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I. Members of the team  
The Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent-Product of 

North America (GFSAD30NACE) was produced by the following team members: 

 

Mr. Richard Massey, PhD student at the Northern Arizona University, led the GFSAD30NACE 

mapping effort. His contributions include algorithm design, writing the code, computing and 

analysis, coordinating with the validation team, writing manuscripts, ATBDs, and user 

documentation. 

 

Dr. Temuulen T. Sankey, Assistant Professor, Northern Arizona University, was the co-

investigator working on the GFSAD30NACE product for North America. Her contributions 

include algorithm design, analysis, coordinating with the validation team and writing & editing 

the manuscript. 

 

Ms. Kamini Yadav, PhD student at the University of New Hampshire was a lead member of the 

independent accuracy assessment team led by Dr. Russell G. Congalton. 

 

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New 

Hampshire, led the independent accuracy assessment of the entire GFSAD30 project including 

GFSAD30NACE 30m cropland extent product for North America. 

 

Dr. James C. Tilton, Computer Engineer with the Computational and Information Sciences and 

Technology Office (CISTO) of the Science and Exploration Directorate at the NASA Goddard 

Space Flight Center, developed recursive hierarchical segmentation (RHSeg) algorithm. He also 

helped Mr. Massey implement RHSeg on Northern Arizona University’s computing cluster 

Monsoon. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the 

Principal Investigator (PI) of the GFSAD30 project. Dr. Thenkabail was instrumental in 

developing conceptual framework of the GFSAD30 project and the GFSAD30NACE North 

America cropland extent product. He also provided constant intellectual guidance throughout the 

project, edited manuscripts, ATBD’s, and user documentation. 

 

 

II. Historical Context and Background Information 
Accurate spatial information on croplands is critical for global food security research, 

agricultural planning, and land-cover change studies (Foley et al. 2011; Thenkabail et al. 2010). 

Satellite image-based cropland maps provide spatially explicit, economic, and efficient methods 

and opportunities for cropland monitoring (Yu et al., 2013, Foley et al., 2011; Fritz et al., 2015; 

Wardlow and Egbert, 2008). North America provides much of the global crop production in the 

world. It is the largest producer of coarse grains and maize, and the third largest producer of 

cereals and wheat (Cerquiglini et al., 2016). A fundamental description of food production and 

food security as well as an indicator of the food supply system health are achieved by mapping 

and quantifying the spatial extent of croplands and can be used for economic and policy decision 
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making (Foley et al., 2011; Thenkabail et al., 2009). This algorithm theoretical basis document 

(ATBD) provides a detailed description of the GFSAD30 cropland extent product for all the 23 

countries and the 9 independent territories in the North American continent (Table 1). 

 

Table 1: Specifications for the global food security support-analysis data at 30m cropland extent 

product for North America (GFSAD30NACE). 

Product name Short name Spatial resolution Temporal resolution 

GFSAD 30m Cropland 

extent product for North 

America 

GFSAD30NACE 30m Circa 2010 

 

III. Rationale for Development of the Algorithms 
The North American croplands have been mapped in many global land cover studies or cropland 

databases: croplands for 1992, 2001, 2006, and 2011 in the United States (US) National Land 

Cover Database (NLCD) (Homer et al., 2004; Homer et al., 2007; Homer et al., 2012), global 

irrigated and rainfed cropland maps and statistics (Thenkabail et al., 2009; Thenkabail et al., 

2011 ), global cropland and pasture map (Ramankutty et al., 2008; Monfreda et al., 2008), land 

cover and land use (Goldewijk et al., 2011), global irrigated and rainfed areas (Portmann, et al., 

2010), MODIS-derived global cropland extent (Pittman et al., 2010), 30m global cropland map 

(Yu et al., 2013), and MODIS global land cover product (Friedl et al., 2010). In addition, 

croplands have been mapped at both regional and country scales across the North American 

continent using remotely-sensed and ground-based data such as United States Department of 

Agriculture cropland data layer (CDL) (Johnson and Mueller, 2010; Boryan et al., 2011; Han et 

al., 2012; Boryan et al., 2014) and Agriculture and Agri-Food Canada annual crop inventory 

(Fisette et al., 2013; Fisette et al., 2014). 

The current cropland maps and extents for North America, have significant shortcomings 

including: 1) coarse spatial resolution (250m pixels or larger), 2) low overall accuracies, 3) large 

disagreements in spatial distribution of croplands among current maps and with the country 

cropland area statistics, and 4) limited to country scales. We address these shortcomings in this 

study by providing a comprehensive and consistent cropland extent map GFSAD30NACE across 

the entire North American continent at 30m spatial resolution.  

IV. Algorithm description 
We leveraged the Google Earth Engine (Gorelick et al., 2017) (GEE)’s computing capacity and 

the Landsat data archive in this study to classify cropland extent at the North American 

continental scale. We used the Random Forest classification on GEE to develop a pixel-based 

classification of the North American continental cropland extent. We then fused the pixel-based 

classification with crop field boundaries across the North American continent identified using 

recursive hierarchical segmentation (RHSeg) (Tilton et al., 2012), an object-based classification 
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method on Northern Arizona University (NAU)’s high performance computing cluster Monsoon. 

This fusion of the two approaches resulted in a cropland extent map at 30 m spatial resolution for 

the North American continent for the nominal year 2010. We validated the final fusion-based 

cropland extent map using United States Department of Agriculture (USDA) cropland data layer 

(CDL) for the United States (US), Agriculture and Agri-food Canada (AAFC) annual crop 

inventory (ACI) in Canada, Servicio de Información Agroalimentaria y Pesquera (SIAP)’s 

digitized agricultural boundaries in Mexico, and high-resolution images from GEE application 

programming interface (API). Additionally, we validated the cropland extent map using USDA 

county crop statistics data, AAFC agricultural census data, and agricultural statistics from other 

countries in North America (Figure 1).  

 

Figure 1: The data inputs and workflow for the object-based and pixel-based classification of the 

North American croplands in 30 m resolution and their fusion for cropland extent. The pixel-

based Random Forest (RF) classification workflow was implemented on Google Earth Engine 

(GEE), while the Recursive Hierarchical segmentation (RHSeg) object-based classification and 

fusion of the object-based and pixel-based classification outputs were implemented on Northern 

Arizona University’s high-performance computing cluster Monsoon. 
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Figure 2: The study area of North America. The entire North American continent was divided 

into 25 zones of similar farming practices using the US Department of Agriculture (USDA) Farm 

Resource Regions 2000 (FRR), Canadian Agriculture Regions with 2011 agricultural census, 

Canada Vegetation Regions 1998, Mexico farm sizes from Instituto Nacional de Estadística y 

Geografía (INEGI) 2007, and the Food and Agriculture Organization (FAO) global Agro- 

Ecological Zones 2000 (AEZ). 

A. Input data 

1. Study area 

Our study area included the entire North American continent, which is divided into five major 

regions by political and physical boundaries: 1) Canada, 2) the US, 3) Mexico, 4) Central 

America, and 5) the Caribbean islands. The five regions were further divided into 25 zones 

(Figure 2) to identify areas of similar farming practices within similar global agro-ecological 

zones (AEZs) defined by the FAO based on the number of growing degree days, soil, and terrain 

data in 10 km spatial resolution (Fischer et al., 2000). The division of regions into zones was 

necessary to reduce variability in: 1) satellite image sensors used, 2) availability of surface 

reflectance data, 3) satellite image-derived input variables, and 4) length and dates of periods for 

input variables. 
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 Canada included three zones based on the 2011 Canadian agricultural census regions 

contained within major Canadian Vegetation Regions (Wulder et al., 2008). The conterminous 

US was divided into 9 zones based on the USDA Farm Resource Regions (FRR). The FRR 

represent areas with similar types of farms intersected with areas of similar physiographic, soil, 

and climatic variables (Economic Research Service, 2000). The Alaska zone was limited to the 

counties in the Cook Inlet lowlands. The Hawaii zone included all of the Hawaiian Islands in the 

archipelago. Similarly, Mexico was divided into six zones based on the average farm sizes of its 

states (INEGI, 2007) and the availability of Landsat surface reflectance data in the GEE data 

archive. The Central American region included two zones, while the Caribbean islands were 

divided into three zones of major island groups. Additionally, we used the Global Cropland 

Extent (GCE) v1.0 map (Teluguntla et al., 2015) to determine the initial overall extent of 

croplands in the North American continent to exclude areas without any cropland such as 

northern Canada.  

For both the pixel-based RF and the object-based classifications, each of the zones in 

Canada, the US, and Mexico were further sub-divided into smaller sub-zones. The division of the 

25 zones into sub-zones was also necessary to: 1) streamline the classification process in Google 

Earth Engine programming interface (GEE API) by limiting the amount of training samples 

processed in one instance, 2) further reduce training sample spatial variability, 3) for rapid 

visualization of the classification output to iteratively improve training sample sets in each zone, 

and 4) to minimize variability in mean field sizes for the object-based classification. The zones 

and the sub-zones for the North American continent were imported in GEE API by converting 

sub-zone shapefiles to Google fusion tables.  

