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I. Members of the team 
This Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent-Product of 

Australia, New Zealand, China, and Mongolia (GFSAD30AUNZCNMOCE) was produced by 

the following team members. Their specific role is mentioned. 

 

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute 

(BAERI) at United States Geological Survey (USGS) led the GFSAD30AUNZCNMOCE prod-

uct generation effort. Dr. Teluguntla was instrumental in the designing, coding, computing, ana-

lyzing, and synthesis of the Landsat-8 derived nominal 30-m GFSAD30AUNZCNMOCE 

cropland product of Australia, New Zealand and China for the nominal year 2015. He was also 

instrumental in writing the manuscripts, ATBDs, and user documentations. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Prin-

cipal Investigator (PI) of the GFSAD30 project. Dr. Thenkabail was instrumental in developing 

the conceptual framework of the GFSAD30 project and the GFSAD30AUNZCNMOCE product. 

He made significant contribution in writing the manuscripts, ATBDs, User documentations, and 

providing scientific guidance throughout the GFSAD30 project. 

 

Dr. Jun Xiong, Research Scientist, Bay Area Environmental Research Institute (BAERI) at 

United States Geological Survey (USGS), participated in the intellectual discussions and in pro-

vided inputs and insights on GFSAD30AUNZCNMOCE 30-m cropland extent product genera-

tion and shared his expertise in cloud computing. 

 

Dr. Murali  Krishna Gumma, Senior Scientist at the International Crops Research Institute for 

the Semi-Arid Tropics, helped collect reference data used in the machine learning algorithms. 

 

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New 

Hampshire, led the independent accuracy assessment of the entire GFSAD30 project including 

GFSAD30AUNZCNMOCE 30-m cropland extent product of Australia, New Zealand and China. 

 

Mr.  Adam Oliphant, Geographer, United States Geological Survey (USGS), shared his exper-

tise in cloud computing and Random Forest algorithm implementation in Google Earth Engine 

(GEE) for GFSAD30AUNZCNMOCE 30-m cropland extent product generation. 

 

Mr.  Justin Poehnelt, Computer Scientist with the United States Geological Survey, contributed 

to the initial conceptualization and development of the croplands.org website. 

 

Ms. Kamini  Yadav, PhD student at the University of New Hampshire, made contributions to 

the independent accuracy assessment directed by Prof. Russell G. Congalton. 

 

Dr. Temuulen T. Sankey, Assistant Professor, Northern Arizona University, produced the Mon-

golia cropland product and also performed its validation. 

 
Ms. Aparna Phalke, PhD student, University of Wisconsin, shared cloud-computing expertise. 

 

Ms. Corryn  Smith, Student developer, helped in development of the croplands.org website. 

https://plus.google.com/117927604440673369842
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II.  Historical  Context and Background Information  
Monitoring global croplands (GCs) is imperative for ensuring sustainable water and food security 

for the people of the world in the Twenty-first Century. However, currently available cropland 

products suffer from major limitations such as: (a) Absence of precise spatial location of the 

cropped areas; (b) Coarse resolution nature of the map products with significant uncertainties in 

areas, locations, and detail; (c) Uncertainties in differentiating irrigated areas from rainfed areas; 

(d) Absence of crop types and cropping intensities; and (e) Absence of a dedicated web\data 

portal for the dissemination of cropland products. Therefore, the Global Food Security-support 

Analysis Data (GFSAD) project aimed to address these limitations by producing cropland maps 

at 30m resolution covering the globe, referred to as Global food security support-analysis data 

@ 30-m (GFSAD30) product. 

 

This Algorithm Theoretical Basis Document (ATBD) provides a basis upon which the GFSAD30 

cropland extent product was developed for the countries of Australia, New Zealand, China, Mon-

golia (GFSAD30AUNZCNMOCE, Table 1), produced using Landsat-8 and Landsat-7 time-se-

ries satellite sensor data.  This document provides comprehensive details of the 

GFSAD30AUNZCNMOCE production scheme that includes remote sensing data, reference and 

validation data, approaches, methods, machine learning algorithms, product generation, accuracy 

assessments, and area calculations. 

 

It must be noted that cropland mapping for Mongolia was conducted separately by Dr. Sankey. 

