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Abstract

The earth’s land surface is continually changing due to natural seasonal and interannual cycles, to direct 
human action, and to changing climate. Land disturbance outside of the natural cycle impacts habitats, 
climate, hydrology, food supply, and other critical systems. Improved understanding and monitoring of 
disturbances can provide tools to land managers as well as aid scientific investigation of processes. Here, we 
introduce a global system, DIST-ALERT, that flags all vegetation cover loss relative to its near-term historical 
range. With a median revisit rate of <2 days, Harmonized Landsat Sentinel-2 (HLS) imagery provides the 
highest cadence medium spatial resolution data set available and an ideal data source for monitoring the 
earth’s surface. The vegetation fraction of each new HLS observation is estimated per pixel and compared to 
the last 3 years within a 31-day window surrounding the date of observation. Vegetation fractions less than 
the baseline minimum are flagged as disturbance and tracked through subsequent observations to build or 
decrease confidence. The system is agnostic to vegetation type and to resulting land cover, requiring further 
analysis for many applications. In addition to vegetation loss, there is a secondary disturbance detection 
algorithm based on spectral anomalies relative to the same baseline. This general disturbance detection is 
intended to capture all kinds of other land changes including crop extensification or lava flows. Along with 
DIST-ALERT, annual summaries of alerts are generated (DIST-ANN) to facilitate downstream science 
through the production of synoptic annual records of global land disturbance.

Plain Language Summary

Human activity alters the land surface as we seek to produce fuel, food, fiber, and dwelling space for 
expanding human populations and associated economic growth. Such changes impact the functioning of 
natural systems, sometimes replacing them wholesale through the expansion of cities, croplands, mines, and 
other land uses.  Climate change may also impact the seasonal and interannual patterns of vegetation, altering 
the cycles of plant growth and decay.  A better understanding of these changes will aid in the scientific study 
of their impacts on the Earth system and provide information for improved management of land resources.  
Satellite remote sensing provides a unique opportunity to monitor these changes at scale almost as they 
happen. This task is already being done for tropical forests.  Here we extend the idea to the entire Earth land 
surface for all vegetation with a new system: DIST-ALERT. All kinds of vegetation loss are mapped and 
tracked through time to build or decrease confidence of change based on the severity and duration. Also, 
anything that looks different in the current observation compared to a baseline is marked and evaluated in the 
subsequent observations. The whole earth is imaged every 1-5 days and the maps are updated daily, though 
cloud cover blocks some regions from being analyzed as frequently. All of the disturbance alerts from a year 
are summarized within an annual product, DIST-ANN.  Results will reflect the balance of direct and indirect 
human impacts in the pursuit of development with the maintenance of natural systems.
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Version Description

This is the ATBD for DIST-ALERT and DIST-ANN v1 products released March, 2024.
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1. Introduction

Land disturbance represents a host of dynamics that impact the earth system and may be due to human-
induced or natural causes.  For example, urbanization impacts local climate and hydrology; deforestation is a 
major source of carbon emissions; and drought inhibits food production. Information from earth observation 
data on land disturbance can help managers, agencies, and governments understand and respond to land 
changes in a timely manner. Here, we define disturbance as a loss of vegetation cover outside of near-term 
historical variability. Vegetation cover is mapped per pixel, evaluated against a seasonal baseline to detect 
vegetation disturbance, and then tracked through the time series. To account for land disturbances unrelated 
to vegetation loss, we also include a secondary algorithm that employs a spectral distance measure. Both 
disturbance algorithms are applied to near-real time HLS data and deliver low latency disturbance results 
DIST-ALERT and annual summary alert DIST-ANN. Stratified random samples are employed to validate 
DIST-ALERT and DIST-ANN. Overall accuracy for the disturbances ≥50% of DIST-ALERT is specified to 
exceed 80% and of DIST-ANN, 90%.

2. Context/Background

2.1. Historical Perspective

Transformation of the Earth's surface has increased over time, with impacts shifting from local to global 
scales, altering the fundamental flows of chemical and energy that sustain life on the only inhabited planet we 
know(Kates et al., 1990). Land disturbance due to human activity impacts a range of earth system functions, 
including climate regulation, hydrologic function, biodiversity richness, and more.  For example, land use 
change accounts for 23% of total anthropogenic forcing of climate warming (Shukla et al., 2019). Direct 
human action in the form of land use change has accounted for roughly two-thirds of all observed land 
change over the last 30+ years (Song et al., 2018).  Deforestation, agricultural intensification, urbanization 
and other dynamics reveal an increasing appropriation of natural lands for economic use and the increasing 
intensification of existing land uses (Foley et al., 2005).  Considerable international policy effort has focused 
on slowing tropical deforestation in an attempt to reduce carbon emissions and limit damage to forest co-
benefits such as the maintenance of terrestrial biodiversity, largely with little impact to date.  Monitoring land 
change is a prerequisite to measuring its impacts, both in the policy and scientific domains.  

Climate change itself is also a driver modifying land cover and land use.  Tree lines are changing, mortality 
events increasing, droughts intensifying.  Such land changes over time may become a larger fraction of the 
overall dynamic compared to other proximate drivers of disturbance, including tipping points resulting in 
large scale collapse of ecosystems. (Lenton et al., 2008) state that “Climate change and other human activities 
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risk triggering biosphere tipping points across a range of ecosystems and scales” and that “Researchers need 
to improve their understanding of these observed changes in major ecosystems…” For both direct land use 
change and more distal climate-driven land change, data on land disturbance data can offer invaluable 
observational data and insights in support of scientific inquiries concerning global environmental change.

Disturbance is defined as any event that occurs outside the range of natural variability 
(Mildrexler et al., 2009) and may be due to human-induced or natural causes.  Disturbance indicates an 
impact on land cover or land use that may result in a complete conversion or only a modification of the pre-
existing condition.  Disturbances can be instantaneous or long-lived, limited in area or regional in scale.  
Differentiating the limit of natural variability is a key requirement in assigning disturbance, as many 
ecosystems and associated land covers can be highly interannually variable, as are land uses.  Additionally, 
many land covers and land uses are defined by disturbance, such as fire regimes in boreal forests, or rotations 
in forestry land uses.  

Disturbance is often characterized in ecological terms as events that alter ecosystem extent, structure, 
communities, and other variables.  Deforestation, mining, fire, drought and other dynamics, whether human-
induced or natural in cause, result in a reduction in vegetation cover with concomitant impacts on ecosystem 
function.  For this application, we focus on such dynamics and define disturbance as a loss of vegetation 
cover outside of near-term historical variability.  In this way, we modify the general definition of disturbance 
to being a cover change of more to less vegetation cover. The presented method and associated disturbance 
algorithm is applied in near-real time as new imagery are available, delivering low latency results to facilitate 
land management decision-making.  Annual summaries of alerts are then delivered, facilitating downstream 
science through the production of synoptic annual records of global land disturbance.