2. Processing platforms 

We used Google Earth Engine (GEE) for the pixel-based cropland classification. The Landsat 

archive available on GEE is already pre-processed for atmospheric and topographic effects, 

which saved us much effort in data download and pre-processing times. We used JavaScript in 

the GEE code editor, which is an application programming interface (API). The zone boundaries 

were imported into GEE via Google fusion tables. The training and validation samples were 

generated using the Map tab of the GEE code editor. 

We used Northern Arizona University’s (NAU) high performance computing cluster, 

Monsoon (NAU Monsoon) for: 1) compiling the pixel-based classification results from GEE, 2) 

performing an object-based classification of the Landsat composites using the Recursive 

Hierarchical segmentation (RHSeg) software (Tilton et al., 2016; Tilton, 2012), and 3) fusion of 

the pixel-based classification output from GEE and the object-based classification output. We 

used IDL 8.5 (Exelis Visual Information Solutions, Boulder, Colorado) as the scripting language 

for parallel processing the Landsat composites via the RHSeg software. Additional post-

processing of the crop field boundaries was performed also on NAU Monsoon using IDL 8.5. A 

brief overview of this process is shown in Figure 2. 
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Figure 3: The average yearly availability of Landsat 5 TM surface reflectance scenes (panel A) 

and the combination of Landsat 5 TM and Landsat 7 ETM+ top-of-atmosphere scenes (panel B) 

for the study zones in North America for the years 2008-2012 on Google Earth Engine.  

3. Satellite Images 

The Landsat 5 Thematic Mapper (TM) surface reflectance (SR) image collection available in 

GEE image archive was used for this study. Specifically, the image collection LANDSAT/ 

LT5_SR for 2008 – 2012 was used for the nominal year 2010. The Landsat SR data available in 

GEE are already processed using the Landsat ecosystem disturbance adaptive processing system 

(LEDAPS) algorithm (Masek et al., 2012) and includes a cloud mask (“cfmask”) band, which we 

used to mask the cloud pixels. In the zones where SR data wasn’t available, for example, zones 

17-25 in southern Mexico, the Central American countries, the Caribbean, Hawaii, and Alaska 

(Figure 3), we used a combination of top-of-atmosphere (TOA) Landsat 5 TM and Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) data which were available as GEE data collections 

“LANDSAT/LT5_L1T_TOA” and “LANDSAT/LE7_L1T_TOA”, respectively. While GEE 

uses Spherical Normal Mercator projection for display in its JavaScript API maps tab, it 

automatically re-projects satellite remote sensing data to a common projection inside its servers 

during processing. All of the Landsat data composite prepared via GEE and downloaded to NAU 

Monsoon for object-based classification were projected in Geographic projection with WGS-84 

datum and 30m pixels. In addition, elevation and slope data from the Shuttle Radar Topography 

Mission (SRTM) 3.0 digital elevation model (DEM) at 1 arc-second were used for topographic 

information. 

We used the multi-year Landsat data for the entire continent to: 1) maximize data 

availability in all regions, 2) maximize the spatial extent of croplands mapped, and 3) reduce the 

effects of cloud cover. The nominal year was further divided into multiple intervals or periods 

(Figure 4) depending on the seasonal variability in the region and availability of the cloud free 

Landsat data (Table 2).  
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Table 2: Days of the year and number of periods in the nominal year 2010 for study area zones 

in North America. 

Zones Number of periods Day of year 

1, 2, 3, 25 4 
1-90, 91-180, 181-270, and 271-

365 

4, 5, 6, 7, 8, 10, 11, 

12, 13, 14, and 15 
6 

0-60, 61-120, 121-180, 181-

240, 240-300, and 301-365 

16, 17, and 18 4 
1-90, 91-180, 180-270, and 270-

365 

19 and 20 3 1-60, 61-180, and 181-365 

21 3 60-120, 121-180, and 181-270 

22, 23, and 24 3 1-60, 61-180, and 181-365 

  

Cloud cover and cloud shadows present major difficulties in cropland classification in 

south Mexico, Central America, and the Caribbean islands. We eliminated clouds and cloud 

shadows for each TOA Landsat scene in these regions by using a combination of cloud 

likelihood function, simpleCloudScore, on GEE, and temporal dark outlier mask (TDOM) 

method (Housman et al., 2015). The simpleCloudScore function uses a combination of 

brightness temperature and normalized difference snow index (NDSI) values to identify 

likelihood of a pixel being a cloud pixel, while the TDOM method identifies pixels that are dark 

in bands 4, 5, and 6 in the given Landsat scene by finding statistical outliers with respect to the 

average of bands 4, 5, and 6 at the same location on different dates. While both methods can be 

used to derive cloud and cloud shadow masks for each Landsat scene, the TDOM method 

requires > 4 scenes at a Landsat footprint to be effective in identifying cloud shadows. We, 

therefore, used the combination of both methods.  

 

Figure 4: An example of input bands used to create a Landsat data cube for the Random Forest 

(RF) classification approach in the nominal year 2010. The periods 1-6 include days of year 

ranging: 1-60, 61-120, 121-180, 181-240, 240-300, and 301-365, respectively. 
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4. Input variables 

We developed three major types of input variables for the Random Forest (RF) classification: 1) 

spectral, 2) phenological, and 3) topographic variables. The spectral variables included Landsat 

bands 1, 2, 3, 4, 5, and 7 for each period. A single mosaicked image was produced for each 

period by reducing the image collection to the 85th percentile enhanced vegetation index (EVI) 

value for each pixel in all bands and indices across all available image dates for the period. In 

areas with substantial parts of the year under snow cover, we used the 85th percentile NDVI 

values. The 85th percentile values eliminated cloud and snow pixels that could not be eliminated 

in the surface reflectance by the LEDAPS algorithm and at the same time maximized the number 

of cropland pixels. Additionally, in Mexico and Central America regions, the 85th percentile EVI 

values effectively removed clouds and minimized Landsat 7 scan-line correction (SLC) artifacts 

in the Landsat composites. This resulted in a total of 36 spectral band input variables: Landsat 

bands 1, 2, 3, 4, 5, and 7 for six periods for the nominal year. In zones with three and four 

periods, the total number of spectral variables were 18 and 24, respectively. Periods with non-

contiguous data due to clouds were removed from the input data.  

The phenological variables included: 1) enhanced vegetation index (EVI) (Heute et al., 

2002), 2) normalized difference vegetation index (NDVI) (Rouse et al., 1972), 3) normalized 

difference water index (NDWI) (McFeeters, 1996), 4) visible atmospheric resistant index 

(VARI) (Gitelson et al., 2002), and 5) normalized burn ratio (NBR) (Key and Benson, 1999). We 

calculated NDVI and NDWI for all periods. NDVI time-series provides critical crop phenology 

information. While the nominal year in our study included six periods or less, the NDVI time-

series provided sufficient sensitivity to crop phenology to differentiate it from non-crop pixels. 

NDWI is a good indicator of vegetation water content and has low sensitivity to atmospheric 

scattering effects (Gao et al., 1996). NDWI is calculated similarly to NDVI, but using Landsat 

image bands 4 and 5. NDWI of crop fields show higher negative anomalies during sowing than 

other vegetation types. Furthermore, the standard deviation of NDWI is higher for crop pixels 

than non-crop vegetation pixels.  

VARI is based entirely on the visible range of the spectrum and has low sensitivity to 

atmospheric effects. It was developed to estimate vegetation fraction (Schneider et al., 2008). 

Unlike NDVI, VARI shows a linear response to vegetation fraction for its entire range (Gitelson 

et al., 2002). EVI and VARI were particularly useful in differentiating crop pixels from non-crop 

vegetated pixels in areas with high rainfall. NDVI and NDWI both saturated as vegetation 

abundance increased in these areas. Additionally, we used NBR to highlight sensitivity to 

vegetation water content in highly wet and highly dry regions (Key and Benson, 1999). NDVI, 

EVI, NDWI, VARI and NBR were computed using the following equations: 

𝑁𝐷𝑉𝐼 =  
𝐵4−𝐵3

𝐵4+𝐵3
            (1) 

𝐸𝑉𝐼 =  
𝐵4−𝐵3

𝐵4+6×𝐵3−7.5×𝐵1+1
 (2) 
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𝑁𝐷𝑊𝐼 =  
𝐵4−𝐵5

𝐵4+𝐵5
             (3) 

𝑉𝐴𝑅𝐼 =  
𝐵2−𝐵3

𝐵2+𝐵3−𝐵1
             (4) 

𝑁𝐵𝑅 =  
𝐵4−𝐵7

𝐵4+𝐵7
              (5) 

where B1, B2, B3, B4, B5, and B7 represent Landsat blue, green, red, near infrared, and 

shortwave infrared 1 & 2 bands, respectively. We used all the phenological input variables to 

maximize cropland and non-cropland classification accuracy. 

The topographic variables included slope and elevation derived from the United States 

Geological Survey (USGS) SRTM (Farr et al., 2007) digital elevation model (DEM) at 1 arc-

second (30m). As most crops are cultivated on flat lowlands, slope is a prominent variable in 

large scale cropland mapping. Similarly, the range of elevation variation was narrow for 

croplands and provides a critical input. 