A separate ATBD and user guide for Mongolia was not necessary as Mongolia only has about 

0.06% to the global cropland areas, the methods and approaches mostly follow the oneôs de-

scribed in this manuscript as well as in other continental studies.  

 

Table 1. GFSAD30CE Products basic information for Australia, New Zealand, and China. 

 
Product Name Short Name Spatial 

resolution 

Temporal 

coverage 

GFSAD30-m cropland Extent Product 

of Australia, New Zealand,  China, 

and Mongolia 

GFSAD30AUNZCNMOCE 30-m Nominal 

2015 

Note: Nominal here means that the Landsat-8 16 day data used to produce the product is for two to three years 

(2013-2015), but the product is reported as nominal year 2015.  

 

  III.  Rationale for  Development of the Algorithms 
Mapping the precise location of croplands enables the extent and area of agricultural lands to be 

more effectively captured, which is of great importance for managing food production systems 

and to study their inter-relationships with water, geo-political, socio-economic, health, environ-

mental, and ecological issues (Thenkabail et al., 2010). Further, accurate development of all 

higher-level cropland products such as crop watering method (irrigated or rainfed), cropping in-

tensities (e.g., single, double, or continuous cropping), crop type mapping, cropland fallows, as 

well as assessment of cropland productivity (i.e., productivity per unit of land), and crop water 

productivity (i.e., productivity per unit of water) are all highly dependent on availability of pre-

cise and accurate cropland extent maps. Uncertainties associated with cropland extent maps af-

fect the quality of all higher-level cropland products reliant on an accurate cropland extent base 
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map. However, precise and accurate cropland extent maps are currently nonexistent at the conti-

nental extent at a high spatial resolution (30-m or better). This lack of crop extent maps is partic-

ularly true for complex, small-holder dominant agricultural systems. By mapping croplands at a 

high spatial resolution at the continental scale, the GFSAD30project has resolved many of the 

shortcomings and uncertainties of other cropland mapping efforts. 

 

The two most common methods for land-cover mapping over large areas using remote-sensing 

images are manual classification based on visual interpretation and digital per-pixel classifica-

tion. The former approach delivers products of high quality, such as the European CORINE Land 

Cover maps (Büttner, 2014). Although the human capacity for interpreting images is remarkable, 

visual interpretation is subjective (Lillesand et al., 2014), time-consuming, and expensive. Digital 

per-pixel classification has been applied for land-cover mapping since the advent of remote sens-

ing and is still widely used in operational programs, such as the 2005 North American Land 

Cover Database at 250-m spatial resolution (Latifovic, 2010). Pixel-based classifications such as 

maximum likelihood classifier (MLC), neural network classification (NN), decision trees, Ran-

dom Forests (RF), and Support Vector Machines are powerful, and fast classifiers that help dif-

ferentiate distinct patterns of landscape. Both supervised and unsupervised classification ap-

proaches are adopted in pixel-based classifiers. However, per-pixel classification includes sev-

eral limitations. For example, the pixelôs square shape is arbitrary in relation to patchy or contin-

uous land features of interest, and there is significant spectral contamination among neighboring 

pixels. As a result, per-pixel classification often leads to noisy classification outputs, the well-

known ñsalt-and-pepperò effect. There are other limitations of pixel-based classification meth-

ods: 1. they fail to capture the spatial information of high-resolution imagery such as from Land-

sat 30-m imagery, and 2. they often, classify the same field (e.g., a corn field) into different 

classes, as a result of within-field variability. This may often result in a field with a single crop 

(e.g., corn) classified as different crops.  

 

We used supervised pixel-based classifier Random Forest (RF), which has been widely used in 

agricultural cropland studies over the years (Myint et al., 2011) and which is considered powerful 

and an ideal machine learning algorithm (Tian et al., 2016, Shi and Yang, 2015, Huang et al., 

2010). A description of how to classify cropland extent of Australia, New Zealand, and China is 

provided in section 2.3 and its sub-sections. 

 

This document describes, in detail, the development of the Global Food Security-support Anal-

ysis Data (GFSAD) @ 30-m for Australia, New Zealand, China, and Mongolia: Cropland Extent 

Product (GFSAD30AUNZCNMOCE). The approach involves the use of a supervised Random 

Forest (RF) algorithm to retrieve crop extent results from pixel-based classification (see overview 

of the methodology in Figure 1). 

