter to 5-m imagery in the background).

-15 - DCN
Version 1.0


https://croplands.org/app/map
http://croplands.org/

a 80"0;0"1'2 90"0[‘0"1'2 100°(1P‘0"E llﬂ"(li'l)"E 120"?'0“&2 130°q‘0"E
)N\
s | | S
s - 2
z @
L5
‘..%:’
= | {.4\._/ o7, S | S
g A £
2" 4 - $
\,_w,q y
<
S| = =3
e 2
3 2
. | 8] 1.Croplands i S , z
2 S
<l | 2.Non-croplands P4 =
I3 L L .| =
o 0 "500 1,000 2,000 Kilometers o
1 T i 1 T T
80°0'0"E 90°0'0"E 100°0'0"E 110°0'0"E 120°0'0"E 130°0'0"E

Figure 5. Cropland Extent Product at 30-m for China (left image) with illustrative zoom in view
for a location (right). This product is made available for visualization @: croplands.org. The data
are downloadable from LP DAAC.
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view for a location (right). This product is made available for visualization @: croplands.org.
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Figure 7. Cropland Extent Product at 30-m for New Zealand (left image) with illustrative zoom
in view for a location (right). This product is made available for visualization @: croplands.org.
The data are downloadable from LP DAAC.
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Figure 8. Cropland Extent Product at 30-m for Mongolia (left image) with illustrative zoom in
view for a location (right). This product is made available for visualization @: croplands.org.
The data are downloadable from LP DAAC.
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Iv. Cropland Areas

Country wise cropland areas calculated based on 30-m crop extent maps from this study are
summarized here. Table 5 shows country-by-country cropland area statistics of all countries gen-
erated from this study and compared with several other sources such as the national census data
based MIRCA2000 (Stefan Siebert and Portmann, personal communication; Portmann, 2010)
which were also updated in the year 2015, The Food and Agricultural Organization (FAO) of
United Nation’s compiled statistics, MODIS 500-m derived cropland areas from GRIPC (Salmon
et al., 2015), and GIAM-GMRCA (Thenkabail et al., 2009 and Biradar et al., 2009) derived
cropland areas. Overall as per GFSAD30AUNZCNMOCE estimates, total net cropland areas of
China, Australia, and New Zealand were 165.2 Mha, 35.1Mha and 2.25 Mha respectively. Fur-
ther, the cropland areas of China were computed at sub-national level for the 31 provinces of
China and were compared with cropland areas from national statistics of China
(http://www.stats.gov.cn/tjsj/ndsj/2014/indexeh.htm) and shown in Figure 9. Among 31 prov-
inces, two provinces show under-estimation and two provinces shows over-estimation relative to
national statistics.

Table 5. Net cropland areas (NCAs) derived based on 30-m GFSAD30 cropland product and
comparison with other cropland products.

FAO

Country Land Area! GFSAD30? MZIO?ESA Ag rli;:zljtf ral GGI\/IIQI\C/IN GZ%(I)EE
Name Ha Ha Ha Ha Ha Ha
China 932,824,512 165,228,334 158,872,013 248,526,732 203,624,473 203,607,871

Australia 768,851,504 35,105,792 30,615,114 47,447,364 48,623,546 54,933,291
New Zealand 26,353,211 2,249,700 1,021,298 540,030 1,585,089 2,607,923
Mongolia 155,436,242 1,211,415 1,961,351 926,400 2,559,316 4,889,473
Note:

1= Total land area is land area excluding area under inland water bodies

2= GFSAD30 current study

3= Monthly irrigated and rainfed crop areas (MIRCA) around the year 2014 derived by Portman et al.
4= FAO Agricultural land area excluding pasture based on FAO2013 statistics consider nominal 2015

http://www.fao.org/faostat/en/#data/QC
5= Global croplands derived from Global Irrigated Area Mapping (GIAM) and

Global Map of Rainfed Cropland Areas (GMRCA) by Thenkabail et al., 2009 and Biradar et al., 2009
6= Global rain-fed, irrigated, and paddy croplands (GRIPC) derived by solmon et al., 2015
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Figure 9. Comparison of province wise cropland areas derived from GFSAD30AUNZCNMOCE
for China vs. cropland areas obtained from National statistics of China (http://www.stats.gov.cn).

V. Calibration Needs/Validation Activities

An independent accuracy assessment was performed zone by zone.

Australia: For the accuracy assessment in Australia, a total of 900 validation samples were used
to determine the accuracies of the final cropland extent map of Australia. An error matrix (Table
6) was generated for all of Australia that provided producer’s, user’s, and overall accuracies
(Story and Congalton, 1986, Congalton, 1991, and Congalton and Green, 2009). For all of Aus-
tralia (which was in single zone# 68), the overall accuracies were 97.6% with producer’s accu-
racy of 98.8% (errors of omissions of 1.2%) and user’s accuracy of 79.0% (errors of commissions
21%) for the cropland class (Table 6). These results clearly imply the high level of confidence in
differentiating croplands from non-croplands for Australia. High producer’s accuracies for the
cropland class across Australia (98.8%) suggested that almost all croplands of Australia were
mapped accurately- with only 1.2% of croplands omitted. However, as a trade-off, for achieving
such high producer’s accuracies for the cropland class, there was an commission error of 21%
(meaning non-croplands mapped as croplands). Since our goal is to map almost all croplands,
this small compromise of mapping some non-croplands as croplands need to be accepted.
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Table 6. Independent Accuracy Assessment error matrix of 30-m Cropland Extent Product for
Australia.