The potential uses of vegetation disturbance alerts at medium spatial resolution (10-30 m from globally 
acquired, publicly available sensing systems such as Landsat and Sentinel 2) range from enforcement to 
management applications.  Monitoring road building, logging, forest clearing for agriculture and other 
dynamics can have added value if reported in near-real time. The DETER alerts of Brazil were critical to 
increasing the capacities of law enforcement and land management agencies in reducing illegal deforestation 
in the Brazilian Amazon (Nepstad et al., 2014). The deployment of such a system pan-tropically by Global 
Forest Watch through the University of Maryland’s Global Land Analysis and Discovery (GLAD) lab, has 
offered such possibilities to other countries.  Studies have showed GLAD alerts to have been used to reduce 
deforestation in community forests in Peru and Central Africa (Slough et al., 2021); (Moffette et al., 2021).  
Here, we advance this approach by applying it at global scale with a continuous measure, characterizing 
generic vegetation loss instead of only forests, and employing the highest cadence medium spatial resolution 
(30 m) data set available, in the form of Harmonized Landsat Sentinel-2 data (HLS), as the input.  The HLS 
tiling system is shown in Figure 1.  The integration of both medium spatial resolution systems greatly 
enhanced the temporal resolution ( 2-4 day repeat) of these data, which improves alert capabilities.  
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3. Algorithm Description

3.1. Scientific Theory

Operational disturbance alert systems can be signal or land cover theme-based.  Signal-based systems use a 
radiometric measure, such as greenness or brightness temperature, as the primary input to the alert system, 
delineating change outside normal variation of these bio-geophysical variables.  By comparison, theme-based 
alerts characterize a specific land cover change dynamic over a time series, such as forest cover loss, i.e., the 
removal of tree cover, or flooding, i.e., an increase in the expanse of surface water beyond the norm.   As 
such, land cover theme-based alert systems provide a more intuitive physical meaning and a resulting ability 
to map and validate area estimates more easily than bio-geophysical measures. 

Fractional vegetative cover is a theme-based measure and the basis of the OPERA Surface Distburbance 
(DIST) algorithm.  Fractional cover estimations from satellite data have a long history, employing a host of 
algorithms, from simple linear endmember mixture models (Adams et al., 1995); (Settle & Drake, 1993), 
multiple endmember mixture models (Roberts et al., 1998), empirical modeling (DeFries et al., 1997); 
(Zhu & Evans, 1994), and distribution-free machine learning methods  (Hansen et al., 2002).   The 
advantages of continuous dependent variables such as percent tree or vegetation cover include improved 
sensitivity to change compared to categorical labels, greater flexibility for users to adjust definitions, and more
realistic depictions of ecotones. 

Figure 1: The global map of tile IDs for the HLS products (same as original Sentinel-2 tiling system).108
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Operational alerts of land change have been employed in a variety of modes, ranging from illegal 
deforestation monitoring in Brazil with the Real-Time System for Detection of Deforestation (DETER) 
(Shimabukuro et al., 2012), to active fire monitoring with the NASA’s Fire Information for Resource 
Management System (FIRMS)(Davies et al., 2008), to food security with the Famine Early Warning System 
(FEWS) of USAID  (Ross et al., 2009).  Newer products include the use of medium spatial resolution data, 
for example Global Forest Watch’s deforestation alerts (Hansen et al., 2016) made from Landsat and 
Sentinel-2 data.  To advance this capability, we will implement a global low latency alert, DIST-ALERT, and 
an annual summary, DIST-ANN, product suite using NASA’s Harmonized Landsat Sentinel-2 data (HLS) 
(Claverie et al., 2018) as inputs.  The combined capability of these Earth observing systems results in a 2-4 
day repeat visit cadence globally (Li & Roy, 2017), facilitating the application of near-real time disturbance 
mapping.  

Vegetation fraction is a suitable variable for monitoring global land change.  Our team has developed global 
algorithms for mapping per pixel percent vegetation cover using MODIS and Landsat data 
(Carroll et al., 2010); (Hansen et al., 2014); (Ying et al., 2017).  Results with Landsat demonstrate the utility 
of the measure in mapping the dynamic of vegetation loss and employing the maps to sample-based and 
econometric methods to estimate land use outcomes/drivers and apply the measure as a leading economic 
indicator, respectively (Ying et al., 2017); (Ying et al., 2019).  Vegetation loss as a generic dynamic can 
inform specific downstream applications from local to global scales and we will apply percent vegetation to 
HLS time-series imagery (Claverie et al., 2018) in mapping land disturbance. 

3.1.1. Scientific Theory Assumptions

The first assumption in monitoring land disturbance, as we have defined it, concerns disturbances that involve
vegetation loss.  In terms of global environmental change, vegetation loss is a key indicator, whether the 
dynamic is deforestation, desertification, overgrazing, or fire.  However, a limited number of disturbance 
dynamics do not involve vegetation loss, for example redevelopment of a commercial parcel, or lava flow 
superposed on old lava fields.  An open question is the proportion of disturbance, as defined by generic 
surficial change events, that is omitted when targeting vegetation loss.  It is the assumption that the vast 
majority of land disturbance relevant to policy, management and science applications will be observable using
vegetation cover as the indicator variable.  To confirm this assumption, we will add a Mahalanobis distance 
measure to delineate generic changes outside of the vegetation cover loss theme.

Another assumption concerns the ability of optical time-series data to discriminate relevant vegetation loss 
events accurately and in a timely fashion.  Large conversion events, such as deforestation, have been shown 
to be reliably characterized (Hansen et al., 2013), while modification, or degradation of land cover types, has 
more mixed results.  Conversions represent a high contrast, typically long-lived spectral change.  
Modifications represent low contrast, often ephemeral spectral change.  The manner in which we plan to add 
signal for detecting modifications, in effect to improve contrast, is to exploit the density of the HLS time-
series.  Repeated alert detections, even if low in contrast individually, can in concert enable accurate 
assignment of low intensity land disturbance.  As a safeguard, our product specification and definition of 
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disturbance is for 50% or greater vegetative cover loss events, or more suited for conversion than 
modification.  

3.2. Mathematical Theory

Vegetation Fraction Algorithm 

We have been working on Vegetaion Continuous Field (VCF) maps for years,including MODIS VCF 
(Hansen et al., 2002), (Hansen et al., 2003) and Landsat-based VCF maps (Hansen et al., 2014); 
(Ying et al., 2017).  In this product, we employ 8cm drone images and K Nearest Neighbor (KNN) model to 
characterize vegetation fraction. Our model relies on the following assumptions for successful estimation:

1. Consistent radiometric characterization of input imagery. The HLS time-series data feature state of the 
practice pre-processing including surface reflectance estimation and bi-directional reflectance distribution 
function correction, resulting in a reliable, scale set of independent variables for inputs into a turn-key 
KNN model.

2. Accurate quality assessment flags in screening inputs. The HLS data come with a quality assessment flag 
that must accurately screen unviable observations. No quality assessment layer is perfect, but too many 
omission errors in terms of passing haze/cloud/smoke/shadow-impacted observation leads to errors in 
mapping land change. However, the unprecedented density of the HLS time-series mitigates against 
occasional errors in quality flags.

