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I.         Members of the team
This Global Food Security-support Analysis Data 30-m (GFSAD30) Cropland Extent Product of South America (GFSAD30SACE) was produced by the following team members. Their specific role is mentioned.

Dr. Ying Zhong, Scientist, Environmental Systems Research Institute (ESRI), led the GFSAD30SACE product generation effort. Ms. Zhong was instrumental in the design, coding, computing, analyzing, and synthesis of Landsat derived nominal 30-m GFSAD30SACE cropland product of the South American continent for the nominal year 2015. She was also instrumental in writing the manuscripts, ATBD, and user documentation.	Comment by Ying Zhong: I do not have a PhD degree unfortunately…

Dr. Chandra Giri, Chief, Sensing and Spatial Analysis Branch, United States Environmental Protection Agency (USEPA), provided guidance and intellectual insights into South American cropland mapping. He is one of the co-I’s of the project and was instrumental in developing framework of the GFSAD30SACE product, writing the manuscripts, ATBD, and user documentation.

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey, is the Principal Investigator (PI) of the GFSAD30 project. Dr. Thenkabail was instrumental in developing the conceptual framework of the GFSAD30 project and the GFSAD30SACE product. He provided guidance and intellectual insights throughout the GFSAD30 project and contributed in writing the manuscripts, ATBD, and user documentation.

Dr. Pardhasaradhi Teluguntla, Research Scientist, Bay Area Environmental Research Institute (BAERI) at the United States Geological Survey (USGS), provided input and insights on cropland extent product generation for the South American continent. He made significant contribution in writing the manuscripts, ATBD, user documentation. He also created the baseline cropland mask at 1-km which was instrumental in masking croplands versus non-croplands initially.

Dr. Russell G. Congalton, Professor of Remote Sensing and GIS at the University of New Hampshire, led the independent accuracy assessment of the entire GFSAD30 project including GFSAD30SACE.

Ms. Kamini Yadav, PhD student at the University of New Hampshire, made major contributions to the independent accuracy assessment directed by Prof. Russell G. Congalton.

Dr. Adam Oliphant, Geographer, United States Geological Survey, provided Google Earth Engine (GEE) cloud computing insights and support in generating GFSAD30SACE cropland product of the South American continent. 

Dr. Jun Xiong, Research Scientist, Bay Area Environmental Research Institute (BAERI) at the United States Geological Survey (USGS), provided Google Earth Engine (GEE) cloud computing insights and support in generating GFSAD30SACE cropland product of the South American continent.  

Dr. Varsha Vijay, PhD student @ Duke University, helped in algorithm development of GFSAD30SACE cropland product of the South American continent.  She also participated in several discussions on accuracy assessment.

Mr. Justin Poehnelt, Computer Scientist with the United States Geological Survey, contributed to the initial conceptualization and development of the croplands.org website.



[image: https://mail.google.com/mail/u/0/images/cleardot.gif]

II.         Historical Context and Background Information
Monitoring global croplands is imperative for ensuring sustainable water and food security to the people of the world in the twenty-first century. However, the currently available cropland products suffer from major limitations such as: (1) the absence of precise spatial locations of the cropped areas; (2) coarse resolution of map products with significant uncertainties in areas, locations, and detail; (3) uncertainties in differentiating irrigated areas from rainfed areas; (4) absence of crop type information and cropping intensities; and/or (5) the absence of a dedicated Internet data portal for the dissemination of cropland products. Therefore, the Global Food Security-support Analysis Data (GFSAD) project aimed to address these limitations by producing cropland maps at 30m resolution covering the globe, referred to as Global Food Security Support-Analysis Data @ 30-m (GFSAD30) products. This Algorithm Theoretical Basis Document (ATBD) provides a basis upon which the GFSAD30 cropland extent product was developed for the continent of South America (GFSAD30SACE, Table 1). 

South America is a traditional food producer and exporter, and it has the potential to continuously increase its food production in the near future given its relatively low population and rich availability of land and water resources. In the past 50 years, South America has experienced extensive cropland expansion (Graesser et al. 2015) and fastest agricultural productivity growth in any developing region (Ludena 2010). South America has great potential to further expand and intensify crop production (Conforti 2011) due to availability of unexploited arable lands for cultivation (Fischer, van Velthuizen, and Nachtergaele 2011), water resources, labor forces, rich experiences, and infrastructure (Zeigler and Truitt Nakata 2014). In the recent past, about 40 percent of agricultural production was contributed by cropland expansion and according to FAO it will remain equally important in the future (Alexandratos and Bruinsma 2012). This is in shark contract to the rest of the world where the focus will be to increase the yield rather than expansion.