 

IV.  Algorithm  Description 
An overview of the algorithm description is provided in Figure 1. The methodology used in this 

project (Figure 1) is briefly described in this paragraph to provide an overview of methods pre-

sented in detail in sub-sequent sections of this ATBD document. The process (Figure 1) involved 

combining year 2014-2015 16-day time-series Landsat-8 30-m data along with Landsat-7 30-m 

data. The process included several well designed steps (Figure 1). First, the data were pre-pro-

cessed by cloud mask and gap filling  on Google Earth Engine (GEE). Second, median value 
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composites were created for 4 to 6 periods based on cloud-free or near-cloud-free wall-to-all 

coverage. Such a seasonal mosaic aided in achieving cloud free clear images of the continent. 

Each composite mosaic contained 8 bands as listed in Figure 1.  Third, reference data were gen-

erated throughout the study area to train the RF algorithms. There are 3348 reference samples for 

this purpose. Fourth, the result of the pixel-based RF algorithm was to obtain the cropland extent 

product for Australia, New Zealand, and China. Fifth, the cropland product of Australia, New 

Zealand, and China was evaluated for accuracy using 3372 test samples. The process was iterated 

until adequate accuracies were attained. Accuracy assessments were performed by Dr. Russell 

Congalton and his PhD student, Kamini Yadav, independent of the production team. In this pro-

cess, the validation data were only available to the accuracy assessment team and were hidden 

from the production team. As a result, there was completely independent accuracy assessment. 

Finally, the GFSAD30AUNZCNMOCE product was made available on croplands.org. 

 

 
Figure 1. Flowchart of mapping methods for Landsat-8 derived cropland extent-product of Aus-

tralia, New Zealand, and China for the nominal year 2015. 

 

a.     Input  data 

i. Region Definition  
The study was conducted for the countries Australia, New Zealand and China (see Figure 2, 

Figure 5, Figure 6, and Figure 7). The country boundaries were determined by the Global Ad-

ministrative Unit Layers (GAUL) of United Nations (http://www.fao.org/geonet-

work/srv/en/metadata.show?id=12691&currTab=simple). 
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ii.  Reference Croplands Samples 
Reference data are required for both training the machine learning algorithms (see section 2.3) 

as well as for validating the final products. First, we conducted an extensive field survey during 

September and October of 2014, the peak crop-growing season for crops in Australia.  More than 

4000 ground samples were collected from New South Wales (NSW), Victoria (VIC), South Aus-

tralia (SA), and Western Australia (WA) regions of Australia following the specific guidelines 

on collecting ground reference data (Congalton, 2015). The sampling sites included various crop 

fields: such as Cereal crops (Wheat, Barley, and Oats), Legumes (Lupin, Lentils, Peas, and 

Beans), Oilseeds (Canola), Vegetables, Continuous crops (Orchard crops), Fodder crops (Alfalfa 

and sown pastures) and some fallow lands. Similarly, we obtained ground reference data for 

China through collaboration with the Chinese Academy of Agricultural Sciences (CAAS) who 

collecting field data that were spatially well spread out throughout agricultural cropland areas of 

China. The field survey gathered a total of 2120 ground samples including: (1) Location of sam-

ples (GPS position, location name, date of collection); crop properties (2) Croplands versus non-

croplands; (3) irrigated or rainfed; (4) Crop intensity (single, double, triple, continuous cropping 

in 12 months); (5) Crop type (major crop types mentioned above, others); and (6) Digital photo-

graphs of each sample. 
 

The ground data samples were collected from three main sources.  

 

First, field surveys (or ground data) were collected during 2014 and 2015. The field-surveyed 

data were divided into three independent datasets with each set containing 1/3rd of the total 

samples (e.g., Table 2). The first set was used for training machine-learning algorithms (e.g., 

Random Forest). The second set was used to test the product. The third set was set aside and 

was used for independent accuracy assessment.  In addition, we obtained reference-training 

data from the following reliable sources in addition to our own field data collections.  