Given consistent spectral inputs and quality assessment, a drone data based KNN model is built to estimate 
the per-HLS pixel vegetation fraction. Drone images were collected across different biomes at different 
seasons, covering representative land cover and land use. NDVI was selected to calculate vegetation fraction 
over other indices that employ additional shorter wavelength bands that are impacted by greater scattering 
effects which we sought to avoid in a global application. A linear translation of NDVI to vegetation fraction 
was applied for the range of 0.10 to 0.80 based on the studies of (Jiang et al., 2006), 
(Tucker & Nicholson, 1999), and (Gitelson et al., 2002).  Modifying the model to account for varying 
illumination effects and background soil variation was not feasible, particularly for a global application. For 
this product, the linear translation was applied to the 8cm drone NDVI values and then aggregated to 30m 
HLS -pixel level. The averaging of these data to 30m is assumed to ameliorate less well characterized mixed 
pixels at the 8cm scale. Then we matched the coincident clear-sky HLS data with drone images and 
employed four bands of HLS data, including red, nir, swir 1.6 and swir 2.1 bandwidths, and drone-derived 
vegetation fraction as the training inputs (Figure 2). Only bands that are present in both the HLS Landsat and 
HLS Sentinel collections were included. Additionally, to avoid residual atmospheric contamination, we did 
not employ shorter wavelength blue and green bands as independent variables in estimating vegetation 
fraction. We converted the four HLS bands to three principal components through principal component 
analysis and built the KNN model based on the three principal components using a K-value of 100. The 
result is a turn-key model which can be applied to any HLS image using the aforementioned bands. The main
assumption of the resulting model is that the samples cover all ranges of vegetative cover and may be applied 
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to all the HLS images. A global composite can be seen in Figure 3. While many cover types require a time-
series for identification, whether forests or croplands, vegetation fraction can be mapped instantaneously, 
much like water.  As such, time-series of HLS observations in the form of vegetation cover can be used to 
monitor land change.

Figure 2: Training data collected from drone-derived Fractional Vegetation Cover (FVC) and coincident HLS data. The 
data is showed at the first two principle components derived from HLS red, nir, swir 1.6 and swir 2.1 bandwidths, 
denoted as HLS PCA1 and PCA2.
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Vegetation Disturbance Algorithm

The DIST algorithm employs a vegetation cover indicator as the input variable.  Vegetation cover can be 
mapped per pixel, recording the natural phenological or managed land use dynamic of the land surface. Near-
term historical variation can then be used as a reference for detecting anomalous vegetative cover estimates. 
Vegetation cover is defined as “the amount of skylight orthogonal to the surface that is intercepted by the 
cover trait of interest” (Carroll et al., 2010) and includes all plant life over land including both woody and 
herbaceous (i.e., non-woody) vegetation as with the MODIS VCF product (Hansen et al., 2013) 
(MODIS VCF ATBD, n.d.). Vegetation disturbance is mapped when there is an indicated decrease in 
vegetation cover within an HLS pixel, formally defined to be 50% vegetation cover decrease when the scene 
is compared to the previous calendar years as in (Ying et al., 2017), though the algorithm will report a 
continuous record of vegetation cover loss. The number of calendar years used as a reference is three years.

Applying the per scene vegetation cover model will result in a time-series of per pixel vegetation cover.  
Figure 4 shows three dates of HLS-derived vegetation cover over the Bootleg Fire in Oregon, USA. The 
dates were chosen as they were cloud/smoke-free and outline the scale of the fire extent.  Figure 5 depicts a 
time-series of vegetation cover for a pixel at the western edge of the fire, illustrating the start of the fire for 
this pixel sometime after the morning of July 6. Disturbance, or vegetation loss, is quantified by the next 
cloud/smoke-free image on July 16.  In algorithm implementation, disturbances in vegetation cover will be 
identified by comparing each current HLS scene to a summary of cover estimates from previous years 
representing a lower bound of observed vegetation cover. The composite historical reference is derived from 
the minimum vegetation fraction of all observations in the previous three years within a 31-day window 
surrounding the calendar date of the current HLS scene. In order to capture more representative conditions, at 
least four historical observations are required to calculate the vegetation cover anomaly.  In this manner, we 
may account for intra-annual and seasonal variation in quantifying anomalously low vegetation cover 
conditions.  Regions with high cloud frequency may always have four observations within the baseline 
period, such as regions of humid tropical forests. In order to enable greater monitoring capcity in these 

Figure 3: Global vegetation fraction estimates from HLS data from July 2023, gap-filled by surrounding months. 
Vegetation fraction calculated as percent vegetation cover with the KNN model derived from drone data.
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regions, we also employ a three-year, 12-month baseline minimum from the three previous calendar years to 
identify areas with stable high vegetation presence. When there are not four seasonal baseline estimates 
available and the annual baseline is ≥85%, then the annual baseline cover estimate is used as the reference 
baseline to calculate the vegetation cover anomaly. 

Strongly seasonal environments may have periods where detection of land disturbance is precluded.  For 
example, low sun angles and winter conditions will lead to fewer observations and lower vegetation contrast 
when observed.  However, the vegetation cover model is sensitive to leaf-off non-photosynthetic woody 
cover in semi-deciduous and deciduous environments, meaning forests and woodlands will register a positive 
leaf-off vegetative cover. This outcome is due to the fact that dense leaf-off tree cover has a similar spectral 
signature to peak greenness transitional shrublands in semi-arid ecotones. Figure 6 illustrates leaf-on, leaf-off 
vegetation cover estimates as compared to a clearing event in northern Virginia, USA.

Figure 4: HLS-derived vegetation cover for three dates in r-g-b color composite.  Red indicates vegetation loss after June 
25, 2021.  The three dates were chosen as they were cloud-free and graphically capture fire extent.
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Figure 5: HLS-derived percent vegetation cover for fire-disturbed pixel on the western edge of the Bootleg Fire, Oregon, 
USA. Pixel is located at 121°24'51"W, 42°38'31"N.

Figure 6: HLS time-series of vegetation cover for deciduous forest pixel in Virginia, USA, cleared between July 9th and 
16th, 2021.
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Figure 7 shows an example pixel from a shrubland outside of Fort Worth, Texas, USA being converted to a 
residential land use.  In this simplified example, two years of Landsat Analysis Ready Data are composited 
and the historic per-composite ranges used as a reference for the current year.  Observations of the current 
year are compared to the range of their respective composite periods and vegetation cover estimates below 
the lower bounds indicate loss.  The anomaly magnitude and current vegetation cover estimates are recorded.  
Both the magnitude and frequency of alerts will be used to integrate time-series information with repeated 
alert observations resulting in confirmed land disturbance assignation.  Beyond confirmed status, a 
confidence layer which weights repeated alerts will be generated, where confidence equals the mean 
vegetation loss over a series of alerts multiplied by the number of alerts squared.  Figure 8 illustrates 
scenarios for a range of mean vegetation loss values for this measure.  As the system moves forward, the 
reference data are updated and, in the case shown in Figure 7, a new range of reference vegetation cover will
preclude alerts from being repeated in the following year. The full set of time-series layers, including 
confidence, date, and duration are listed in Table 1.