However, expansion of cropland in South America does not come without serious negative consequences in providing ecosystem goods and services to nature and society. For example, South America has the largest area of tropical forest in the world with rich biodiversity (Myers et al. 2000). Cropland expansion occurs at the expense of wild lands such as forest (Castiblanco, Etter, and Aide 2013; Gasparri, Grau, and Angonese 2013; Müller et al. 2012) grassland, and savanna (Baldi and Paruelo 2008; Graesser et al. 2015). This will have negative consequences in providing ecosystem goods and services to the entire world (Foley et al. 2007; Viglizzo and Frank 2006). For example, crop expansion accelerates carbon emission (Karstensen, Peters, and Andrew 2013), reduces sequestration due to loss of forests, and impacts biodiversity (Fearnside 2001). Thus, improving our scientific understanding of the cropland distribution and dynamics over space and time is critically important. Nowhere more than in South American continent where rapid changes have occurred in last 50 years and likely to occur throughout the twenty-first Century.

However, accurate, reliable, and consistent information on the extent and distribution of croplands of the South American continent at finer spatial scale is unavailable. In order to fill this gap, the Global Food Security–Support Analysis Data at 30 m (GFSAD30) project implemented by the U.S. Geological Survey (USGS) together with a number of partner organizations (croplands.org) and funded by NASA aims to generate high resolution (nominal 30 meters) cropland products from multi-sensor remote sensing images (http://geography.wr.usgs.gov/science/croplands/). GFSAD30 has successfully developed a 1-km resolution cropland extent and watering sources (Teluguntla et al. 2015) by synthesizing four cropland spatial distribution studies: Thenkabail et al. (2009), Pittman et al. (2010), Yu et al. (2013), Friedl et al. (2010). Currently the research group is generating 30-meter spatial resolution cropland products (croplands.org) for the entire world. This paper is focused on development of cropland extent and areas of the South American continent at nominal 30-m spatial resolution using Landsat data.


Table 1. Basic information of the Global food security support-analysis data @ 30-m cropland extent product for the South American continent (GFSAD30SACE)

	[bookmark: _Toc491263202]Product Name
	[bookmark: _Toc491263203]Short Name
	[bookmark: _Toc491263204]Spatial Resolution
	[bookmark: _Toc491263205]Temporal Resolution

	[bookmark: _Toc491263206]GFSAD 30-m Cropland Extent Product of South America
	GFSAD30SACE
	[bookmark: _Toc491263208]30-m
	[bookmark: _Toc491263209]nominal 2015




   III.         Rationale for Development of the Algorithms
Mapping the precise location of croplands enables the extent and area of agricultural lands to be more effectively captured, which is of great importance for managing food production systems and to study their inter-relationships with water, geo-political, socio-economic, health, environmental, and ecological issues (Thenkabail et al., 2010). Furthermore, accurate development of all higher-level cropland products such as crop watering method (irrigated or rainfed), cropping intensities (e.g., single, double, or continuous cropping), crop type mapping, cropland fallow, as well as assessment of cropland productivity (i.e., productivity per unit of land), and crop water productivity (i.e., productivity per unit of water) are all highly dependent on availability of precise and accurate cropland extent maps. Uncertainties associated with cropland extent data affects the quality of all higher-level cropland products reliant on an accurate base map. However, precise and accurate cropland extent data are currently nonexistent at the continental scale at a high spatial resolution (30-m or better). This lack of crop extent data is particularly true for complex and varied  agricultural systems of South America that vary from small-holder farming to very large industrial farms. By mapping croplands at a high-resolution (30-m or better) at the continental scale, the GFSAD30 project has resolved many of the shortcomings and uncertainties of other cropland mapping efforts.