We also calculated two period maximum value composite (MVC) based on the 85th 

percentile value of NDVI with Landsat bands 1-7 for all regions in North America with Julian 

date ranges 60-180 and 181-270 as input variables for the object-based classification in RHSeg. 

The two-period input introduced minor variability in spectral outputs for adjacent crop fields, 

which allowed successful classification as two different objects rather than one large contiguous 

object. The MVC was also used to inform the training and validation sample sets to include all 

spectral variability across each sub-zone for the nominal year.  

5. Reference data  

Reference data were obtained for the entire North American continent for training and testing. 

An independent validation dataset was generated for accuracy assessment of the classification 

output. We used available reference cropland layers in Canada, the US, and Mexico to derive 

reference data for training and testing. In other countries, it was necessary to collect or generate 

the appropriate reference data as none had been previously collected.  

We used USDA CDL to derive the reference data in the US. The USDA CDL was 

produced in 56 m spatial resolution for 2008 and 2009 in some states, but in 30 m resolution for 

all US states after 2010 (Johnson and Mueller, 2010; Boryan et al., 2011; Han et al., 2012; 

Boryan et al., 2014). The 2008-2014 CDL maps were re-projected to geographic 

latitude/longitude in WGS 1984 datum and 0.00027 degree (approximately 30 m) spatial 

resolution using nearest neighbor resampling. A cropland extent reference map for the US was 

then produced for the nominal year 2010 by binary overlay of cropland extents for years 2008-

2014. In the binary overlay for the nominal year, any pixel that was labeled once or more times 

as cropland or as fallow in the USDA CDL was considered cropland. All other pixels were 

considered non-cropland. We considered all field crops, tree crops, alfalfa, other hays, and 

plantation crops as cropland. The cropland extent derived from the statewide agricultural land-
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use baseline 2015 data (Melrose et al., 2015) using similar crop categories was used as the 

reference data for Hawaii. 

The AAFC ACI was used to derive reference data in Canada. The AAFC ACI was 

produced in 56m spatial resolution in 2009 and 2010 for some provinces, but in 30m resolution 

for all subsequent years (Fisette et al., 2013; Fisette et al., 2014). Additionally, the ACI was 

produced for all provinces in Canada from 2012 onwards. The 2009-2015 crop inventory layers 

were re-projected to geographic latitude/longitude in WGS 1984 datum and 0.00027 degree (30 

m) pixel size using nearest neighbor resampling. The cropland extent maps in Canada for 2010 

was then produced similarly to the US dataset by binary overlay of the crop inventory layers.  

In Mexico, we used the SIAP agricultural frontier boundaries of agricultural land use to 

derive reference data. This reference data includes cropland extent classified using SPOT 5 

satellite imagery from 2010-2011 (SIAP, 2017). No other reference data were available to us for 

training our classification for the other regions in North America. In the countries where no 

previous reference data were available, very high-resolution images (VHRI) available on GEE 

and from DigitalGlobe WorldView-2 data was used to generate training datasets.  

 

Figure 5: Sample selection using Landsat generated maximum-value composites (panels A and 

C) and Google Earth Engine high resolution imagery (panels B and D) at two different locations. 

Panels A and C show visual differences in color infrared images of the sample locations. 

The training and testing data generated for classification was kept separate and 

independent from the validation samples generated for accuracy assessment. For training, 

approximately 800 polygons, each 90m x 90m in dimension, were randomly generated as 

training sample units for cropland and for non-cropland cover types within each sub-zone. Pixels 

inside each 90m x 90m polygon were averaged to give one value per sample in each band. The 
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training samples from each zone were visually assessed and compared with Landsat MVC to 

ensure that the samples included all spectral variations of the cover type. For example, difference 

in crop types may introduce variations in the color infrared images (Figure 5). We included 

approximately all such visual variations in the color infrared images of crop class in each zone. 

The total number of training and validation samples in zones (Figure 2) and sub-zones (Figure 6) 

are listed in Table 3. 

Table 3: Training and validation sample summary for sub-zones in North America. 

Country / Region Zone 
Sub-

zone 
Sub-zone name 

Training Samples Validation Samples 

Crop 
Non-

crop 
Crop Non-crop 

Canada 

1 1 Yukon 334 487 1 249 

2 1 NWForest 530 600 
73 177 

2 2 CanPrairies 873 1,081 

3 1 CenForest 184 224 

10 240 

3 2 MidEasternForest 389 455 

3 3 NEasternForest 46 64 

3 4 NovaScotia 744 983 

3 5 NewFoundland 72 112 

United States 

4 1 NWRim 694 910 27 223 

5 1 SWRim 1,016 1,255 29 221 

6 1 WBasinRange 555 679 

12 238 

6 2 WRim 350 364 

6 3 NBasinRange 460 452 

6 4 SBasinRange 468 475 

6 5 SRim 393 402 

7 1 NGreatPlains 936 1,119 

77 173 

7 2 SGreatPlains 781 719 

7 3 NPrairies 512 637 

7 4 SPrairies 724 883 

7 5 SERim 672 648 

8 1 Heartland 689 551 

103 147 8 2 MidUplands 393 483 

8 3 MidSeaBoard 210 304 

9 1 WCrescent 567 690 

31 219 9 2 MidCrescent 628 848 

9 3 ECrescent 1,261 1,226 

10 1 EUplands 1,013 1,007 
52 198 

10 2 ESeaBoard 1,122 1,173 

11 1 Mississippi 571 628 66 184 

12 1 ERim 855 1,089 31 219 
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Mexico 

13 1 BajaSonora 243 275 
12 237 

13 2 Baja 130 249 

14 1 Sonora 405 703 67 181 

15 1 Chihuahua 824 1,072 20 227 

16 1 SMexBasinRange 1,024 1,249 

58 183 16 2 Mexico 1,147 956 

16 3 Guerrero 1,011 895 

17 1 SMadre 653 845 25 224 

18 1 Veracruz 789 716 
50 179 

18 2 Yucatan 687 613 

Belize, Guatemala, 

El Salvador, 

Honduras 

19 1 CenAM1 2,320 2,436 69 181 

Costa Rica, 

Panama 
20 1 CenAM2 1,329 1,445 52 194 

Bahamas 
21 1 Freeport 45 56 

77 169 
21 2 Bahamas 157 328 

Cuba 21 3 Cuba 716 732 

Jamaica 21 4 Jamaica 436 526 

Dominican 

Republic, Haiti, 

Puerto Rico 

22 1 DRHaiti 1,203 1,174 

74 174 

British Virgin Is., 

US Virgin Is., 

Anguilla, St. Kitts 

& Nevis, Antigua 

& Barbuda, 

Montserrat, Saba, 

Saint Barthelemy, 

Saint Martin, Sint 

Eustatius, and Sint 

Marteen 

22 2 LCarIS 461 419 

Guadeloupe, 

Dominica, 

Martinique, St. 

Lucia, Grenada, St. 

Vincent and the 

Grenadines 

23 1 CarIS 396 458 
43 203 

Barbados 23 2 Barbados 89 72 

Hawaii 24 1 Hawaii 604 616 40 210 

Alaska 25 1 Anchorage 165 204 4 246 

Total 32,876 36,587 1,103 5,096 



16 
DCN 

Version 1.0 
 

 

 

Figure 6: Sub-zones used for the pixel-based and object-based classification in the North American continent. 
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Figure 7: Examples of land cover categories used to derive training and validation samples for pixel-based random forest 

classification on Google Earth Engine. The samples for crop (red markers) were selected in the center of fields within a 90m × 90m 

square. The samples were generated randomly and assigned labels after interpreting high resolution satellite imagery.



 

The training samples were also assessed by comparing with the available layers, the USDA 

CDL, AAFC ACI, and SIAP agricultural frontier boundaries in the US, Canada, and Mexico, 

respectively (Figure 7). The total numbers of training samples for the entire North American 

continent were 32,876 and 36,587 for the crop and non-crop classes, respectively.  In addition, 

random samples were also generated by digitizing crop field boundaries for all zones in the 

North American continent to test the RHSeg-derived object-based classification. These samples 

were selected in crop locations not included in the training data set by interpreting the VHRI in 

GEE and the reference data available for the US, Canada, and Mexico.  

An independent validation sample dataset was also collected for statistical accuracy 

assessment. We selected 250 validation samples in each zone. These samples were randomly 

selected from locations not used by the mapping team for training or testing. We used existing 

reference data in the US, Canada, and Mexico and visual interpretation of VHRI in GEE to 

extract the validation samples from the center of crop fields. For all the other zones in North 

America, the validation samples were collected by visual interpretation of VHRI in GEE by two 

interpreters. To minimize the error in validation data collection, only those samples where both 

interpreters agreed with the label were used for accuracy assessment. 

B. Theoretical description 

1. Cropland definition 

We classified cultivated land with plants harvested for food, feed, and fiber (e.g., wheat, rice, 

corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, and oil 

palms) as croplands (Table 4). We also included fallow lands that are uncultivated during a 

period or a year but are equipped for cultivation, as croplands. Non-croplands include all other 

land cover types. 