 

Second, random samples were obtained by interpreting sub-meter to 5-meter very high spatial 

resolution imagery (VHRI) data throughout Australia, New Zealand, and China available to US 

Government entities through the sub-meter to 5-m imagery obtained from the National Geospa-

tial Agency (NGA). For this, we collected 1420 reference and 2710 validation samples. 

 

Third, reference data were obtained from other reliable sources such as Geo Science Australia, 

Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). The ref-

erence training data were used to ñtrainò the Random Forest algorithm to separate croplands from 

non-croplands. This required us to keep adding training samples until optimal classification re-

sults were obtained (see section 2.3 and its sub-sections). A total of 2130 representative samples 

were used to ñtrainò and separate croplands from non-croplands in China, 958 samples in Aus-

tralia, and 260 samples in New Zealand (see Figure 2 showing the distribution of these samples) 

(Table 3).  

 

The whole set of reference data including primary and secondary data were made available, at 

the following website: https://croplands.org/app/data/search. 

 

 

https://croplands.org/app/data/search
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Table 2. Ground data samples over Australia for the year 2014. The ground data samples 

were randomly split into reference or training (N1=1458 samples), validation set 1 for testing 

accuracies (N2=1488), independent validation set 2 for testing accuracies (N3=1465). 
 

 
 

Table 3. Number of reference samples used for training the Random Forest (RF) machine-learn-

ing algorithm and number of validation samples used for independent accuracy assessment.  
 

 
Note: The number of training and validation samples depended on the results. When optimal results obtained, we 

stopped adding further samples. The process requires starting with a certain sample number initially and progres-

sively increasing sample number until optimal accuracies are reached. 

Code 

Crop 

Description

Reference  

or training   

Validation 

Set#1 

 Validation 

Set#2

Total 

number

N1 N2 N3 N

1 Alfafa 4 3 4 11

2 Barley 154 153 154 461

3 Beans 30 29 29 88

4 Canola 186 185 186 557

5 Lentils 65 65 65 195

6 Lupin 34 33 35 102

7 Oats 73 72 73 218

8 Peas 27 26 26 79

9 Wheat 283 283 284 850

10 Orchards 55 60 54 169

11 Sown-pasture 95 98 96 289

12 Season-2 Crops 20 16 18 54

13 Crop-harvested 9 9 10 28

14 Vegetables 1 1 1 3

15 Plantation 4 3 3 10

16 Cropland,others 30 29 25 84

20 Grazing/pastures 118 117 117 352

30 Non croplands 145 165 155 465

40 Fallow 125 141 130 396

Total 1458 1488 1465 4411

Country Class  Training samples Validation samples

Crop 530 80

Australia No Crop 428 820

Total 958 900

Crop 114 120

NewZealand No Crop 146 380

Total 260 500

Crop 1346 340

China No Crop 784 1632

Total 2130 1972
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iii.  Image Stratification  
The cropland versus non-cropland classification was carried out using the Random Forest (RF) 

machine-learning algorithm by stratifying the study area into refined agro-ecological zones 

(AEZs) (Figure 2). The AEZs were developed by the United Nationôs Food and Agricultural 

Organization (UN FAO). However, this results in too many zones (which is not necessary given 

many zones have only a very small proportion of crops). Therefore, we combined some of these 

zones into broader refined AEZs (RAEZs) based on the convenience, and speed of applying the 

RF algorithm. This resulted in six broad RAEZs across China, Australia, and New Zealand (Fig-

ure 2). RF algorithm were trained for separating croplands from non-croplands in each of these 

RAEZs (Figure 2) using the reference training data falling within these zones. Working within 

each RAEZ also helped in data management and classification speed. 

 

 
 

Figure 2. Stratification of the study area into distinct and broad refined agro-ecological zones 