The two most common methods for land-cover mapping over large areas using remote-sensing images are manual classification based on visual interpretation and digital per-pixel classification. The former approach delivers products of high quality, such as the European CORINE Land Cover maps (Büttner, 2014). Although the human capacity for interpreting images is remarkable, visual interpretation is subjective (Lillesand et al., 2014), time-consuming, and expensive. Digital per-pixel classification has been applied for land-cover mapping since the advent of remote sensing and is still widely used in operational programs, such as the 2005 North American Land Cover Database at 250-m spatial resolution (Latifovic, 2010). Pixel-based classifications such as maximum likelihood classifier (MLC), neural network classification (NN), decision trees, Random Forests (RF), and Support Vector Machines are powerful, and fast classifiers that help differentiate distinct patterns of landscape. 

Both supervised and unsupervised classification approaches are adopted in pixel-based classifiers. However, per-pixel classification includes several limitations. For example, the pixel’s square shape is arbitrary in relation to patchy or continuous land features of interest, and there is significant spectral contamination among neighboring pixels. As a result, per-pixel classification often leads to noisy classification outputs – the well-known “salt-and-pepper” effect. There are other limitations of pixel-based: 1. they fail to fully capture the spatial information of high resolution imagery such as from Landsat 30-m imagery, and 2. they often, classify the same field (e.g., a corn field) into different classes as a result of within field variability. This may often result in a field with a single crop (e.g., corn) classified as different crops. 

For the creation of the GFSAD30SACE data product, we used the most commonly used supervised pixel-based classifier (Pelletier et al., 2016, Tian et al., 2016, Shi and Yang, 2015, Huang et al., 2010):  Random Forests (RF’s). 
IV.         Algorithm Description
[bookmark: randomforestclassifierrfs]We used Random Forest classifier to classify croplands, and non-croplands. Previous studies showed that RF classifier performs better in land cover classification (Gislason, Benediktsson, and Sveinsson 2006; Pal 2005; Rodriguez-Galiano et al. 2012) compared to traditional maximum likelihood classifier (MLC). Further, since Random Forest is a nonparametric classifier (Duda, Hart, and Stork 2012), it is appropriate and powerful for land cover classification in which remote sensing data collected from multiple sources are used (Gislason, Benediktsson, and Sveinsson 2006). As an ensemble classification model, multiple decision trees are trained in one Random Forest classification model, each of which uses a set of bootstrapped samples from the original samples. Each decision tree contributes a vote of class, and the final output class of the classifier is the majority vote of the trees. In each tree node, only a random subset of variables is selected for classification in order to reduce tree correlation (Breiman and Adele 2016). 

The Random Forest classifier is more robust, relatively faster in speed of classification, and easier to implement than many other classifiers (Pelletier et al., 2016). The Random Forests classifier uses bootstrap aggregating (bagging) to form an ensemble of decision trees (Pelletier et al., 2016) by searching random subspaces from the given data (features) and the best splitting of the nodes by minimizing the correlation between the trees
 
[bookmark: _Toc491263211][bookmark: _Toc491263505]a.     Input data
i. [bookmark: _Toc491263506] Region Definition
The study area consists of the entire continent of South America, covering twelve sovereign countries (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, and Venezuela), and two territories including French Guiana and Falkland Islands. Continent’s area is ~1.78 billion hectares with a total population of 418 million people. Forest covers half of the South America continent (Giri and Long 2014). The country boundaries were determined by the Global Administrative Unit layers (GAUL) of United Nations (http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691&currTab=simple).
ii. Reference Samples
[bookmark: referencecroplandssamples]Training samples for croplands versus non-croplands were generated through multiple steps. First, we created random points and drew homogenous polygons around the random point with the size of approximately three by three Landsat pixels (90-m by 90-m). We then defined the land cover category of the polygons as croplands, or non-croplands with visual interpretation assisted by (i) high-resolution images available from Google Earth, (ii) Landsat images, and (iii) MODIS NDVI temporal profile. In the second stage, additional training samples were selected where classification performance was poor. The training sample selection and classification model training were performed tile by tile.   