Table 4: Dominant crop types and classes in the North American continent classified as crop. 

Corn Mustard Orchards 

Cotton Canola Potatoes 

Rice Sunflower Tomatoes 

Sorghum Soybeans Vegetables 

Barley Oil palm Beans 

Durum Wheat Safflower Lentils 

Spring Wheat Peanuts Tea 

Winter Wheat Sugarcane Coffee 

Rye Grapes Cocoa 

Oats Berries Rubber 

Millet Fruits Alfalfa and other hay 

 

 

 

2. Algorithms 
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We used the Random Forest classification on GEE to develop a pixel-based classification of the 

North American continental cropland extent. We then fused the pixel-based classification with 

crop field boundaries across the North American continent identified using recursive hierarchical 

segmentation (RHSeg) (Tilton et al., 2012), an object-based classification method on Northern 

Arizona University (NAU)’s high performance computing cluster Monsoon. This fusion of the 

two approaches resulted in a cropland extent map at 30 m spatial resolution for the North 

American continent for the nominal year 2010. 

C. Practical description 

1. Random forest classification 

Random Forest (RF) classification is a machine learning method, in which the RF classifiers 

construct multiple de-correlated random decision trees that are bootstrapped and aggregated to 

classify a dataset by using the mode of predictions from all decision trees (Breiman, 2001). The 

RF classifiers are generally immune to data noise and overfitting, and are extremely useful in 

classifying remote sensing data. Furthermore, RF classifiers typically achieve higher accuracies 

in comparison with other approaches such as maximum likelihood, single decision trees, and 

single layer neural networks (Lawrence et al., 2006; Na et al., 2010). RF classifiers also provide 

a quantitative measurement of each variable’s contribution to the classification output, which is 

useful in evaluating the importance of each variable. RF classifiers provide an internal accuracy 

assessment by using an ‘out-of-bag’ (OOB) technique, in which about a third of the data is kept 

aside as validation dataset to assess accuracy of the classification. This technique can be used to 

cross-validate the RF classifier using independent datasets.  

RF classifiers available in GEE use six input parameters: 1) number of classification trees, 2) 

number of variables used in each classification tree, 3) minimum leaf population, 4) bagged 

fraction of the input variables per decision tree, 5) out-of-bag mode, and 6) random seed variable 

for decision tree construction. When the number of trees increase, the overall accuracy of 

classification increases without overfitting (Breiman, 2001). While training sample imbalance 

can affect the RF classification output by over-fitting the majority class (Breiman, 2001; Chen, 

2004), various methods such as down-sampling the majority class or duplicating the minority 

samples can provide immunity against over-fitting (Sun et al., 2007). Further, the choice of 

optimized parameter values using the OOB outputs can eliminate overfitting in the RF classifier. 

We tested the number of variables per split from 1-100 in three different zones in the US by 

incrementally increasing the number by 5 using the ‘tuneRF’ function in the ‘randomForest’ 

package in R (Liaw, 2015). These three zones had different sample sizes: 1) 350 crop and 364 

non-crop, 2) 628 crop and 848 non-crop, and 3) 405 crop and 703 non-crop samples. We found 

that the internal classification accuracy using OOB mode of the RF classifier did not change by 

more than 2% across the three zones. We, therefore, kept the number of variables per split to 5 as 

the performance at this value always appeared to be above average, while the computation times 

were the lowest. We set the number of trees to about a fourth of the maximum number of 

samples in the crop or non-crop class rounded to the next hundred.  
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The RF model accuracy was computed by using the OOB mode using the R ‘randomForest’ 

package to check for over-fitting. The analysis of the error rates from the OOB outputs yield 

consistent accuracies with low variations across independent datasets and hence validate the 

absence of over-fitting. Furthermore, in the zones where the training samples were not balanced, 

the samples in the minority class were carefully selected by visual assessment of all variations at 

training sample locations using MVCs and VHRI in GEE.  

The selections of RF input variables were evaluated in comparison with the MVC to understand 

their contributions and changes in runtime and to choose the final set of input variables. It was 

found that adding a combination of EVI, NDVI, and NDWI bands achieved >90% RF model 

internal accuracy contributing to an increase in accuracy of 18% in semi-arid areas. On the other 

hand, adding all the spectral bands from all available periods resulted in an accuracy increase of 

8%. Finally, adding all the phenological and spectral bands resulted in average internal accuracy 

of the RF model increase by 21%, while runtime was significantly shorter. In more humid areas, 

however, the increase in average internal accuracy was 20%, when we added VARI and NBR 

bands. Hence, EVI, NDVI, and NDWI bands were used along with the spectral bands, while 

VARI and NBR bands were further added in humid areas. 

2. Recursive hierarchical segmentation 

We used the Recursive Hierarchical Segmentation (RHSeg) software (Tilton et al., 2016; Tilton, 

2012) version 1.64 to identify individual crop fields and further refine the pixel-based 

classification output from the RF approach (Figure 8). RHSeg is an image segmentation 

algorithm, which uses hierarchical step-wise optimization (HSWO) region growing approach 

(Beaulieu and Goldberg, 1989) by merging spectrally similar and adjacent regions together based 

on image texture (Tilton, 2016). While the HSWO approach can produce exhaustive 

segmentation hierarchies via region growing from initialization until the entire image tile 

becomes one region, Hierarchical Segmentation (HSeg) selects the most appropriate number of 

iterations by monitoring the merging thresholds between objects. These thresholds determine 

merging of multiple joint or disjoint segments into a single segment based on the dissimilarity 

values of image pixels. RHSeg computes an overall merge threshold for each segmentation 

hierarchy. The HSeg algorithm allows for merging of both spatially adjacent and non-adjacent 

regions providing flexibility and user-defined parameters in the final output, but leads to heavy 

computational demands. RHSeg, however, is a computationally efficient version of the 

Hierarchical Segmentation (HSeg) algorithm and recursively sub-divides the image tile into 

smaller sections to limit the number of regions being processed at a time (Plaza and Tilton, 

2005). RHSeg can be implemented using multiple parallel processes that can process the sub-

divided tiles in parallel and further improve the computational efficiency. 
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Figure 8: Object-based image classification workflow via the RHSeg software. The Landsat 

bands 1-7 median value composite from two are used as input variables. Sample field boundaries 

were delineated by digitizing high resolution imagery in Google Earth Engine (GEE) and were 

used to identify best hierarchy level for RHSeg, based on minimum error rates of comparison 

between objects corresponding to the sample field boundaries. The object-based classification 

output and RF pixel-based classification output are then fused together by using two criteria 

related to the object size and abundance of cropland pixels within each object. 

We divided the MVC input variables for the North American continent into 1,898 tiles, 

1.2 degree × 1.2 degree (110.5 km × 110.5 km) in dimension, which includes a buffer of 0.1 

degree (11.05 km) for side overlap with adjacent tiles (Figure 9). These tiles were processed in 

parallel on NAU Monsoon computing cluster using custom scripts to implement RHSeg 

software. Any tile in which the maximum size of a cropland object was less than 9 Landsat 

pixels (90 x 90m) was discarded. We identified 25-40 sample objects (Figure 10) by manually 

delineating field boundaries in each zone, with up to 2-3 sample objects in the same tile, for 

selection of results in segmentation hierarchy. The selected sample objects were divided across 

each zone in well distributed tiles. 

The major parameters for RHSeg program include: 1) initial region classes, the number 

of region classes at which segmentation hierarchy output was initiated, 2) spectral clustering 

weight, the weight of spectral clustering versus region growing, and 3) the dissimilarity criterion 

used to classify objects (Tilton, 2012).  In addition to the above parameters, RHSEG hierarchy 

was output at selected merge thresholds.  
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Figure 9: The North American continent was divided into 1,898 tiles, each 1.2 degree × 1.2 

degree (132.6 km × 132.6 km) in dimension, which includes a 0.1 degree (11.05 km) side 

overlap, for the object-based classification of croplands using the Recursive Hierarchical 

Segmentation (RHSeg) software. 