(RAEZs). The figure also shows the distribution of the reference training data used in the Ran-

dom Forest (RF) machine-learning algorithm.  The Random Forest (RF) pixel-based supervised 

machine learning algorithm used in this study was ñtrainedò using reference training data falling 

within each of these zones to separate croplands from non-croplands. 
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iv.   Satellite Imagery: Landsat-8 and Landsat-7 
In order to cover crop dynamics in different periods, Landsat-8 OLI (Roy et al., 2014) satellite 

data have been used for Australia, New Zealand, and China.  In addition, Landsat-7 has been 

used to fill  some data gaps (Irons et al., 2012) for China, aiming to provide seamless 30-m data 

for all time periods. There is a 16-day revisit time per Landsat-8 OLI and Landsat-7 ETM+ 30-

m data. It is difficult  to get continuous 8 to 16-day cloud free time-series data for wall-to-wall 

coverage for any part of the region.  To overcome this limitation and to ensure cloud-free or near-

cloud-free wall-to-all coverage, bi/tri-monthly composites, depending on the cloudiness of the 

countries\regions, were composed (e.g., Figures 3a and 3b). Finally, 30-m mega-file data-cubes 

(MFDCs) were created as per the following steps leading to a 48-band MFDC (Figure 3a) for 

Australia and New Zealand from 6 periods and a 32-band MFDC for China (Figure 3b) from 4 

periods. A systematic detail of the MFDC composition is described below.  

 

The goal of the time-composites was to achieve cloud-free or near cloud-free wall-to-wall com-

posites over the entire study area (e.g., Figures 3a and 3b). This we wanted to achieve, using as 

many time-periods as possible as to get temporal stacks that can monitor phenology. However, 

the time-periods are decided by the ability to achieve cloud-free or near cloud-free images over 

a time-period. In Australia and New Zealand (Figure 3a) we were able to achieve the cloud-free 

or near cloud-free images at much shorter time-periods leading to 6 time-periods (period1: Julian 

days 1-60, period 2: Julian days 61-120, period 3: Julian days 121-180, period 4: Julian days 181-

240, period 5: Julian days 241-300, period 6: Julian days 301-365; Figure 3a). In comparison, 

China (Figure 3b) required longer time-periods to achieve cloud-free or near cloud-free wall-to-

wall coverage due to greater number of cloudy days over the country. As a result, there were 4 

periods (period1: Julian days 1-90, period 2: Julian days 91-180, period 3: Julian days181-270, 

period 4: Julian days 271-365; Figure 3b).  

 

The process involved gathering all the Landsat-8 16-day images over Australia and New Zealand 

(Figure 3a), and all the Landsat-8 as well as Landsat-7 images over China (Figure 3b) available 

for each time-period (e.g., period 1: 1-60 Julian days for Australia and New Zealand), and com-

positing each of the 8 bands by taking median value of each pixel of each band.  These composites 

are called median value composites for each period for each band. The eight bands used in this 

study were (Figure 3a, 3b): blue (0.45-0.51mm), green (0.53-0.59mm), red 0.63-0.69mm), NIR 

(0.85-0.89mm), SWIR1 (1.55 1.65mm), SWIR2 (2.1-2.3 mm), and TIR1 (10.60-11.19mm) bands 

along with Normalized Difference in Vegetation Index (NDVI).  Thereby, for Australia and New 

Zealand, eight median value bands composed over 6 time-periods resulted in a 48 band MFDC 

(Figure 3a). Whereas for China, eight median value bands composed over 4 time-periods resulted 

in a 32 band MFDC (Figure 3b). The band stack, and time-periods leading to MFDC are shown 

in Table 4 as well as in Figures 3a and 3b. All  compositions were performed on the Google Earth 

Engine (GEE) cloud-based geospatial platform for planetary-scale data analysis (Gorelick et al,, 

2017). Landsat top of atmosphere (TOA) products were used instead of surface reflectance (SR) 

due to the limited temporal availability of Landsat-7 and Landsat-8 surface reflectance imagery 

on GEE. 
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Figure 3a. 30-m Data-cube for the Australia and New Zealand regions composited for 6 time-

periods using 2013-2015 Landsat-8 data. For each period (e.g., period 1: Julian days 1-1-60), 

eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, and NDVI Landsat-8) were compo-

sited, taking median value of a given pixel over the period 1. From 6 periods, there was a 48 band 

mega file data cube (MFDC).  

 

 

 
Figure 3b. 30-m Data-cube for China composited for 4 time-periods (e.g., period 1: Julian days 

1 to 90) using every 16-day data of Landsat-8 and Landsat-7 for the years 2013-2015. For each 

period eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1 and NDVI Landsat-8) were 

composited, taking median value of a given pixel over the period. From the 6 periods, there was 

a 32 band MFDC. 
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Table 4. The process of mega file data cube (MFDC) composition for the study areas based on 

median value composition of 8 Landsat-8 and\or Landsat-7 bands over 2013-2015 for 4 to 6 time-

periods. 
 