Reference training/testing data were obtained in the four ways. First, we gathered random samples by interpreting sub-meter to 5-meter very high spatial resolution imagery (VHRI) throughout South America available to us from the National Geospatial Agency (NGA). There were a total 3000+ samples from VHRI spread across South America. Second, some other global/region projects (Teluguntla et al., 2015, Thenkabail et al., 2012) shared their valuable reference datasets. To incorporate these reference data in our project, we converted their labeling system (“cross-walked”) to be consistent with the labeling scheme of our project (Teluguntla, 2015).
iii.  Satellite Imagery: Landsat data
We used the Landsat 5-7 (Table 2) Top-of-atmosphere imageries acquired during January 1, 2013 to January 1, 2016. In most areas, we divided a calendar year into 6 periods: starting from Julian day 1, every 60 days are grouped into one period except that the last 65 days are grouped into the last period. All imageries acquired in one period across 3 years are composited together to find the medium value of every pixel. Exceptions are the areas where clear imageries for certain period are lacking due to high percentage of cloud coverage across the year, such as coastal Brazil and Ecuador. In these areas, only the last three periods (day 181 – day 365) – the dry periods – are used, or the year is divided into three periods with every 120 days being a period (125 for the last period), in order to acquire clear imageries for each period.  

These bands were selected from Landsat imageries to use in classification: blue, green, red, NIR, SWIR1, SWI
R2, NDVI (Table 2). We also add a NDVI standard deviation (NDVI SD) band which is calculated from the composited NDVI bands of all periods in a year. The NDVI SD band reflects the fluctuation of NDVI in a year. Further, considering that topographic characteristics can often affect whether farming could happen, a slope band is added to the set of classification bands, which is calculated from the Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007) digital elevation at 1 arc-sec (approximately 30m) resolution dataset. 

Overall, a total of 44 bands were used in the areas that are composited by 6 periods, and 23 bands in the areas that are composited by 3 periods.

Table 2. Characteristics of Landsat 7&85&7 data used in the study along with band indexes.	Comment by Thenkabail, Prasad S.: Please compose appropriate table for the bands you used …..

	Band Name
	Landsat 5 TM
Spectral Range
μm
	Landsat 7 ETM+
Spectral Range
μm

	Blue
	0.45-0.52
	0.45-0.52

	Green
	0.52-0.60
	0.52-0.60

	 Red
	0.63-0.69
	0.63-0.69

	NIR
	0.76-0.90
	0.77-0.90

	SWIR1
	1.55-1.75
	1.55-1.75

	SWIR2
	2.08-2.35
	2.09-2.35


	VI Name
	Equation

	NDVI
	

	NDVI SD
	



Note: NIR = near infrared, SWIR = shortwave infrared, OLI = operational land imager, TM = thematic mapper, ETM+ = enhanced thematic mapper plus, NDVI = normalized difference vegetation index, NDVI SD = standard deviation of NDVI.NBR = normalized burn ration, LSWI = land surface water index.

b.     Theoretical description                                               
[bookmark: _Toc491263509]1.   Definition of Croplands
For all products within GFSAD30, cropland extent was defined as, “lands cultivated with plants harvested for food, feed, and fiber, including both periodal crops (e.g., wheat, rice, corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber, cocoa, oil palms). Cropland fallow are lands uncultivated during a period or a year but are farmlands and are equipped for cultivation, including plantations (e.g., orchards, vineyards, coffee, tea, and rubber” (Teluguntla et al., 2015). Cropland extent includes all planted crops and fallow lands. Non-croplands include all other land cover classes other than croplands and cropland fallow (Figure 1).
[image: ]
Figure 1. Illustration of definition of cropland mapping. Croplands included: (a) standing crop, (b) cropland fallows, and (c) permanent plantation crops.
[bookmark: _Toc491263511]c.     Practical description
1. Random Forest (RF) Algorithm
All supervised pixel-based classifications are heavily dependent on the input training samples selected. In order to discriminate croplands under various environments and conditions, the sample size of the initial training dataset needs to be large, especially in complex regions. All samples were selected to represent a 90-m x 90-m polygon. We used, sub-meter to 5-m very high spatial imagery was used to generate croplands versus non-cropland samples using multiple interpreters across South America. Approximately 3000+ data samples were used generated from these interpretations. These samples were used in training the Random Forest (RF) machine learning algorithm.

We processed and composited Landsat imageries, and performed Random Forest classification on the Google Earth Engine cloud computing platform. GEE stores all the Landsat data seamlessly for the entire continent. Cloud computing offers the power of computing linking 1000s of computers allowing parallel processing and thus allowing to classify the entire continent in matter of minutes.