The RHSeg program begins with many small regions and recursively merges them together 

in each hierarchy to form meaningful object-based classifications (Figure 11). Every successive 

hierarchy, therefore, has fewer objects compared to the previous segmentation hierarchy. We 

used a value of 0.5 for the spectral clustering weight to perform spectral clustering of disjoint 

objects into region classes. We constrained the segmentation hierarchy using the initial region 

classes to start at 220,000 region classes. RHSeg program was terminated at 10,000 region 

classes per tile in the last segmentation hierarchy. As a result, our total number regions per tile 

could range from 10,000 to 220,000. As the spectral clustering was also allowed at 0.5, the 

number of objects was larger than the number of regions. The limits of 10,000-220,000 region 

classes in a tile were identified by assuming one object per class and identifying the maximum 

number of the largest and the smallest cropland objects as 2000 and 9 pixels respectively. The 

dissimilarity criterion used to identify different objects in the object-based classification was 

based on minimizing the increase in the mean squared error between the region mean image and 

the original image data (Tilton, 2016) and was indicated by the value of the dissimilarity 

criterion parameter as 6. RHSeg generated up to 40 hierarchy levels of image segmentations per 

tile.  
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3. Pixel-based and object-based classification fusion 

We identified the optimum segmentation hierarchy for merging RHSeg output in each sub-zone 

with the pixel-based random forest classification. The number of hierarchy levels and the merge 

thresholds varied across tiles in a sub-zone. We calculated a common optimum segmentation 

hierarchy for a sub-zone by analyzing error rates across all the segmentation hierarchies in all the 

tiles and identifying the error rate with the lowest value and least variations with merge 

thresholds. We calculated error rates for each segmentation hierarchy using the number of 

committed and omitted object pixels in the sample objects. The RHSEG output objects with 

maximum overlap with the sample objects were selected to calculate the error rate in each 

segmentation hierarchy using the RHSeg 1.64 utility program hsegrefcomp. The hsegrefcomp 

program produced summary tables that include merge thresholds and their error rates for all the 

samples in the sub-zone. The error rate value was calculated for each merge threshold increment 

by binning the error rate values for all the samples within the increment range and calculating the 

median error rate for each bin. The merge threshold increment was calculated by dividing the 

difference in the maximum and minimum merge thresholds with the number of hierarchy levels. 

 

Figure 10: A total of 25-40 region objects were identified per sub-zone within each of the 25 

zones (total n = 1,577) as digitized field boundaries for training the segmentation hierarchy in 

RHSeg. 
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Figure 11: RHSeg-derived segment boundaries for the lowest segmentation hierarchy at level 1 

(panel A), a medium segmentation hierarchy at level 21 (panel B), and the highest segmentation 

hierarchy at level 35 (panel C) for zone 8 in the Heartland region of the US. We selected level 21 

as the optimum segmentation hierarchy in this zone. 

 

Figure 12: Error rates versus merge thresholds in different zones and sub-zones in North 

America: A) the Canadian prairies (zone 2 sub-zone 2), B) the central valley region in California, 

US (zone 5), C) the southern Great Plains in the US, (zone 7 sub-zone 4), D) the corn belt region 

of Heartland in the mid-western US (zone 8 sub-zone 1), E) southern Sonora in Mexico (zone 

14), and F) the combined region of Chihuahua, Coahuila, and Nuevo Leon in Mexico (zone 15). 

The dashed vertical lines represent best merge thresholds. In panels A, B, C, D, and F, we 

selected minimum error rates with low fluctuations in error rate with these thresholds. In panel E, 

we selected the minimum error rate for all merge thresholds.  
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Table 5: List of merge thresholds for all RHSeg sub-zones. 

Zone Sub-zone Merge threshold 

1 1 20 

2 1 18 

2 2 17 

3 1 18 

3 2 14 

3 3 12 

3 4 20 

4 1 15 

5 1 11 

6 1 9 

6 2 10 

6 3 13 

6 4 12 

6 5 10 

7 1 19 

7 2 17 

7 3 27 

7 4 16 

7 5 21 

8 1 21 

8 2 29 

8 3 18 

9 1 12 

9 2 7 

9 3 15 

10 1 18 

10 2 17 

11 1 9 

12 1 15 

13 1 16 

13 2 8 

14 1 14 

15 1 17 

  

The merge thresholds with the lowest error rate and lowest frequency of change in error 

rate across the merge thresholds was identified to be the best merge threshold for the sub-zone 

(Figure 12). The segmentation hierarchy corresponding to this best merge threshold had the most 

similarity with the sample field boundaries and the resulting object-based classification output 

was most likely the field boundaries on the ground. The RHSeg program was then used to derive 

the final segmentation output with this merge threshold for all tiles in the sub-zone (Table 5). 

This approach allowed automated derivation of the best segmentation hierarchy for the entire 
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sub-zone. The object-based classification was further refined by adding a minimum object size 

threshold of 9 pixels and a maximum of 2,000 pixels. 

 

Figure 13: Landsat 5 TM data examples in west Sonora, Mexico (panel A) and northern Texas, 

US (panel E) were classified using the Random Forest classification (panel B & F), which were 

fused with RHSeg-derived maps of individual fields (panel C & G) to produce the final cropland 

extent maps (panels D and H). Each field was labeled as cropland or non-cropland (panel D & H) 

using a minimum cropland cover criterion of 25% of the pixels within each object. 

 

The object-based classification output from RHSeg was intersected with the RF pixel-

based classification output to fuse the map of objects with the pixel-based classification. Any 

object with less than 25% of its pixels as cropland in the fusion map was eliminated. The 

remaining objects within the cropland extent were labeled as cropland objects. All cropland 

objects were then merged to form a refined cropland extent for the tile which were further 

merged with other tiles to create the cropland extent for the zone. This approach greatly reduced 

the exclusions of individual crop fields and helped in removing small and scattered pixels 

labelled as cropland in non-cropland areas (Figure 13).   

Object-based classification using RHSeg was performed only in zones that have SR data 

available. We did not perform object-based classification in zones 16 – 25. Instead, we 

performed a sieving and clumping operation using the connectedPixelCount function in GEE on 

the RF classification output. The connectedPixelCount function can be used to generate an image 

where each pixel contains the number of 4- or 8-connected neighbors. We used 2 as a threshold 

to sieve out smaller groups of pixels that have less than 2 4-connected neighboring pixels. The 

class labels for cropland and non-cropland pixels in the sieved output were 1 and 0, respectively. 
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A binary inversion was performed on this image where the cropland pixels were assigned label 0 

and non-cropland label 1. The sieving operation was repeated to remove small groups of pixels 

resulting in smaller exclusions filled or clumped. Binary inversion was performed on the final 

output to assign the previous labels to the cropland and non-cropland classes as 1 and 0, 

respectively. The resulting output was the final cropland extent for the zone. 

4. Programming and codes 

The pixel-based RF classification was performed on Google Earth Engine (GEE) using Java 

Script application programming interface (API). The object-based classification using RHSeg 

was implemented using IDL on NAU Monsoon. The codes for the pixel-based classification, 

object-based classification, and their fusion are made available in a zip file and are available for 

download along with this ATBD. 

5. Results 

We produced a cropland extent map of North America for the nominal year 2010 at 30 m spatial 

resolution (Figure 14) by fusing the pixel-based classification and the object-based classification.  

Across the North American continent, a total cropland area 275.18 million hectares (Mha) was 

classified. The large regions of Canada, USA, and Mexico had cropland extent areas of 42.9 

Mha, 169.2 Mha, and 35.9 Mha, respectively. The Central American countries had a total 

cropland area of 8.6 Mha, while the cropland extent for the Caribbean was 8.5 Mha.  

 

Figure 14: Cropland extent at 30m spatial resolution for the North American continent in the 

nominal year 2010. 
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6. North American cropland areas  

We produced continental-scale cropland extent map of North America for the nominal year 2010 

at 30 m spatial resolution by fusing the pixel-based classification using the RF classifier and the 

object-based classification from the RHSEG program. The country-level cropland areas in North 

America are listed in Table 6. Comparison of the cropland areas with the reported areas are 

shown in Figure 15. The total area for North American croplands was calculated to be 275.2 

Mha.  

Table 6: Country-wise net cropland area comparison between the nominal 2010 cropland extent 

and the reported cropland areas from multiple statistics agencies in North America.  

Region 

Cropland extent 

Area estimate 

2010 (Ha) 

Reported 

cropland Area 

2010 (Ha) 

Source agency 

Anguilla 0 0 Food and Agriculture Organization Statistics 

Antigua and Barbuda 0 0 Food and Agriculture Organization Statistics 

Bahamas 11,150 11,998 Food and Agriculture Organization Statistics 

Barbados 18,571 17,005 Food and Agriculture Organization Statistics 

Belize* 385,466 157,000 Ministry of Agriculture, Belize 

British Virgin Islands* 1,964 2,002 Food and Agriculture Organization Statistics 

Canada 42,943,258 43,000,152 Agriculture and Agri-Food Canada 

Costa Rica* 2,118,003 2,406,418 Ministry of Agriculture and Livestock, Costa Rica 

Cuba* 4,218,071 4,221,000 National Office of Statistics and Information, Cuba 

Dominica* 11,033 22,032 Food and Agriculture Organization Statistics 

Dominican Republic* 2,033,977 2,065,281 Agricultural Sector Statistics, Dominican Republic 

El Salvador* 1,030,295 883,666 Ministry of Agriculture, El Salvador 

Grenada* 4,658 11,040 Food and Agriculture Organization Statistics 

Guadeloupe* 65,863 24,080 Food and Agriculture Organization Statistics 

Guatemala* 4,546,721 3,810,200 National Institute of Statistics, Guatemala 

Haiti* 1,194,478 1,632,658 Food and Agriculture Organization Statistics 

Hawaii 282,168 421,059 Department of Agriculture, State of Hawaii 

Honduras* 3,354,977 3,201,512 National Institute of Statistics, Honduras 

Jamaica* 290,929 270,368 Statistical Institute of Jamaica 

Martinique 29,052 17,091 Food and Agriculture Organization Statistics 

Mexico* 35,958,446 37,624,312 National Institute of Statistics and Geography, Mexico 