Region/ 

Country  

Landsat  

products/ 

image Series 

Years 

of  

data  

Time-com-

posited* 
Bands used**  

Mega-file 

Data Cube  

Data 

Provider  

name 
satellite, 

sensor 
Years 

Julian days 

over which 

Landsat 

data are 

time-compo-

sited 

# of bands 

for each  

Total # of 

bands in 

MFDC 

name 

Australia &  

New Zea-

land 

Landsat-8 
2014 & 

2015 

C1:1-60             

C2:61-120  

C3:121-180  

C4:181-240 

C5:241-300  

C6:301-365 

Blue, green, 

Red, NIR , 

SWIR-1, 

SWIR-2, TIR-1  

and NDVI  

48 USGS 

China &  

Mongolia  

Landsat-7 & 

Landsat-8 

2013, 

2014 & 

2015 

C1:1-90              

C2:91-180  

C3:181-270  

C4:271-365 

Blue, green, 

Red, NIR , 

SWIR-1, 

SWIR-2, TIR-1  

and NDVI  

32 USGS 

* C1:1-60 = composite 1 over Julian dates 1 to 60. Given Landsat-8 is acquired over every 16 days, 

 there will be 4 images in first 60 days.          

Then each band (e.g., blue) is derived using maximum value from these 4 images. Similarly for all bands. 

similarly composite 2  C2:61-120 = taking images available during Julian day 61 and 120   

**NIR - near-infrared, SWIR = short-wave infrared, TIR-1= thermal infrared   

NDVI = normalized difference vegetation index,       

 

b.     Theoretical Description                                                

i.   Definition of Croplands 
For all products within GFSAD30 cropland extent map, cropland extent was defined as, ñlands 

cultivated with plants harvested for food, feed, and fiber, including both seasonal crops (e.g., 

wheat, rice, corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, 

and oil palms). Cropland fallows are lands uncultivated during a season or a year but are farm-

lands and are equipped for cultivation, including plantations (e.g., orchards, vineyards, coffee, 

tea, and rubber)ò (Teluguntla et al., 2015). Cropland extent also includes areas equipped for crop-

ping but may not be cropped in a particular season or year. These are cropland fallows. So 

cropland extent includes all planted crops plus cropland fallows. Non-croplands include all other 

land cover classes other than croplands and cropland fallows. 
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Figure 4. Illustration of definition of cropland mapping. Croplands included: (a) standing crop, 

(b) cropland fallows, and (c) permanent plantation crops. Note: + sign means adding. Means total 

net croplands= standing crops + cropland fallows + plantations. 

 

ii .   Algorithm  
The study used one machine-learning algorithm to create the cropland extent product, which is 

the pixel-based supervised classifier Random Forest (RF). The algorithm is described in detail 

below.  New Zealand was stratified into two separate refined FAO agro-ecological zones, China 

stratified into three zones and Australia as a single zone (Figure 2) to facilitate the optimal clas-

sification. 

 

c.     Practical Description 

i.   Random Forest Classifier (RF) 
The Random Forest classifier is more robust, relatively faster, and easier to implement than many 

other classifiers (Pelletier et al., 2016). The Random Forest classifier uses bootstrap aggregating 

(bagging) to form an ensemble of decision trees by searching random subspaces from the given 

data (features) and the best splitting of the nodes by minimizing the correlation between the trees. 

All  supervised pixel-based classifications rely heavily on the input training samples. To discrim-

inate croplands under various environments and condition, the sample size of the initial training 

dataset needs to be large, especially in complex regions. All  samples were selected to represent 

a 90-m x 90-m polygon. First, we made extensive field campaigns in Australia during the 2014-

crop growing season when data were collected on precise cropland locations as well as non-

cropland locations. This effort led to collection of more than 628 samples spread across Australia 