Parameter settings of the Random Forest classifier are listed below:
· Number of decision trees to grow: 600. After testing on several training datasets, the number of 600 trees balances the classification error rate and computation load. Therefore, 600 trees were built in each Random Forest classifier;
· Variables per split: 2; default setting of the Random Forest classifier algorithm – square root of the number of inputs – was accepted and therefore two randomly selected variables were used in each tree node to determine the class; 
· Minimum leaf population: 1; the minimum size of a terminal leaf in the tree could be as small as one, meaning that no pruning was done; and 
· Fraction of input to bag per tree: 50%; randomForest classifier uses an out-of-bag (oob) mode that half of the original set of samples are randomly selected with replacement as input samples in the training of one decision tree, and the rest samples are used to estimate the oob error. More information about oob and oob error estimate is available at (Breiman and Adele 2016). 
RF algorithm was coded and run separately on each of the five distinct zones (Figure 2). The zones were delineated based on their agro-ecology, climate, elevation, and agricultural patterns. This was done based on the internal discussions within the team keeping in view the ease of applying RF algorithm for best possible results in separating croplands from non-croplands. We followed an iterative process to run the Random Forest classifier, for each of the 5 zones separately, until the results were satisfactory. For the land cover classes and areas that were poorly classified, we manually added training samples and re-ran the classifier. 

After each round of classification, we identified areas where croplands were misclassified as non-croplands. In order to reduce omissions, we ran another round of classification on only the areas being classified as non-croplands. Afterwards, the croplands classified through multiple iterations were mosaicked together to generate an overall cropland map for the continent – Cropland Extent Map. This process was adopted in each of the 5 zones (Figure 2). 

After classification in all the five zones (Figure 2), to improve spatial coherency, the Cropland Extent Maps of each of the 5 zones were smoothed by performing majority filtering twice. In this process, each pixel was reclassified into the majority land cover class of its eight surrounding pixels. The output from majority filtering is the final Cropland Extent Map (Figure 3). 
[image: ]
Figure 2. Study zones and reference training samples. The maps here show the delineation of 5 study zones. The RF algorithm was run separately in each of the 5 zones. The map on the right also shows the distribution of the reference training samples spread across the continent. These reference training samples were used in training the RF algorithm.

V. Programming and codes
The pixel-based supervised machine learning algorithms (RF) was coded on Google Earth Engine (GEE) using Python and Java Scripts using Application Programming Interface (API). The codes are made available in a zip file and are available for download along with this ATBD.

VI. Results
The study led to cropland extent product @ nominal 30-m (Figure 3) for nominal year 2015 for South American continent. This is referred to as global food security-support analysis data @30-m of South America: cropland extent product (GFSAD30SACE). Spatial distribution of these croplands can be visualized at: croplands.org. The full 30-m resolution of the product can be “zoomed-in” and visualized (e.g., Figure 4). Visual comparison of our Cropland Extent Map shows similar distribution pattern of major croplands in South America as depicted by GlobCover 2009 and GCE V1.0 cropland maps (Figure 5). Further, the total cropland area and cropland area in each country (Table 3) calculated from our Cropland Extent Map are also very close to the area calculated from GlobCover 2009 major cropland map and GCE V1.0 major cropland. Some regions where major differences of cropland distribution are observed are Chile, Colombia, Ecuador, and Venezuela. Our Cropland Extent Map generates a higher value of cropland area in Chile and lower value in Colombia compared with GlobCover 2009 major cropland maps and GCE V1.0 major cropland maps, and much lower estimation of cropland area in Venezuela compared with GCE V1.0 major cropland map. Moreover, GlobCover 2009 major and minor cropland map has a wider distribution of cropland than other three cropland maps. To achieve more accurate evaluation and comparison of cropland areas based on cropland maps, sub-pixel cropland area should be calculated to replace full-pixel area in across all products as that proposed by Thenkabail et al. (2007). Sub-pixel areas provide actual areas, especially when computing areas from coarser resolution imagery such as GlobCover 2009. However, sub-pixel areas may not be needed to determine areas in 30-m product such as this study.

[image: ]
Figure 3. depicts the Cropland Extent Map of South America at a spatial resolution of 30-m for the year of 2013 - 2015. This product is made available for visualization @: croplands.org.
[image: ]
Figure 4. “Zoom-in” view of a selected area of the cropland Extent Map of South America at a spatial resolution of 30-m for the year of 2013 - 2015. The South American wide product is made available for visualization @: croplands.org.