Figure 7: DIST-ALERT example from Analysis Ready Data Landsat observations for a sub-tropical shrubland conversion 
event near Fort Worth, Texas.
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Spectral Distance Secondary Algorithm

To account for land disturbances unrelated to vegetative cover loss, we include a secondary algorithm that 
employs a spectral distance measure.  Near-time historical data, as with the vegetation fraction algorithm, will 
be used to calculate a spectral envelope that delimits a normal range of spectral variation.  Current HLS 
spectral signatures will be compared to the normal historical range and outliers calculated.  The measure 
chosen is Mahalanobis distance, as it accounts for co-variance in the near-term historical range, unlike 
Euclidean distance.  Figure 9 shows the difference between Mahalanobis and Euclidean distance in 
graphical form, comparing the two measures.  Each pixel will have a Mahalanobis function based on 
historical data for the current temporal window from two or more years, as with the vegetation fraction 
algorithm.  A minimum of six historical clear land observations are needed to calculate the baseline envelope. 
The function will be applied to the current red, near-infrared, and two shortwave infrared bands, again as 
with the vegetation fraction algorithm, and the value recorded for all valid land observations per HLS scene.  
Time-series layers derived from the spectral distance alerts will mimic those of the vegetation fraction model, 
and are listed in Table 1.

Figure 8: Confidence layer approach (y-axis) combining alert magnitude and frequency.  For example a mean 10% loss 
for 6 alerts would have a confidence of 360.  
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Algorithm Implementations

Two DIST products are generated with respect to their temporal relevance:  a) the DIST-ALERT product 
capturing disturbance at the cadence of HLS sampling (median average 2.9 days for HLS (Li & Roy, 2017)) 
and b) the DIST-ANN product summarizes changes of the DIST-ALERT products from the previous year. 
The date of the first disturbance is tracked within both products. Each DIST-ALERT product is associated 
with an HLS scene and is used to track vegetation disturbances at the temporal frequency of the input HLS 
dataset. The DIST-ANN tracks changes at the annual scale, aggregating changes identified in the DIST-
ALERT product.  Figure 10 shows the general flow of operations and products for both algorithms. 

The DIST-ALERT product tracks disturbances from initial detection through subsequent observations to 
increase or decrease confidence. Disturbances identified with the vegetation loss algorithm are tracked 
independently from those identified with the spectral distance algorithm, but they are each monitored with a 
parallel set of rules. Disturbances are marked as provisional or confirmed and as low or high intensity. All 
disturbances begin as provisional alerts starting with the date of initial detection. Through repeated anomaly 
detections in subsequent observations, alerts can move to confirmed status. The precise number of valid land 
observations required for a confirmed status will be determined during the algorithmic calibration and are a 
function of both the magnitude of the anomaly and the number of anomaly detections. This confirmation will 
come from a variable number of HLS scenes due to invalid observations contaminated by cloud or shadow. If
a pixel marked provisional disturbance has no observed loss in subsequent images, then this label will be 
removed and this pixel’s vegetation cover will continue to be analyzed for future vegetation cover losses. 
Additional contextual layers are provided for disturbed pixels including: the date of initial disturbance, 
vegetation disturbance confidence, number of observed anomalies, and disturbance duration. An example of 

Figure 9: Graphical comparison of Euclidean and Mahalanobis spectral distance measures.  Mahalanobis functions 
calculated from historical data, which better account for co-variance, will be applied to new observations and spectral 
distances from the mean recorded per HLS scene.     
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provisional versus confirmed alerts is shown in Figure 10. For vegetation loss disturbances, pixels are also 
marked as low or high intensity based on whether the estimated vegetation cover loss is ≥50%. For general 
disturbances identified by the spectral distance algorithm, the distance threshold delineating low and high 
intensity will be determined during algorithm calibration. 

In DIST-ANN, only confirmed disturbances from the associated year are reported together with the date of 
initial disturbance. As confirmed disturbances are determined using subsequent cloud-free observations to 
determine if the loss detections persist, the required number of HLS scenes depends on visibility of the target. 
Due to this, summarizing the DIST-ALERT in the DIST-ANN product will have some latency depending on 
the algorithmic calibration and detailed in subsequent documentation. Additional contextual layers are 
provided for disturbed pixels including: the date of initial disturbance, vegetation disturbance confidence, 
number of observed anomalies, and disturbance duration.  An example of provisional versus confirmed alerts 
is shown in Figure 11.

Figure 10: Flow of processes and outputs of the DIST product suite.
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Output Product Layers

The layers detailed in Tables 1 are output for each HLS scene/tile for which vegetation cover is estimated.  
For every HLS scene a per-pixel estimate of the current percent vegetation cover indicator and the current 
anomaly value are provided within the DIST-ALERT product. The anomaly value is defined as the 
difference in estimated percent vegetation cover between the seasonally normalized lower bound of historical 
vegetation cover (historic vegetation cover indicator) and the percent vegetation cover estimate from the 
current HLS scene. Only anomalies of vegetation loss are reported. Although disturbances must be reported 
for ≥50% vegetation cover loss per the project requirements and validation activities, all disturbances with 
vegetation cover loss ≥10% are tracked in the time-series. The maximum anomaly and duration layers can be 
leveraged to assess the magnitude and duration of disturbances. Given potential rapid vegetation recovery, the
anomaly value corresponding to the date of maximum anomaly as well as the historical lower bound from 
that date are reported. As the historical lower bound corresponds to the date of maximum anomaly it is not 
reported for pixels without recorded anomalies. The vegetation cover estimate for the current year at the date 

Figure 11: Map showing a Quebec wildfire captured in the DIST-ALERT vegetation disturbance status from September 
13, 2023.
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of maximum anomaly can be calculated from these two values. Table 2 shows all the metadata of DIST-
ALERT product, which can be found in the cmr.json metadata file in the package of DIST-ALERT product.

Table 3 lists all the layers in the annual summary DIST-ANN product. And Table 4 lists all the the metadata 
of DIST-ANN. The metadata file can be found in a cmr.json file of the DIST-ANN package. There will also 
be a comma delieted file(CSV) listing all the DIST-ALERT input files, HLS source files and image metadata.

DIST-
ALER
T 
Raster 
Layer

Description
File 
name

Data 
type

Layer 
values

Vegetati
on 
disturba
nce 
status

Indication of vegetation cover loss (vegetation disturbance). The 
status label is based on the maximum anomaly value, confidence 
level, and whether it is ongoing or finished. “First” means the 
pixel has had an anomaly detection but no subsequent 
observations whether anomalous or not. “Provisional” means 
there have been two consecutive disturbance detections but not 
yet high confidence. “Confirmed” means that vegetation 
disturbance is detected with high confidence (≥400). The label 
“finished” is applied to confirmed disturbances that have had two 
consecutive no-anomaly observations or one 15 days or more 
after the last anomaly detection. If a new disturbance is detected, 
it will overwrite those in a “finished” state. These labels are 
reported for both above and below the 50% disturbance threshold 
based on the maximum anomaly value.