Zone 68 Reference Data

Crop No-Crop Total  User Accuracy

&8 Crop 79 21 100 79.0%
=0 . 1 799 800 99.9%
Total 80 820 900
Producer Accuracy 98.8%  97.4% 97.6%

New Zealand: For accuracy assessment in New Zealand, 500 validation samples, combined for
two zones in New Zealand, were used to determine the accuracies of the final cropland extent
map of New Zealand. Error matrices (Table 7) were generated for each of the zones separately
and for all of New Zealand providing producer’s, user’s and overall accuracies. For all of New
Zealand, the overall accuracies were 93.4% with producer’s accuracy of 91.7% (errors of omis-
sions of 8.3%) and user’s accuracy of 82.7% (errors of commissions of 17.3%) for the cropland
class (Table 7). When considering both zones, the overall accuracies ranged between 90-96.8%,
producer’s accuracies of the cropland class in the Zone #69 and #70 were 92.3% and 91.4%
respectively (Table 7), and user’s accuracies for the cropland class in the Zone #69 and #70 were
87.8% and 80.4% respectively (Table 7).

Table 7. Independent Accuracy Assessment error matrix of 30-m Cropland Extent Product for
New Zealand by Zone.

Zone 69 Reference Data Zone 70 Reference Data

% of TCA™= 18.8% | Crop No-Crop|Total User Accuracy| |% of TCA™= 81.2% | Crop No-Crop|Total User Accuracy
Crop 36 5 41 87.8% Crop 74 18 92 80.4%

[ No-Croj 3 206 209 98.6% No-Croj 7 151 158 95.6%

Total 39 211 2350 Total 81 169 250

[Producer Accuracy 92.3% 97.6% | 96.8% [Producer Accuracy 91.4% 89.4% | 90.0%

Reference Data

Map
Data

Map
Data

Combined Crop No-Crop|Total User Accuracy
g g Crop 110 23 133 82.7%
= A No-Crop 10 357 367 97.3%

Total 120 380 500

Producer Accuracy 91.7% 94.0% 93.4%

TCA" (Total Cropland Area) = 8.1 Mha

China: For the accuracy assessment in China, a total of 1972 validation samples, combined for
all three zones in China, were used to determine the accuracy of the final cropland extent map of
China. Error matrices (Table 8) were generated for each of the zones separately and for all of
China providing producer’s, user’s, and overall accuracies (Story and Congalton, 1986, Congal-
ton, 1991, and Congalton and Green, 2009). For all of China, the overall accuracies were 94%
with producer’s accuracy of 80% (errors of omissions of 20%) and user’s accuracy of 84.2%
(errors of commissions of 15.8%) for the cropland class (Table 8). When considering all three
zones, 95% of total cropland area of China is in zone #58 in Table 5, 4% of total cropland area
of China is in zone #59, and only <1% of total cropland area of China is in zone #60. The overall
accuracies ranged between 91-98%); producer’s accuracies of the cropland class for the zone #58
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and zone #59 were 83.3% and 65% respectively. Zone #60 had low overall accuracies, but it has
only about 1% of the total cropland areas of China and hence is inconsequential for most appli-
cations. Zone 58, which has 95% of all China’s croplands, had for the cropland class producer’s
accuracy of 83.3% and user’s accuracy of 84.2% for the cropland class. This means, in this zone,
16.7% of the croplands were not mapped (omissions errors) and 15.8% of the non-croplands were
mapped as croplands. These results clearly imply the high level of confidence in differentiating
croplands from non-croplands for China. High producer’s accuracies across zones suggest that
few croplands were omitted during the mapping process.

Table 8. Independent accuracy assessment error matrix for the 30-m Cropland Extent Product
for China by zone.

Zone 58 Reference Data Zone 60 Reference Data
% of TCA™= 95.1% Crop No-Crop|Total User Accuracy ||% of TCA™= 1.0% Crop No-Crop [Total User Accuracy
& g Crop 255 48 303 84.2% 3 g Crop 4 0 4 100.0%
=c No-Crop | 51 830 | 881 94.2% =0 No-Crop| 10 335 |345 97.1%
Total 306 878 1,184 | [Fotal 14 335 349 ‘
[Producer Accuracy 83.3% 94.5% 91.6% [Producer Accuracy 28.6% 100.0% 97.1%
Zone 59 Reference Data Combined Reference Data
% of TCA*™= 3.9% Crop No-Crop|Total User Accuracy Crop_No-Crop|Total User Accuracy
E% 'E Crop 13 3 16 81.3% |3 % Crop 272 51 323 84.2%
A No-Crop 7 416 423 98.4% = A No-Crop| 68 1,581 [1.649 95.9%
Total 20 419 439 | [Total 340 1,632 1,972
[Producer Accuracy 65.0% 99.3% | 97.7% [Producer Accuracy 80.0% 96.9 % 94.0%