Montserrat 330 2,001 Food and Agriculture Organization Statistics 

Nicaragua* 4,922,544 3,732,512 Ministry of Agriculture and Forestry, Nicaragua 

Panama* 2,133,809 2,051,119 National Institute of Statistics and Census, Panama 

Puerto Rico* 355,040 170,407 United States Department of Agriculture 

Saba 0 0 Food and Agriculture Organization Statistics 

Saint Barthelemy 0 0 Food and Agriculture Organization Statistics 

Saint Eustatius 0 0 Food and Agriculture Organization Statistics 

Saint Kitts and Nevis 7,655 4,584 Food and Agriculture Organization Statistics 

Saint Lucia 4,321 10,000 Food and Agriculture Organization Statistics 

Saint Martin 0 0 Food and Agriculture Organization Statistics 
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Saint Vincent and the 

Grenadines 
3,839 8,000 Food and Agriculture Organization Statistics 

Sint Maarten 0 0 Food and Agriculture Organization Statistics 

United States 169,233,515 166,244,617 United States Department of Agriculture 

US Virgin Islands 5,768 2,000 United States Department of Agriculture 

* Cropland area estimates and reported areas include cropland and managed pastures 

 

 

 

Figure 15: Cropland area estimates as compared with country level data from multiple agencies 

for the countries and regions in the North American continent in million hectares (Mha), with 

some of the outliers highlighted. This regression does not include Canada, the United States, and 

Mexico. 

 

V. Calibration Needs/Validation Activities 
The cropland extent for the North American continent was assessed for its accuracy using three 

different methods: 1) Statistical accuracy assessment using randomly generated crop/non-crop 

samples, 2) Map-to-map comparison with available cropland maps, 3) Pixel-based and fusion-

based classification output comparison, and 4) regression analysis with county and state cropland 

data, where available.  

Statistical accuracy assessment of each AEZ for North America was performed by 

generating an error matrix for each zone (Congalton, 1991; Congalton and Green 2009).  The 

error matrix was generated using a random sample of 250 sample units.  Overall accuracy as well 

as producer’s and user’s accuracy (Story and Congalton, 1986) can be easily computed from the 

matrix.   
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Map-to-map comparison was performed for Canada, USA, and Mexico, wherein all 

pixels of the merged RF-RHSeg classification output were compared with the reference maps. 

We performed a map-to-map comparison for Canada using the nominal 2010 reference cropland 

extent derived from AAFC ACI for years 2009-2012. We similarly generated the nominal 2010 

USDA CDL data by overlaying USDA CDL cropland extent from 2008-2012. In Mexico, the 

only spatial data available was the Agricultural Frontier series 2 boundaries of agricultural land 

use and irrigation digitized cropland boundaries for 2010-2011 (SIAP, 2017). We derived 

cropland extent from this map for the year 2010-2011. We then compared this reference cropland 

extent with our nominal year 2010 classification output for Mexico for map-to-map comparison.  

In addition to the statistical accuracy assessment and map-to-map comparison, we 

compared the pixel-based output county areas with the fusion output county areas in Canada and 

the US. We also performed regression analysis for areas, where sub-country level cropland 

statistical reports were available and publicly accessible. The level of detail and availability of 

the statistical reports varied from country to country and we used the finest available level. For 

example, if both state and county level data were available, we used the county level statistical 

report. However, for many countries, only state level data were available. The regression 

analysis was performed using: 1) county cropland area statistics for the US, Canada, Mexico, 

Costa Rica, Hawaii, and Puerto Rico, and 2) state level cropland area statistics for Cuba, El 

Salvador, Dominican Republic, Jamaica, Nicaragua, and Panama. Table 1 lists all the data 

sources used for the county and state area statistics used in the regression analysis. FAO 

estimates of the cropland extent areas were compared with the cropland extent areas for the 

countries, where no spatial, county-wise, or state-wise cropland statistics could be obtained.  

A. Accuracy assessment 

Independent accuracy assessment was conducted for the 25 zones (Figure 2) in North America. 

For the entire North American continent, the overall accuracy was 93.4% with unweighted 

producer’s accuracy at 85.4% (omission error of 14.6%) and unweighted user’s accuracy at 

74.5% (commission error of 25.5%) for the crop class (Table 7).  

Across the 25 zones in the North American continent (Table 7): 

1. Overall accuracies vary between 84.4-99.6%; 

2. Producer’s accuracies for the cropland class varies between 64.5-100% (errors of 

omissions: 0-35.5%); and 

3. User’s accuracies for the cropland class varies between 20-95% (errors of commissions 

(5-80%). 

 

Across the 3 zones of Canada (Table 7): 

1. Overall accuracies vary between 92.4-99.6%; 

2. Producer’s accuracies for the cropland class varies between 78.1-100% (errors of 

omissions: 0-21.9%); and 

3. User’s accuracies for the cropland class varies between 20-95% (errors of commissions 

(5-80%). 
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Across 9 zones of USA (Table 7): 

1. Overall accuracies vary between 88.8-97.2%; 

2. Producer’s accuracies for the cropland class varies between 64.5-95.2% (errors of 

omissions: 4.8-35.5%); and 

3. User’s accuracies for the cropland class varies between 59.5-92.3% (errors of 

commissions (7.7-41.5%). 

 

Across 6 zones of Mexico (Table 7): 

1. Overall accuracies vary between 90.9-98.8%; 

2. Producer’s accuracies for the cropland class varies between 70-94% (errors of omissions: 

6-30%); and 

3. User’s accuracies for the cropland class varies between 58.3-90.9% (errors of 

commissions (9.1-41.7%). 

 

Across 5 zones of Central American and the Caribbean (Table 7): 

1. Overall accuracies vary between 84.4-99.6%; 

2. Producer’s accuracies for the cropland class varies between 79.1-100% (errors of 

omissions: 0-20.9%); and 

3. User’s accuracies for the cropland class varies between 61.8-81.8% (errors of 

commissions (18.2-38.2%). 

 

In this study our goal was to classify croplands with the lowest possible commission and 

omission errors across all the zones in North America. Using our classification approach, we 

were successful in achieving high producer’s accuracies and consequently low omission errors 

for the cropland class for the majority of the 25 zones, that include zones in the US, Canada and 

Mexico. However, in some zones in Mexico, Central America and the Caribbean, the 

commission errors were high leading to low user’s accuracy values.  

 

 

Figure 16: Spatial distribution of overall accuracy (panel A) and producer’s accuracy for crop 

class (panel B) for all study area zones in North America. 
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Table 7: Statistical accuracy assessment of the fusion-based cropland extent map in all zones of the North American continent. The 

weighted accuracies are calculated using the percent zone areas of total land area in all zones as weights. 

Zone 
Region 

/country 

Crop 

classifi

ed as 
crop 

Crop 

classified 

as non-
crop 

Non-crop 
classified 

as crop 

Non-crop 
classified 

as non-crop 

Total 

crop in 

referenc
e 

Total non-
crop in 

reference 

Total 
crop in 

map 

Total 
non-crop 

in map 

Producer's 
accuracy for 

crop 

Producer's 
accuracy for 

non-crop 

User's 
accuracy for 

crop 

User's 
accuracy for 

non-crop 

Overall 

accuracy 

% cropland area 

of North America 

total cropland 
area 

% zone area of 
North America 

total area 

Zone 1 Canada 1 0 4 245 1 249 5 245 100.0% 98.4% 20.0% 100.0% 98.4% 0.34% 6.28% 

Zone 2 Canada 57 16 3 174 73 177 60 190 78.1% 98.3% 95.0% 91.6% 92.4% 12.27% 8.69% 

Zone 3 Canada 10 0 1 239 10 240 11 239 100.0% 99.6% 90.9% 100.0% 99.6% 3.20% 12.22% 

Zone 4 US 25 2 10 213 27 223 35 215 92.6% 95.5% 71.4% 99.1% 95.2% 1.19% 1.47% 

Zone 5 US 24 5 2 219 29 221 26 224 82.8% 99.1% 92.3% 97.8% 97.2% 1.89% 3.09% 

Zone 6 US 9 3 7 231 12 238 16 234 75.0% 97.1% 56.3% 98.7% 96.0% 4.23% 12.79% 

Zone 7 US 63 14 10 163 77 173 73 177 81.8% 94.2% 86.3% 92.1% 90.4% 22.19% 12.73% 

Zone 8 US 98 5 23 124 103 147 121 129 95.2% 84.4% 81.0% 96.1% 88.8% 17.70% 6.87% 

Zone 9 US 20 11 9 210 31 219 29 221 64.5% 95.9% 69.0% 95.0% 92.0% 3.65% 5.83% 

Zone 10 US 42 10 16 182 52 198 58 192 80.8% 91.9% 72.4% 94.8 89.6% 6.34% 5.78% 

Zone 11 US 61 5 17 167 66 184 78 172 92.4% 90.8% 78.2% 97.1% 91.2% 3.04% 1.78% 

Zone 12 US 22 9 15 204 31 219 37 204 71.0% 93.2% 59.5% 95.8% 90.4% 1.04% 1.33% 

Zone 13 Mexico 10 2 1 236 12 237 11 238 83.3% 99.6% 90.9% 99.2% 98.8% 0.43% 1.86% 