VEG
-
DIST
-
STAT
US

UInt
8

0: No 
disturban
ce
1: first 
<50%
2: 
provision
al <50%
3: 
confirme
d <50%
4: first 
≥50%
5: 
provision
al ≥50%
6: 
confirme
d ≥50%
7: 
confirme
d <50%, 
finished
8: 
confirme
d ≥50%, 
finished

Table 1: Product Raster Layers for DIST-ALERT
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255: No 
data

Current 
vegetati
on cover 
indicator

The percent vegetation cover estimated for the current HLS 
scene for all land and water pixels.

VEG
-IND

UInt
8

0-100: 
Estimated 
percent 
vegetatio
n
255: No 
data
 

Current 
vegetati
on 
anomaly 
value

Difference between historical baseline and observed vegetation 
cover at the current date (vegetation loss of 0-100%). When >0, 
the sum of this anomaly value and the current vegetation cover 
indicator will be the historical vegetation cover estimate. 

VEG
-
ANO
M

UInt
8

0-100: 
Estimated 
loss of 
percent 
vegetatio
n
255: No 
data
 

Historic
al 
vegetati
on cover 
indicator

Historical percent baseline value at the time of the maximum 
anomaly for disturbance pixels. A fill value is used for all non-
disturbance pixels. Historical vegetation is calculated from all 
HLS scenes within a synchronous temporal window (±15 days) 
from previous three calendar years to capture intra-
annual/seasonal variation. 

VEG
-
HIST

UInt
8

0-100: 
Vegetatio
n percent
200: No 
disturban
ce
255: No 
data
 

Max 
vegetati
on 
anomaly 
value

Difference between historical and current year observed 
vegetation cover at the date of maximum decrease (vegetation 
loss of 0-100%).. This layer can be used to threshold vegetation 
disturbance per a given sensitivity (e.g. disturbance of ≥20% 
vegetation cover loss). The sum of the historical percent 
vegetation and the anomaly value will be the vegetation cover 
estimate for the current year.

VEG
-
ANO
M-
MAX

UInt
8

0-100: 
Maximu
m loss of 
percent 
vegetatio
n
255: No 
data
 

Vegetati
on 

Mean anomaly value since initial anomaly detection multiplied 
by the number of loss anomalies squared. Confidence is 

VEG
-

Int16 -1: No 
data
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Disturba
nce 
Confide
nce 
Layer

calculated until the anniversary date is reached, or a fixed number 
of consecutive non-anomalies are observed causing the status 
(VEG-DIST-STATUS) to change to “finished”.

DIST
-
CON
F

0: No 
disturban
ce
>0: 
Disturban
ce 
confidenc
e

Date of 
initial 
vegetati
on 
disturba
nce

Day of first loss anomaly detection of the most recent disturbance 
event. Day denoted as the number of days since December 31, 
2020.

VEG
-
DIST
-
DAT
E

Int16

 
-1: No 
data
0: No 
vegetatio
n 
anomalie
s in the 
last year
>0: Day 
of initial 
anomaly 
detection 
in the last 
year

Number 
of 
detected 
vegetati
on loss 
anomali
es

Total number of observations with anomalous low vegetation 
since initial anomaly detection (inclusive). Maximum of 254.

VEG
-
DIST
-
COU
NT

UInt
8

0: No 
disturban
ce
1-254: 
Count of 
loss 
anomalie
s
255: No 
data

Vegetati
on 
disturba
nce 
duration

Number of days of ongoing loss anomalies since initial anomaly 
detection (inclusive). Maximum duration is one year.

VEG
-
DIST
-
DUR

Int16 -1: No 
data
0: No 
disturban
ce
1-366: 
number 
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of days 
from first 
anomaly 
to most 
recent 
anomaly 
detection

Date of 
last  
observat
ion 
assessed 
for 
vegetati
on 
disturba
nce

Day of last quality assessed HLS observation flagged as land or 
water that also had sufficient observations for baseline calculation 
for vegetation disturbance algorithm. Day denoted as the number 
of days since December 31, 2020.

VEG
-
LAS
T-
DAT
E

Int16

-1: No 
data
≥1: Last 
day 
assessed
 

Generic 
disturba
nce 
status

Indication of generic spectral difference. The status label is based 
on the maximum anomaly value, confidence level, and whether it 
is ongoing or finished. “First” means the pixel has had an 
anomaly detection but no subsequent observations whether 
anomalous or not. “Provisional” means there have been two 
consecutive disturbance detections but not yet high confidence. 
“Confirmed” means that disturbance is detected with high 
confidence. The label “finished” is applied to confirmed 
disturbances that have had two consecutive no-anomaly 
observations or one 15 days or more after the last anomaly 
detection. If a new disturbance is detected, it will overwrite those 
in a “finished” state. These labels are reported for both above a 
low and high threshold based on the maximum spectral anomaly. 

GEN
-
DIST
-
STAT
US

UInt
8

0: No 
disturban
ce
1: first 
low
2: 
provision
al low
3: 
confirme
d low
4: first 
high
5: 
provision
al high
6: 
confirme
d high
7: 
confirme
d low, 
finished
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8: 
confirme
d high, 
finished
255: No 
data

Current 
generic 
disturba
nce 
anomaly 
value

Spectral distance between current HLS scene reflectance and the 
reflectance of the previous three calendar years within ±15 
calendar days. Calculated by Mahalanobis distance. 

GEN
-
ANO
M

Int16

-1: No 
data
0: No 
disturban
ce
>0: 
Spectral 
distance 

Generic 
disturba
nce 
maximu
m 
anomaly 
value 

Maximum spectral distance between a current year HLS scene 
reflectance and the composite reflectance of previous calendar 
years.

GEN
-
ANO
M-
MAX

Int16

-1: No 
data
0: No 
disturban
ce
>0: 
Spectral 
distance 

Generic 
Disturba
nce 
Confide
nce 
Layer

Mean spectral distance since initial spectral anomaly detection 
times the number of spectral anomalies above a threshold, until 
the anniversary date is reached, or a fixed number of consecutive 
non-anomalies are observed.

GEN
-
DIST
-
CON
F

Int16

-1: No 
data
0: No 
disturban
ce
>0: 
Disturban
ce 
confidenc
e

Date of 
initial 
generic 
disturba
nce

Day of first spectral anomaly detection of the most recent 
disturbance event. Day denoted as the number of days since 
December 31, 2020.

GEN
-
DIST
-
DAT
E

Int16 -1: No 
data
0: No 
spectral 
anomalie
s in the 
last year
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>0: Day 
of initial 
anomaly 
detection 
in the last 
year

Number 
of 
detected 
spectral 
anomali
es

Total number of observations with spectral reflectance anomalies 
(inclusive). Maximum of 254.

GEN
-
DIST
-
COU
NT

UInt
8

0: No 
disturban
ce
1-254: 
Count of 
loss 
anomalie
s
255: No 
data

Generic 
disturba
nce 
duration

Number of days of ongoing spectral reflectance anomalies since 
initial anomaly detection (inclusive). Maximum duration is one 
year.

GEN
-
DIST
-
DUR

Int16

-1: No 
data
0: No 
disturban
ce
1-366: 
number 
of days 
from first 
anomaly 
to most 
recent 
anomaly 
detection

Date of 
last  
observat
ion 
assessed 
for 
generic 
disturba
nce

Day of last quality assessed HLS observation flagged as land that 
also had sufficient observations for baseline calculation for 
generic disturbance algorithm. Day denoted as the number of 
days since December 31, 2020.