(e.g., Table 3). Second, we absorbed the ground data from previous efforts for China and other 

reliable sources. Third, sub-meter to 5-m very high spatial resolution imagery, available for us 

for the entire study region, was used to generate croplands versus non-cropland interpretations 

by multiple analyses across China, Australia, and New Zealand and a total of ~1490 data samples 

were used from these interpretations. To move forward with a larger sample size, an iterative 

sample selection procedure was introduced with the following steps for training the Random 

Forest (RF) machine-learning algorithm as illustrated in Figure 1. 
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1. Build Random Forest classifier using existing training samples. Initially we start with a small 

number of samples and slowly increase the sample size till  we reach high degree of accuracy 

and the accuracy plateaus at certain sample size; 

2. Based on established classifier, classify 30-m MFDC using Random Forest algorithm in GEE 

cloud; 

3. Visual assessment of classification results are compared with existing reference maps as well 

as sub-meter to 5-m very high spatial resolution imagery (VHRI); The process (Figure 1) was 

iterated until  sufficient correspondence is achieved; 

4. Added (see Figure 1) 'crop' samples in missing area and 'non-crop' samples by referencing 

sub-meter to 5-m very high spatial imagery from Google Earth Imagery. For cases hard to tell 

by interpretation (fallow-land or abandoned fields), historical Landsat Images and MODIS 

NDVI time-series are also referenced. All  the samples selected to represent a 90-m x 90-m 

polygon. 

5. Loop step 1-4 with enlarged training dataset until classification becomes stable. 

The number of iterations required for the training sample selection is a function of the complexity 

of the area. China was divided into three zones; New Zealand was divided into two zones to carry 

out classification (Figure 2): the iterative selection will  have to loop ~4-5 times to improve the 

initial classified results. 

 

ii . Programming and codes 
The pixel-based supervised machine-learning algorithm (RF) was coded on GEE using Python 

and Java Scripts using Application Programming Interface (API). The codes are made available 

in a zip file and are available for download along with this ATBD. 

 

iii . Results 
The machine learning algorithms (RF), discussed in previous sections, were trained to separate 

croplands versus non-croplands for each of the zones (Figure 2) based on knowledge generated 

using reference data. The machine learning algorithms were then run on the Google Earth Engine 

(GEE) cloud-computing environment using a Landsat-8 collection for each of the zones to sepa-

rate croplands versus non-croplands. The process was iterated and knowledge in the algorithms 

tweaked several times, before getting accurate results of croplands versus non-croplands.  This 

process led to producing the Global Food Security-support Analysis Data @ 30-m cropland ex-

tent for China (Figure 5), Australia (Figure 6), and New Zealand (Figure 7) product. This product 

is available through the Land Processes Distributed Active Archive Center (LP DAAC). The 

same dataset is also available for visualization at https://croplands.org/app/map.  

Zoom-in views show complete resolution of the imagery that shows individual farms (Figure 5, 

6, 7, and 8). Full resolution of 30-m cropland extent can be visualized in croplands.org by zoom-

ing-in to specific areas as illustrated in right panel (b) and (c) of Figures 5, 6, 7, and 8. For any 

area in Australia, China, New Zealand, or Mongolia croplands can be visualized by zooming into 

specific areas in croplands.org. The background sub-meter to 5-m imagery, available for the re-

gions on Google Earth helps evaluate the precision of the cropland extent product (ñzoom inò 

and ñtoggleò cropland ñonò and ñoffò to see the sub-meter to 5-m imagery in the background). 

 

https://croplands.org/app/map
http://croplands.org/
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Figure 5. Cropland Extent Product at 30-m for China (left image) with illustrative zoom in view 

for a location (right). This product is made available for visualization @: croplands.org. The data 

are downloadable from LP DAAC. 

 

 

Figure 6. Cropland Extent Product at 30-m for Australia (left image) with illustrative zoom in 

view for a location (right). This product is made available for visualization @: croplands.org. 

The data are downloadable from LP DAAC. 
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Figure 7. Cropland Extent Product at 30-m for New Zealand (left image) with illustrative zoom 

in view for a location (right). This product is made available for visualization @: croplands.org. 

The data are downloadable from LP DAAC. 

 

 

 
 

Figure 8. Cropland Extent Product at 30-m for Mongolia (left image) with illustrative zoom in 

view for a location (right). This product is made available for visualization @: croplands.org. 

The data are downloadable from LP DAAC. 

  