Zone 14 Mexico 53 14 8 173 67 181 61 187 79.1% 95.6% 86.9% 92.5% 91.1% 2.42% 2.08% 

Zone 15 Mexico 14 6 10 217 20 227 24 223 70.0% 95.6% 58.3% 97.3% 93.5% 1.35% 2.51% 

Zone 16 Mexico 52 6 16 167 58 183 68 173 89.7% 91.3% 76.5% 96.5% 90.9% 4.19% 2.89% 

Zone 17 Mexico 22 3 4 220 25 224 26 223 88.0% 98.2% 84.6% 98.7% 97.2% 0.86% 1.20% 

Zone 18 Mexico 47 3 13 166 50 179 60 169 94.0% 92.7% 78.3% 98.2% 93.0% 3.78% 2.17% 

Zone 19 
Central 

America 
65 4 35 146 69 181 100 150 94.2% 80.7% 65.0% 97.3% 84.4% 5.57% 3.07% 

Zone 20 
Central 

America 
52 0 23 171 52 194 75 171 100.0% 88.1% 69.3% 100.0% 90.7% 1.20% 1.05% 

Zone 21 Caribbean 70 7 18 151 77 169 88 158 90.9% 89.4% 79.6% 95.6% 89.8% 1.64% 1.93% 

Zone 22 Caribbean 71 3 32 142 74 174 103 145 96.0% 81.6% 68.9% 97.9% 85.9% 1.33% 1.20% 

Zone 23 Caribbean 34 9 21 182 43 203 55 191 79.1% 89.7% 61.8% 95.3% 87.8% 0.05% 0.25% 

Zone 24 Hawaii 36 4 8 202 40 210 44 206 90.0% 96.2% 81.8% 98.1% 95.2% 0.10% 0.11% 

Zone 25 Alaska 4 0 1 245 4 246 5 245 100.0% 99.6% 80.0% 100.0% 99.6% 0.00% 0.82% 

Weighted accuracies (by % zone areas) 85.4% 94.6% 74.5% 93.4%    
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B. Map-to-map comparison 

Our map-to-map comparison results indicate strong agreements for the regions with other 

existing cropland maps. Compared to the AAFC ACI map for Canada, the overall similarities of 

our map were 93.4% and 98.1% in zones 2 and 3, respectively (Table 8). In zone 2, which is the 

major agricultural zone across the Canadian states of Alberta, Saskatchewan, and Manitoba, the 

user’s similarity of 82.7% and producer’s similarity of 92.3% show low commission and 

omission errors. In zone 3, which includes agricultural area in the states of Ontario, Quebec, and 

New Brunswick, the omission error is moderately high with producer’s similarity of crop at 

62.4%. 

The map-to-map comparison revealed an overall similarity >90% in all the US zones 

(Table 8). Zones 7, 8, and 10 consist of > 76% of the total cropland area in the US. Zone 8, the 

major corn and soybean growing region in the US, had the highest producer’s similarity of 88% 

and the highest user’s similarity of 94%. Zones 7 and 10 had producer’s similarity of 86.2% and 

78.8%, respectively, and user’s similarities of 85.7% and 80.1%, respectively. While the overall 

similarity is mostly influenced by the large number of the non-cropland pixels, the high 

producer’s and user’s similarity for cropland show low commission and omission errors in these 

zones. In the US, zone 12 which includes croplands in Florida and Georgia had the lowest 

producer’s similarity of 57% and user’s similarity of 69.8%. 

The map-to map comparison with the Mexico Agricultural frontiers 2010-2011 map 

revealed overall similarities > 86% (Table 8). The user’s similarity ranges between 69% and 

90%, and the producer’s similarity ranges between 55% and 71%. The low user’s similarity is 

associated with more croplands detected in our map compared to the Mexico Agricultural 

Frontiers map for 2010-2011. The spatial distribution of overall and producer’s similarity for 

crop class is shown in Figure 17.  

 

 

Figure 17: Spatial distribution of overall similarity (panel A) and producer’s similarity for crop 

class (panel B) for study area zones with available reference data in North America. 
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Table 8: Similarities derived from map-to-map comparison of our nominal 2010 cropland extent with cropland extent derived from 

reference data in Canada, the US, and Mexico. The reference data sources are Agriculture and Agri-Food Canada (AAFC) annual crop 

inventory (ACI) for Canada, the United States Department of Agriculture (USDA) cropland data layer (CDL) for the US, and Servicio 

de Información Agroalimentaria y Pesquera (SIAP) agricultural frontier boundaries for Mexico.  

 

Zone 
Region/ 

country 
Source 

Producer's 

similarity for 

crop 

Producer's 

similarity for 

non-crop 

User's similarity 

for crop 

User's similarity 

for non-crop 

Overall 

similarity 

% cropland area 

of North America 

total cropland area 

Zone 2 Canada AAFC ACI 92.3% 93.8% 82.7% 97.4% 93.4% 12.27% 

Zone 3 Canada AAFC ACI 62.4% 99.7% 91.5% 98.3% 98.1% 3.20% 

Zone 4 US USDA CDL 71.1% 99.0% 92.5% 95.2% 94.9% 1.19% 

Zone 5 US USDA CDL 88.1% 96.9% 78.5% 98.4% 95.9% 1.89% 

Zone 6 US USDA CDL 68.3% 98.7% 77.5% 97.9% 96.7% 4.23% 

Zone 7 US USDA CDL 86.2% 93.2% 85.7% 93.5% 90.9% 22.19% 

Zone 8 US USDA CDL 88.7% 95.0% 94.1% 90.3% 92.0% 17.70% 

Zone 9 US USDA CDL 74.8% 94.8% 64.4% 96.7% 92.5% 3.65% 

Zone 10 US USDA CDL 78.8% 95.2% 80.1% 94.9% 92.0% 6.34% 

Zone 11 US USDA CDL 85.7% 93.4% 85.3% 93.5% 91.0% 3.04% 

Zone 12 US USDA CDL 57.0% 96.0% 69.8% 93.2% 90.5% 1.04% 

Zone 13 Mexico SIAP 65.6% 99.3% 79.8% 98.5% 97.9% 0.43% 

Zone 14 Mexico SIAP 71.2% 92.1% 69.9% 92.5% 87.8% 2.42% 

Zone 15 Mexico SIAP 55.6% 98.6% 80.9% 95.4% 94.4% 1.35% 

Zone 16 Mexico SIAP 66.2% 93.8% 78.5% 89.1% 86.8% 4.19% 

Zone 17 Mexico SIAP 64.1% 99.0% 90.9% 94.9% 94.5% 0.86% 
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C. Pixel-based and fusion-based classification output comparison 

Our comparison of the pixel-based cropland classification from the random forest classifier with 

the county area estimates reported in the USDA CDL for the US indicate consistent 

underestimation of cropland areas (Figure 18). The R2 value of 0.96 indicates high correlation, 

but the slope of 0.83 indicates a general trend of underestimation in comparison with USDA 

CDL. This trend is also seen across the areas derived using the pixel-based random forest 

classification in the agricultural census sub-divisions in Canada, when we compare our results to 

the AAFC ACI estimates. While the R2 value of 0.96 indicates good correlation, the slope of 

0.71 shows that the pixel-based classification underestimates the cropland areas. 

 In contrast, the classification output from the fusion of pixel-based and object-based 

classifications showed results more consistent with the reference maps. The R2 value of 0.97 and 

a slope of 1.01 between our cropland area estimates and the USDA CDL indicates that the 

fusion-based cropland extent map accurately estimates the county areas. In Canada, the R2 value 

of 0.98 and slope of 0.86 indicate comparatively accurate agricultural census sub-division area 

estimates in contrast with the pixel-based output. We, therefore, selected the fusion-based output 

for North America as our final output for the nominal year 2010. 

Figure 18: Cropland area (ha) estimates using pixel-based random forest classification compared 

with the USDA CDL cropland extent at county level in the US (panel A) and the Canadian 
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AAFC ACI (panel B), and the fusion-based classification map compared with the USDA CDL 

cropland extent at county level in the US (panel C) and the Canadian AAFC ACI cropland extent 

at agricultural census sub-division level (panel D). 

D. Regression analysis 

Our regression analysis with county level data included four regions: 1) US, 2) Canada, 3) 

Mexico, and 4) Costa Rica (Figure 18 panels C & D; Figure 19). The regression analysis 

indicated that the classified cropland extent is consistent with the available reference maps in 

terms of areas of smaller sub-divisions for the North American continent. In the US, the 

coefficient of determination (R2) between the classified cropland areas and the USDA CDL 

cropland extent was 0.97. In addition to a strong correlation, the slope of 1.01 from this 

regression model suggests a strong overall agreement in the cropland area estimates. The root 

mean squared error (RMSE) value for this regression was 14,530 hectares (ha) (Figure 18 panel 

C). In Canada, the R2 value between the classified cropland area and the AAFC ACI cropland 

extent was 0.97 at agricultural census sub-division level. The slope of 0.86 indicated a slight 

under-classification of croplands in comparison to AAFC ACI estimates. The distribution of 

points around the regression line is compact with a low RMSE of 7,110 Ha (Figure 15 panel D).  