GEN
-
LAS
T-
DAT
E

Int16

-1: No 
data
≥1: Last 
day 
assessed
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Data 
mask

Mask of pixels the algorithms are applied to in the current HLS 
scene. Based on the Fmask layer of the source HLS granule.

DAT
A-
MAS
K

UInt
8

0: Not 
land
1: Land
 
 

Attribute Description

GranuleUR
The granule ID for each DIST-ALERT. Format: OPERA_L3_DIST-ALERT-
HLS_Tile_YYYYMMDDTHHMMSSZ_ 
YYYYMMDDTHHMMSSZ_S2A_30_v1

TemporalExtent: 
RangeDateTime

The DIST-ALERT product versionTemporal extent of the HLS data, flagged as 
BeginningDateTime and EndingDateTime. Format: YYYY-MM-
DDTHH:MM:SS.SSSSSSZ

ProviderDates The date of DIST-ALERT product be provided

CollectionReferen
ce:ShortName

The short name of the collection, OPERA_L3_DSIT-ALERT-HLS_V1

CollectionReferen
ce:Version

The DIST-ALERT product version

DataGranule: 
DayNightFlag

Flag if the image is during the day or night

DataGranule: 
ProductionDateTi
me

DIST-ALERT product processing date. Format: YYYY-MM-
DDTHH:MM:SS.SSSSSSZ

Platforms Name of the sensor platform (e.g. Landsat-8/9 or Sentinel-2 A/B)

Instruments Name of the sensor instrument (e.g. OLI or MSI)

SpatialExtent The longitude and latitude boundary of the image

CloudCover
The percentage of cloud and cloud shadow in the DIST-ALERT product (copied 
from HLS)

Input_DIST-
ALERT_granule

The input DIST-ALERT granule ID

Table 2: DIST-ALERT metadata
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BaselineCalendar
Window

Number of days before and after the calendar date used to create the baseline

BaselineYearWind
ow

Number of previous years used to create the baseline

BaselineImageIds List of the input HLS granules used to create the baseline

ValidationLevel The validation level of the product

HLSGranuleUR Name of the input HLS granule used to generate the DIST-ALERT product

SENSOR_PROD
UCT_ID

The source Landsat or Sentinel-2 data ID

SPATIAL_COVE
RAGE

The area percentage of the tile with data (copied from HLS)

MGRS_TILE_ID The tile ID

HLS_PROCESSI
NG_TIME

The input HLS granule processing date. Format: YYYY-MM-
DDTHH:MM:SS.SSSSSSZ.

SENSING_TIME
The sensing time provided with the source Landsat or Sentinel-2 image. Format: 
YYYY-MM-DDTHH:MM:SSZ.

HORIZONTAL_
CS_CODE

The code for the coordinate system, eg: “EPSG:32655”

HORIZONTAL_
CS_NAME

The name of the coordinate system, eg :"UTM, WGS84, UTM ZONE 55"

ULX The E-W coordinate of the upper left within the given coordinate system

ULY The N-S coordinate of the upper left within the given coordinate system

DIST-ANN 
Raster 
Layer

Description
File 
name

Data 
type

Layer values

Vegetation 
disturbance 
status

Status corresponding to the highest confidence 
vegetation disturbance confirmed within the year. 
Status classes identify confirmed ongoing 
disturbance, confirmed finished disturbance, and 

VEG-
DIST-
STAT
US

UInt
8

0: No 
disturbance
3: confirmed 
<50% ongoing

Table 3: Product Raster Layers for DIST-ANN
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confirmed disturbance initially detected in previous 
year for both <50% and ≥50%, and no disturbance.

6: confirmed 
≥50% ongoing
7: confirmed 
<50% finished
8: confirmed 
≥50% finished
9: confirmed 
previous year 
<50%
10: confirmed 
previous year 
≥50%
255: No data

Historical 
vegetation 
cover 
indicator

Historical percent vegetation from composite of HLS 
scenes during the same time period of the maximum 
anomaly for disturbance pixels. A fill value is used 
for all non-disturbance pixels. Historical vegetation is 
calculated from a synchronous temporal window 
from previous calendar years to capture intra-
annual/seasonal variation. 

VEG-
HIST

UInt
8

0-100: 
Vegetation 
percent
200: No 
disturbance
255: No data

Maximum 
vegetation 
cover 
indicator

For non-disturbance pixels, maximum annual 
vegetation fraction from the HLS time-series data will 
be reported. For disturbance pixels, the vegetation 
fraction from the date of maximum anomaly will be 
reported.

VEG-
IND-
MAX

UInt
8

0-100: 
Estimated loss 
of percent 
vegetation
255: No data
 

Maximum 
vegetation 
anomaly 
value

Difference between historical vegetation cover and 
vegetation cover at the date of maximum decrease 
(vegetation loss of 0-100%). This layer can be used 
to threshold vegetation disturbance per a given 
sensitivity (e.g. disturbance of ≥20% vegetation cover 
loss).

VEG-
ANO
M-
MAX

UInt
8

0-100: 
Maximum loss 
of percent 
vegetation
255: No data
 
 

Vegetation 
Disturbance 
Confidence 
Layer

Mean anomaly value since initial anomaly detection 
times the number of loss anomalies squared, until the 
anniversary date is reached, or a fixed number of 
consecutive non-anomalies are observed.

VEG-
DIST-
CONF

Int16

-1: No data
0: No 
disturbance
>0: 
Disturbance 
confidence
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Date of 
initial 
vegetation 
disturbance

Day of first loss anomaly. Day denoted as the number 
of days since December 31, 2020.

VEG-
DIST-
DATE

Int16

-1: No data
0: No 
disturbance
>0: Day of first 
loss anomaly 
detection

Number of 
detected 
vegetation 
loss 
anomalies

Total number of loss anomalies since initial anomaly 
detection(inclusive). Maximum of 254.

VEG-
DIST-
COUN
T

UInt
8

0: No 
disturbance
1-254: Count 
of loss 
anomalies
255: No data

Vegetation 
disturbance 
duration

Number of days of ongoing loss anomalies since 
initial anomaly detection (inclusive). Maximum 
duration is one year.

VEG-
DIST-
DUR

Int16

-1: No data
0-366: number 
of days from 
first anomaly 
to most recent 
anomaly 
detection

Indicator of 
vegetation 
disturbance 
from 
previous 
year

Indicator of whether the highest confidence 
vegetation disturbance event confirmed within the 
year (corresponding to the above layers) was initially 
detected in the previous calendar year.

VEG-
CONF
-PREV

UInt
8

0: no 
disturbance
1: confirmed 
low previous 
year,
2: confirmed 
high previous 
year,
255: no data

Count of 
confirmed 
vegetation 
disturbance 
events

Count of distinct confirmed vegetation disturbance 
events.

VEG-
CONF
-
COUN
T

UInt
8

≥0: count of 
confirmed 
vegetation 
disturbance 
events
255: no data

Minimum 
three year 
vegetation 

The minimum vegetation cover of the current year 
and two previous years with stricter aerosol filtering. 
Becomes input to the following year’s DIST-ALERT 
product.