[image: ]
Figure 5. Comparison of GFSAD30SACE 30-m cropland product with three other coarser resolution cropland products.
8. Cropland areas of South America
According to our Cropland Extent Map, the total cropland area in South America is 282.2 million hectares or 17.0% of its total land area (Table 3). Brazil has the largest cropland area in South America (59.3%) followed by Argentina (23.1%). Though Brazil and Argentina have largest areas of cropland in South America, their percentage of croplands over total land area are relatively low when comparing to Uruguay, Paraguay, and Venezuela which have 75.1%, 47.0%, and 43.6% respectively. In the meantime, they contribute to 4.2%, 3.3%, and 2.7% of total cropland area in South America.

The following major factors may contribute to prediction errors: 
(1)	Limitations of the input Landsat data. Some areas are persistently covered by clouds, such as the Guayas region in Ecuador where large area of plantation presents, resulting in low quality of Landsat data (Giri and Long 2014) and therefore unsatisfactory classification results in these areas. Additionally, the anomaly of the Landsat 7 ETM + Scan Line Corrector caused problematic “strips” in the Landsat 7 ETM + images. In future studies, more reliable remote sensing images such as Landsat 8 and Sentinel-2 should be used in the classification training and prediction.


(2)	Under-representation of landscape characteristics. Though training samples are selected to represent the diverse land cover types of South America comprehensively, some landscape may still be missed in the training dataset. Therefore, the input variable values of prediction cases may exceed the range of training cases, resulting in misclassification of those cases. 

(3)	Uncertainties in the training dataset. We selected training dataset delicately and identified the cropland cover categories of them with best efforts. However, the visual interpretation of land cover may be incorrect in some cases, especially when reliable reference data in certain areas for the mapping period is not available. Therefore, errors are likely to exist in the training dataset which jeopardized the classification accuracy from the root. In order to increase accuracy of the training dataset, field survey data or high-resolution images and photographs should be used in training data generation. 

Though our Cropland Extent Map agrees with other cropland maps in major spatial distribution pattern, discrepancy exist in some areas of the continent. Three major reasons may have contributed to the disagreements: 1. inconsistent definition of cropland class, 2. different mapping time, and 3. different spatial resolution of the cropland maps. Inconsistency in cropland definition may contributes most to the disagreement between cropland maps. As mentioned above, pasture and rangeland are excluded from the ‘cropland’ class in our Cropland Extent Map, but included in the GlobCover 2009 agricultural classes. Therefore, the GlobCover 2009 major and minor cropland map in which Class 11, 14, and 20 of GlobCover 2009 were clumped into one ‘cropland’ class tends to over-estimate cropland areas. 

In addition, the cropland maps were developed for different years during which land cover changes may have happened, resulting in disagreement of land cover descriptions even if the descriptions of cropland maps were all accurate for their mapping time. GlobCover 2009 was developed for the period of January – December 2009, and GCE V1.0 was synthesized from four cropland maps, the mapping time of which ranges widely from 2000 to 2010, while our Cropland Extent Map was developed for the year 2013 – 2015. From 2010 to 2013, some croplands might have been abandoned while new croplands were developed.






Table 3. Net cropland areas (NCAs) of South America based on 30-m cropland product and comparison with other cropland products.	Comment by Thenkabail, Prasad S.: Pardha: this comment is for you. Please compose this table from the global table we have….retain not only GFSAD30SACE areas but also few other columns…..like FAO, MIRCA….
	Country
	Crop Area 
(mha)1
	Land area 
(mha)2
	% cropland  
in South America
	% cropland
 in country