Mexico classification output had a R2 value of 0.84 when compared with SIAP 

Agricultural Frontier boundaries cropland extent at the district level (Figure 19). The relatively 

large RMSE of 15,023 ha suggests that the regression relationship is weaker for Mexico, while 

the slope of 1.09 suggests a slight over-classification. In Costa Rica, we compared district level 

reported areas from 2014 with our cropland extent map. This regression was strong with an R2 

value of 0.95 and a low RMSE of 8,974 ha. The slope of 0.87 indicated under-classification, 

which might be partially due to the temporal difference in the classification output and the 

reference. 

Additionally, we compared state-level cropland areas with the classified cropland extent 

for 1) Nicaragua, 2) Dominican Republic, 3) Panama, 4) Jamaica, 5) El Salvador, and 6) Cuba 

(Figure 19). The state level comparisons generally showed moderately strong relationships with 

the classified cropland extents. In Nicaragua, a R2 of 0.91 with a slope of 1.19 shows a strong 

correlation with slight over-classification. While the Dominican Republic had a wider spread 

around the regression line with R2 of 0.73, a slope value of 0.98 represents mapped areas very 

close to the actual cropland areas. Panama had a high R2 value of 0.94 and slope of 1.04 which 

shows strong correlation with reported cropland areas. The R2 value for Jamaica is 0.89 and its 

slope of 0.92 show under-classification. Cuba with its R2 value of 0.96 and regression slope of 

1.12 has small amount of over-classification. El Salvador had the lowest correlation of 0.8 and 

slope of 1.68, which indicates large over-classification. In addition, the large RMSE for El 

Salvador indicates a comparatively weaker performance of our classification model for this 

country (Figure 19). 
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Figure 19: Cropland area (ha) estimates compared with: A) Servicio de Información 

Agroalimentaria y Pesquera (SIAP) Agricultural Frontiers cropland extent for 2010-2011 at 

district level, and B) Costa Rican Ministry of Agriculture census 2014 total farm area at district 

level. 
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Figure 20: Cropland areas (ha) estimates compared with state level data on: A) total cropland area in Nicaragua’s agricultural census 

2012, National Institute for Development Information, B) total cropland area from 2015 agricultural census by Agricultural Sector 

Statistics, Dominican Republic, C) cropland area derived from 2010 land use statistics by National Institute of Statistics, Panama, D) 

farm area in 2007 from Statistical Institute of Jamaica, E) agricultural area for 2008 from the Ministry of Agriculture and Livestock of 

El Salvador, and F) cropland area for 2015 obtained from National Bureau of Statistics, Cuba. The total cropland area includes 

croplands and managed pastures.
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VI. Constraints and limitations 
The overall accuracies of the cropland extent map across all zones in the US is > 90%. The 

regression analysis of county statistics for our cropland extent with those derived from USDA 

CDL show strong agreement with slope of 1.01, R2 of 0.97, and RMSE of 14,674 ha. Some of 

the overclassified counties are found in zones 4, 8, 9, and 12, where some of the wetlands, 

pastures, and roads were classified as croplands. The counties with large omission errors occur in 

zones 6 and 12, and southern parts of zone 5 due to orchards being classified as non-croplands 

and exclusion of fallow cropland. In the US, the validation results may be biased towards USDA 

CDL since it was our only independent data source. The accuracies of our cropland extent may 

also reflect commission and omission errors in USDA CDL. However, the high overall 

accuracies (> 90%) of the USDA CDL suggest that this bias effect may be low (Howard and 

Wylie, 2014). 

In Canada, the map-to-map comparison of our classification output with the reference 

cropland extent derived from AAFC ACI shows high overall accuracies. The regression analysis 

yields a slope of 0.86, R2 = 0.97, and a root mean squared error of 7,469 ha, indicating omission 

errors in comparison to the AAFC ACI. The zones that have the most commission are 1 and 3. 

Zone 1 is not classified in AAFC ACI 2009-2012. Zone 2 shows omission errors in comparison 

to AAFC ACI, which occur in croplands near Calgary, and along the eastern coast of Lake 

Manitoba, for example. The commissions in our map in zone 3 occur in the districts of southern 

Ontario and in the croplands along the St. Lawrence River. Upon visual inspection of AAFC 

ACI-derived cropland extent with high-resolution background imagery in GEE, we note that 

AAFC ACI appears to have commission errors in some zones, while the reported overall 

accuracies are > 85%. This study did not quantitatively assess the commission errors of AAFC 

ACI. 

The Mexico agricultural frontiers 2 map (SIAP, 2017) is hand digitized and has 

inclusions as well as exclusions in many parts of southern Mexico. The agricultural frontiers 2 

map does not cover the Yucatan peninsula in southern Mexico. Our map-to-map comparison and 

district-wise regression analysis were, therefore, restricted only in the zones that include the 

agricultural frontiers 2 map, although our cropland extent map included all croplands in Mexico. 

The R2 value of 0.84 suggests good agreement, but also indicates some disagreements. In 

particular, these disagreements occur as omission errors in zones 15 and 16 or as commission 

errors in the Yucatan peninsula in zone 15. These differences are due to small field sizes, highly 

wet climate, and low temporal density of Landsat data in southern Mexico. 

In our classification of Central America, Mexico, the Caribbean Islands, and Hawaii, we 

included cropland pasture in the cropland extent. This is because a majority of the farms in 

Central America, Mexico, and the Caribbean Islands are small and could not be detected due to: 

a) Landsat surface reflectance data being limited and only TOA data were available, and b) the 

small farms often rotate between croplands and pasture, and c) slash and burn agriculture was 

common further challenging the cropland distinction. 

Spatial data or land cover maps are rare for Central America and the Caribbean Islands. 

The agricultural statistics available in some of the countries were, therefore, essential in 

validating our cropland extent classification in those regions in addition to statistical accuracy 

assessment. Low accuracies in the statistical assessment and low R2 values in the regression 

analysis with agricultural statistics from some countries, such as Dominican Republic and El 



40 
DCN 

Version 1.0 

Salvador, are related to the: 1) limited data quality due to common presence of clouds, 2) high 

rainfall, and 3) low density of images in the time-series data. 

In the object-based classification, the identification and selection of appropriate field size 

was essential. Field sizes varied across the North American continent and among the different 

zones. The same parameters, therefore, could not be used in the object-based classification of the 

entire continent. The optimal merge threshold was similarly different in each sub-zone for the 

RHSEG object-based classification. We implemented the object-based RHSeg classification only 

in the regions and zones with sufficient Landsat SR data availability: the US, Canada, and the 

northern parts of Mexico. RHSeg was not implemented in southern Mexico, Central American 

region, and the Caribbean Islands due to: 1) low data quality of Landsat 5 TM TOA with clouds, 

2) small holder farms with only small differences from surrounding vegetation, and 3) inability 

to form a seamless mosaic using data from two periods in a year. Instead, we used sieving and 

clumping to reduce the noise in the cropland extent classification in southern Mexico, Central 

American region, and the Caribbean Islands.  

The fusion reduced within-field variability and removed incorrectly classified small 

clusters of cropland pixels. The use of a threshold of 25% cropland pixels was critical in the 

fusion with the pixel-based classification. The fusion also resulted in some omission and 

commission errors, when multiple crop fields were merged together during the object-based 

classification to form one object since crop fields commonly occurred adjacent to each other. 

Our regression analysis (Figure 15) showed that the pixel-based classification for North America 

consistently underestimated cropland areas in the US counties and Canadian agricultural census 

sub-divisions. In contrast, the fusion-based classification significantly improved the output as 

indicated by comparing the county areas in the US and agricultural census sub-divisions in 

Canada with those derived from USDA CDL and AAFC ACI, respectively. 

Other limitations in the North American cropland extent for nominal year 2010 are 

largely due to the data availability across the North American continent (Figure 3). Regions of 

significant cloud cover, such as the Central American countries, can have large variability in the 

Landsat 5 TM and Landsat 7 ETM+ image collection, which cause errors in the RF 

classification. Lastly, regions with relatively small field sizes, large amount of rainfall, irregular 

patterns of irrigation, and longer growing periods may have lower accuracies due to highly 

similar time-series curves between crop and non-crop samples.   
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Phone Number: 605-594-6116 

Toll Free: 866-573-3222 (866-LPE-DAAC) 

Fax: 605-594-6963 

 

Email: lpdaac@usgs.gov 

Web: https://lpdaac.usgs.gov 

 

For the Principal Investigators, feel free to write to: 

 

Prasad S. Thenkabail at pthenkabail@usgs.gov   

 

For North America cropland extent, feel free to write to: 

Richard Massey rm885@nau.edu 

Temuulen Sankey Temuulen.Sankey@nau.edu 

 

More details about the GFSAD project and products can be found at: globalcroplands.org  
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