VEG-
IND-
3YR-
MIN

UInt
8

0-100: 
Vegetation 
percent
255: No data
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cover 
indicator

Date of last  
observation 
assessed for 
vegetation 
disturbance

Day of last quality assessed HLS observation flagged 
as land that also had sufficient observations for 
baseline calculation for vegetation disturbance 
algorithm. Day denoted as the number of days since 
December 31, 2020.

VEG-
LAST-
DATE

Int16

-1: No data
0: Never 
flagged as land
>0: Day of last 
land 
observation

Generic 
disturbance 
status

Status corresponding to the highest confidence 
generic spectral difference confirmed within the year. 
Status classes identify confirmed ongoing 
disturbance, confirmed finished disturbance, and 
confirmed disturbance initially detected in previous 
year for both above a low and high threshold and no 
disturbance.

GEN-
DIST-
STAT
US

UInt
8

0: No 
disturbance
3: confirmed 
low, ongoing
6: confirmed 
high, ongoing
7: confirmed 
low, finished
8: confirmed 
high, finished
9: confirmed 
low, previous 
year 
10: confirmed 
high, previous 
year
255: No data

Generic 
maximum 
disturbance 
anomaly 
value

Maximum spectral distance between a current year 
HLS scene reflectance and the composite reflectance 
of previous calendar years.

GEN-
ANO
M-
MAX

Int16

-1: No data
0: No 
disturbance
>0: Spectral 
distance

Generic 
Disturbance 
Confidence 
Layer

Mean spectral distance since initial spectral anomaly 
detection times the number of spectral anomalies 
above a threshold, until the anniversary date is 
reached, or a fixed number of consecutive non-
anomalies are observed.

GEN-
DIST-
CONF

Int16

 
-1: No data
0: No 
disturbance
>0: 
Disturbance 
confidence

Date of 
generic 

Day of first spectral anomaly. Day denoted as the 
number of days since December 31, 2020.

GEN-
DIST-

Int16 -1: No data
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initial 
disturbance 
anomaly

DATE 0: No 
disturbance
>0: Day of first 
anomaly 
detection

Number of 
detected 
spectral 
anomalies

Total number of observations with a spectral anomaly 
since initial anomaly detection (inclusive). Maximum 
of 254.

GEN-
DIST-
COUN
T

UInt
8

0: No loss 
anomalies
1-254: Count 
of loss 
anomalies
255: No data

Generic 
disturbance 
duration

Number of days of ongoing spectral anomalies since 
initial anomaly detection (inclusive). Maximum 
duration is one year.

GEN-
DIST-
DUR

Int16

-1: No data
0-366: number 
of days from 
first anomaly 
to most recent 
anomaly 
detection

Indicator of 
generic 
disturbance 
from 
previous 
year

Indicator of whether the highest confidence generic 
disturbance event confirmed within the year 
(corresponding to the above GEN layers) was 
initially detected in the previous calendar year.

GEN-
CONF
-PREV

UInt
8

0: no 
disturbance
1: confirmed 
low previous 
year,
2: confirmed 
high previous 
year,
255: no data

Count of 
confirmed 
generic 
disturbance 
events

Count of distinct confirmed generic disturbance 
events.

GEN-
CONF
-
COUN
T

UInt
8

>0: count of 
confirmed 
generic 
disturbance 
alert
255: no data

Date of last  
observation 
assessed for 
generic 
disturbance

Day of last quality assessed HLS observation flagged 
as land that also had sufficient observations for 
baseline calculation for generic disturbance 
algorithm. Day denoted as the number of days since 
December 31, 2020.

GEN-
LAST-
DATE

Int16 -1: No data
0: Never 
flagged as land
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>0: Day of last 
land 
observation

Attribute Description

GranuleUR
The granule ID for each DIST-ANN. Format: OPERA_L3_DIST-ANN-
HLS_Tile_YYYY_ YYYYMMDDTHHMMSSZ_ 30_v1

TemporalExtent: 
RangeDateTime

Temporal extent of the HLS data of the input year, flagged as BeginningDateTime 
and EndingDateTime. Format: YYYY-MM-DDTHH:MM:SS.SSSSSSZ

ProviderDates
The date-time of when the granule was sent to LP-DAAC. Format: YYYY-MM-
DDTHH:MM:SS.SSSSSSZ 

CollectionReferenc
e:ShortName

OPERA_L3_DIST-ANN-HLS_V1

CollectionReferenc
e:Version

The DIST-ANN product version

SpatialExtent The longitude and latitude boundary of the image

CloudCover The percentage of no-data in the DIST-ANN product

Platforms Names of the input sensor platforms (e.g. Landsat 8/9 and Sentinel-2 A/B)

Instruments Names of the input sensor instruments (e.g. OLI and Sentinel-2 MSI)

ValidationLevel The validation level of the product

SPATIAL_COVE
RAGE

The area percentage of the tile with data

MGRS_TILE_ID The tile ID

HORIZONTAL_C
S_CODE

The code for the coordinate system, eg: “EPSG:32655”

HORIZONTAL_C
S_NAME

The name of the coordinate system, eg :"UTM, WGS84, UTM ZONE 55"

ULX The E-W coordinate of the upper left within the given coordinate system

Table 4: DIST-ANN Metadata
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3.2.1. Mathematical Theory Assumptions

As with any machine learning algorithm, its performance is only as good as its input data sets. High 
resolution drone images are collected as the training data for vegetation fraction estimation. We have iterated 
to collect the representative land cover and land use to fill different compositions in the principle components 
space and to cover all ranges of vegetation cover. 

3.3. Algorithm Input Variables

Variable #1

HLS FMASK

HLS quality assessment layer

Unit8

Variable #2

HLS RED

HLS red band

Int16

Variable #3

HLS NIR

HLS near infrared band

Int16

Variable #4

HLS SWIR1

HLS shortwave infrared band 1

Int16

Variable #5

ULY The N-S coordinate of the upper left within the given coordinate system

PROCESSING_D
ATETIME

DIST-ANN product processing date. Format: YYYY-MM-DDTHH:MM:SSZ.
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HLS SWIR2

HLS shortwave infrared band 2

Int16

Variable #6

Ocean mask

Global ocean mask

Unit8

3.4. Algorithm Output Variables

Variable #1

VEG-DIST-TATUS

Vegetation disturbance status

UInt8

Variable #2

VEG-HIST

Historical vegetation cover indicator

UInt8

Variable #3

VEG-IND-MAX

Maximum vegetation cover indicator

UInt8

Variable #4

VEG-ANOM-MAX

Maximum vegetation anomaly value

UInt8

Variable #5

VEG-DIST-CONF

Vegetation Disturbance Confidence Layer

Int16

NAME

LONG NAME

UNIT
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LONG NAME
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LONG NAME
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Variable #6