	Argentina
	38.4
	273.7
	23.1
	14.0

	Bolivia
	3.7
	108.3
	1.3
	3.5

	Brazil
	64.0
	835.8
	59.3
	7.7

	Chile
	6.0
	74.4
	2.1
	8.0

	Colombia
	6.5
	111.0
	2.3
	5.9

	Ecuador
	2.4
	24.8
	0.9
	9.7

	French Guiana
	0.0
	1.2
	0.0
	0.5

	Guyana
	0.2
	8.2
	0.1
	1.9

	Paraguay
	9.2
	19.7
	3.3
	47.0

	Peru
	2.2
	39.7
	0.8
	5.5

	Suriname
	0.0
	128.0
	0.0
	0.0

	Uruguay
	11.7
	15.6
	4.2
	75.1

	Venezuela
	7.6
	17.5
	2.7
	43.6

	Total
	282.2
	1657.9
	100.0
	17.0








     V.         Calibration Needs/Validation Activities
In addition to spatial distribution, the Cropland Extent Map also indicates the cropland area in South America. We summarized the cropland area in each country and the total cropland area in South America from the Cropland Extent Map, and compared with FAO statistics (FAO 2016) and the cropland area calculated from GlobCover 2009 major cropland map, GlobCover 2009 major and minor cropland map, GCE V1.0 major cropland map, GCE V1.0 major and minor cropland. It’s noteworthy that the area here is full pixel area, meaning that the cropland pixels were considered as “pure” and the sub-pixel composition was not analyzed to extract fractional information of cropland (Thenkabail et al. 2007). Given that a Landsat pixel constitutes an area of 0.09 hectares, purity of the pixels can be trusted.

For this assessment, 1250 reference samples that were collected independently of any reference training and testing samples used by the mapping team were used.   Error matrices (Table 5) were generated for each of the five zones separately and for the entire South American continent providing producer’s, user’s, and overall accuracies (Story and Congalton, 1986, Congalton, 1991, and Congalton and Green, 2009). 

Table 5. Independent Accuracy Assessment of 30-m Cropland Extent Map for South America. Accuracies were assessed for each of the 5 zones as well as for the entire continent.
  [image: ]

For the entire continent, the weighted overall accuracy was 93.2% with producer’s accuracy of 82.6% (errors of omissions of 17.4%) and user’s accuracy of 76.7% (errors of commissions of 23.3%) (Table 5). When considering all 5 zones, the overall accuracies ranged between 92.4-96.8%, producer’s accuracies ranged between 79.6-90.9%, and user’s accuracies ranged between 76.7-81.3% (Table 5). 

 VI.         Constraints and Limitations
GFSAD30SACE product mapped the croplands of South America @ nominal 30-m, which is the best-known resolution for cropland mapping over such large area as South American continent covering all Countries. It also has high levels of accuracies with overall accuracy of 93.2% and with producer’s accuracy of 82.6%  and user’s accuracy of 76.7%. 

A producer’s accuracy of 82.6% for the cropland class means an error of omission of 17.4%. This means 17.4% of the continental croplands were missing in the product. A user accuracy 76.7% for the cropland class for the continent means there is an error of commission of 23.3%. This means, 23.38% of non-croplands are mapped as croplands. We tweaked the Random Forest algorithm (section IV) to maximize capturing as much croplands as feasible automatically. In this process, some non-croplands get mapped as croplands as well. This is a preferred solution in order not to miss croplands or only to miss them minimally. As a compromise mapping some non-croplands as croplands becomes unavoidable.

There are numerous issues that cause uncertainties and limitations in cropland extent product. Some of these issues are discussed here. First, temporal coverage. Five to ten-day Sentinel-2 and 16-day Landsat-8 coverage put together, there is substantial temporal coverage. Yet, achieving cloud-free or near cloud-free mosaics of the entire South American continent is difficult proposition over sjorter some time periods (e.g., weekly, twice-monthly, monthly). This is not surprising given such a large area of the continent. If we were to have daily coverage over an area (e.g., like MODIS) then it becomes feasible to have more frequent (e.g., monthly or bi-monthly composites) temporal coverage of the continent that will help advance cropland mapping at improved accuracies. Second, there is a need for greater understanding of the Landsat-7 and Landsat-8 data on how well they are correlated and in efforts to achieve better harmonization of data from two different sensors. Third, is the limitation of the reference training and validation data. In this project, we already have large training and validation data compared to any previous work as described in various previous sections. Nevertheless, much wider and extensive field visits to different parts of the continent will be helpful in better understanding of the issues involved and as a result better mapping. For example, better understanding and defining managed pastures from agricultural croplands. These and a better understanding of croplands through field visits as well as understanding of host of other issues (e.g., various types of irrigated and rainfed croplands, various types and ages of cropland fallows) all will help improve cropland mapping. Greatest difficulties in cropland mapping in South America were in detecting, understanding, and delineating managed pastures from croplands. Further, reduction in uncertainties in cropland mapping is feasible if we were to implement multiple machine learning algorithms rather than just the Random Forests. These and numerous other issues  will continue to be there in cropland mapping over such large areas as the South American continent. Nevertheless, advances made in this study is significant, especially in developing a nominal 30-m cropland extent of the entire continent at very good accuracies.
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