TCA" (Total Cropland Area) = 165 Mha

Mongolia: For the accuracy assessment in Mongolia, a total of 310 validation samples were used
to determine the accuracies of the final cropland extent map of Mongolia. An error matrix (Table
9) was generated for all of Mongolia that provided producer’s, user’s, and overall accuracies
(Story and Congalton, 1986, Congalton, 1991, and Congalton and Green, 2009). For all of Mon-
gola (which was in single zone# 57), the overall accuracies were 98.4% with producer’s accuracy
of 75.0% (errors of omissions of 25%) and user’s accuracy of 92.3% (errors of commissions
7.7%) for the cropland class (Table 8). These results clearly imply the high level of confidence
in differentiating croplands from non-croplands for Mongolia.

Table 9. Independent accuracy assessment error matrix for the 30-m Cropland Extent Product
for Mongolia.

Zone 57 Reference Data
Crop No-Crop|Total User Accuracy
& 3 Crop 12 1 13 92.3%
=a No-Crop| 4 293 297 98.7%
Total 16 294 310
[Producer Accuracy  75.0% 99.7% 98.4%
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V1. Constraints and Limitations

Note overlapping tiles: The following tile also covers part of another tile

in GFSAD30SEACE (Indonesia). Please ignore the Indonesian data in the following tile and
keep only Australian part.
GFSAD30AUNZCNMOCE_2015 S20E120 001 2017286154500.tif

GFSAD30AUNZCNMOCE product mapped the croplands of Australia, New Zealand, and
China @ nominal 30-m, which is the best known resolution for cropland mapping over such a
large Agriculture area. It also has high levels of overall accuracies of 97.6%, 93.4%, and 94.0 %
for Australia, New Zealand, and China respectively, producer’s accuracies of 98.8%, 913%
80.0%, and user’s accuracies of 78.8%, 82.7%, and 84.4 % for cropland class.

A producer’s accuracy of 98.8% for the cropland class of Australia means an error of omission
of 1.2%. This means 1.2% of the continental croplands were missing in the product. A user ac-
curacy of 78.8% for the cropland class for Australia means there is an error of commission of
22.2%. This means, 22.2% of non-croplands are mapped as croplands. We tweaked the machine
learning algorithms (section V) to maximize capturing as much croplands as feasible automati-
cally. In this process, some non-croplands are mapped as croplands as well. This is a preferred
solution, in order to not miss croplands or to only miss them minimally. As a compromise, map-
ping some non-croplands as croplands becomes unavoidable. Similar interpretations can be made
for New Zealand and China based on their error matrices (Table 7 for New Zealand and Table 8
for China).

Numerous issues cause uncertainties and limitations in cropland extent product. Some of these
issues are discussed here. First, temporal coverage. The 16 day Landsat-8 and 16-day Landsat-7
coverage when put together, lead to substantial temporal coverage. Yet, if we look at Figure 3,
we were only able to achieve seasonal (and not bi-weekly or monthly) cloud-free or near cloud-
free mosaics of the entire study area. This is not surprising given such a large area involved and
frequent cloud across the China. As a result, if we were to have daily coverage over an area (e.g.,
like MODIS) then it becomes feasible to have more frequent (e.g., monthly or bi-monthly com-
posites) temporal coverage of the continent that will help advance cropland mapping at improved
accuracies. Currently, even with two Landsat satellites, at best, we have two 4 images per month
(compared to 30 images of MODIS when we consider daily day time coverage of MODIS). Sec-
ond, there is a need for greater understanding of the Landsat-7 and Landsat-8 data on how well
they are correlated and in efforts to achieve better harmonization of data from two different sen-
sors. Third, is the limitation of the reference training and validation data. In this project, we
already have large training and validation data compared to any previous work as described in
various previous sections. Nevertheless, much wider and extensive field visits to different parts
of the study regions will be helpful in better understanding of the issues involved and as a result
better mapping. We had extensive field visits in Australia and China, but these data were mostly
acquired one time. Greatest difficulties in cropland mapping in China were in mountainous agri-
culture (e.g., terrace agriculture), cropland fallows (e.g., whether a fallow is 1 year or 5-year or
permanent). These and numerous other issues (e.g., implementing machine learning algorithms
and uncertainties inherent in them) will continue to be there in cropland mapping over such large
agriculture areas in china. Nevertheless advances made in this study is significant, especially in

-22- DCN
Version 1.0



developing a nominal 30-m cropland extent of a large agriculture countries like China, Australia
and New Zealand at very good accuracies.
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Fax: 605-594-6963
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Web: https://Ipdaac.usgs.gov
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Prasad S. Thenkabail at pthenkabail @usgs.gov

For the 30-m cropland extent product of Australia, New Zealand, and China, please contact:
Pardhasaradhi Teluguntla at pteluguntla@usgs.gov
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More details about the GFSAD30 project and products can be found at: globalcroplands.org
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