VEG-DIST-DATE

Date of initial vegetation disturbance

Int16

Variable #7

VEG-DIST-COUNT

Number of detected vegetation anomalies

UInt8

Variable #8

VEG-DIST-DUR

Vegetation disturbance duration

Int16

Variable #9

VEG-LAST-DATE

Date of last  observation assessed for vegetation disturbance

Int16

Variable #10

GEN-DIST-STATUS

Generic disturbance status

UInt8

Variable #11

GEN-ANOM-MAX

Generic maximum disturbance anomaly value

Int16

Variable #12

GEN-DIST-CONF

Generic Disturbance Confidence Layer

Int16

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT
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LONG NAME

UNIT
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LONG NAME

UNIT
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LONG NAME
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Variable #13

GEN-DIST-COUNT

Number of detected spectral anomalies

UInt8

Variable #14

GEN-DIST-DUR

Generic disturbance duration

Int16Int16

Variable #15

GEN-LAST-DATE

Date of last  observation assessed for generic disturbance

Int16

Variable #16

VEG-IND

Current vegetation cover indicator

UInt8

Variable #17

VEG-ANOM

Current vegetation anomaly value

UInt8

Variable #18

GEN-ANOM

Current generic disturbance anomaly value

Int16

Variable #19

GEN-DIST-DATE

Date of initial generic disturbance

Int16

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT

NAME

LONG NAME

UNIT
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Variable #20

LAND-MASK

Land mask

UInt8

Variable #21

VEG-CONF-PREV

Indicator of vegetation disturbance from previous year

UInt8

Variable #22

VEG-CONF-COUNT

Count of confirmed vegetation disturbance events

UInt8

Variable #23

VEG-IND-3YR-MIN

Minimum three year vegetation cover indicator

UInt8

Variable #24

GEN-CONF-PREV

Indicator of generic disturbance from previous year

UInt8

Variable #25

GEN-CONF-COUNT

Count of confirmed generic disturbance events

UInt8

4. Algorithm Usage Constraints
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The principal limitation to the DIST products is there is no attribution of the causes of disturbances and the 
type is only defined as vegetation loss or general. The vegetation algorithm is a generic indicator of 
vegetation loss, whether due to logging, landslides, development or any other event resulting in reduced 
vegetation cover. Example vegetation loss dynamics to be detected with the DIST products are shown in 
Figure 12, with a resulting need for users to place appropriate context on the outputs. The dynamics detected 
with the spectral distance algorithm are spread across an even further range including both vegetation loss 
and gain and change in non-vegetated surfaces, such as a parking lot replaced with a building or a lava flow 
in the desert. Future iterations of the algorithm may include reference cover state or supplementary algorithms 
to assign dynamics of antecedent land cover or land use, change factor, and resulting cover.  

Additionally, some land disturbances will not be detected by the vegetation disturbance layer, including 
vegetation recovery, phenological and intra-annual vegetation changes, urban development within urban 
sprawl (e.g. buildings being replaced or being demolished) or more generally, any urban changes of non-
vegetated areas (e.g. a highway being built over a desert landscape), lava flows over a rocky, non-vegetated 
terrain. However, some of these will be able to be detected with the spectral distance algorithm, but areas 
with more spectral variation in the baseline will be less likely to detect changes. Land use dynamics that are 
part of an annual practice, for example crop rotations or tilling practices, or fire as maintenance of vegetative 
cover, for example savanna fires in tropical Africa, will not be flagged as disturbance if they occur within the 
same temporal window (±15 days) in the previous three years. Such changes are part of a regular and 
repeated interannual land use, and as such within normal near-term variability in vegetative cover. That said, 
very often these regular land changes may be shifted by more than 15 days between years and then they will 
appear within DIST-ALERT.

The algorithms of DIST-ALERT require accurate detection of land observations uncontaminated by cloud, 
haze, shadow, or snow/ice. If contaminated pixels pass through to the disturbance algorithms then these 
masking errors propagate through the product. For example, when pixels with cloud cover are not masked 
out, the vegetation fraction model will be applied to that pixel and result in a low vegetation cover estimate. If 
these pixels are over a vegetated area then they will be marked as vegetation loss. Tracking these pixels 
through subsequent observations can mitigate these commission errors as cloud omission errors are not likely 
to regularly repeat over the same pixels, in which case they would be removed from the status layers. Cloud 
commission errors can also propagate omission errors in DIST-ALERT. Some bright targets such as the white
roofs of buildings, are regularly flagged as cloud and these pixels then never pass through to the DIST-
ALERT disturbance algorithms. For now, the product is relying on the identification of cloud, shadow, and 
snow/ice provided within the Fmask layer of the HLS input. 

Although measuring vegetation cover is beyond the scope of the DIST product, the auxiliary vegetation 
cover indicator layers that are used by the internal models for identifying areas of disturbance can be used for 
additional correlative analysis directly. For example, the maximum vegetation anomaly can be harnessed to 
threshold vegetation cover loss at a higher sensitivity (i.e., loss smaller than 50%) and the current vegetation 
cover indicator can be tracked over time to evaluate possible recovery trends.  Constraints on the use of the 
vegetation cover indicator will be determined via validation efforts and result in guidance to users in applying 
the time-series vegetation cover estimates.
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5. Performance Assessment

5.1. Validation Methods

Figure 12: Example dynamics that will be detected by the DIST algorithm: from top to bottom, open pit coal mining in 
southwest Indiana (centered at 87.308W, 39.026N), commercial land use expansion in northern Virginia (77.433W, 
38.215N), conversion of secondary forest to cropland in northern Alabama (85.796W, 34.124N), and loss of vegetation 
due to lava flow on Hawaii (154.842W, 19.500N). Imagery from GoogleEarth.
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Validation of DIST product will have two important categories of activities:

1. Validation of the disturbance detection layers in the DIST-ALERT and DIST-ANN products using high-
resolution derived disturbance data.

2. Assessment activities related to the current vegetation cover indicator within the DIST-ALERT product.

The first category will be used to determine the accuracy of the vegetation disturbance. The second category 
is related to reporting the statistical relationship of the intermediate vegetation cover indicator layer used by 
the disturbance algorithm and in-situ vegetation cover as determined by field work.

To validate both the DIST-ALERT and the DIST-ANN we will employ a stratified random sample of 
reference data in a manner similar to that of the study of (Ying et al., 2017). The global population of all 30m 
pixels aligned with the HLS pixel grid will be stratified based on disturbance presence and an equal area 
sample of 30m pixels will be selected. For each pixel randomly selected as a validation site, 3m PlanetScope 
data will be employed to create reference data of disturbance status (Figure 13) and the initial date of 
disturbance events, where feasible. This reference data will then be compared to the selected pixel in the 
DIST-ALERT time-series and the DIST-ANN product to ensure the requirement is met.  The reference data 
for each validation site are created by mapping or visually interpreting 30m HLS pixel footprints from time-
series high-resolution PlanetScope data. An analyst marks all time steps of the high-resolution data that have a
≥50% loss of vegetation cover, resulting in a yes/no reference time-series of ≥50% vegetation cover loss. The 
analyst will also mark the initial date of any discernible loss events <50% or whether there was no 
disturbance. 

For vegetation disturbance validation, per the requirements, the vegetation disturbances with anomalies ≥50% 
mapped in the DIST-ALERT will be considered disturbed and all other land observations will be considered 
no-disturbance. As the DIST-ALERT product is released at the cadence of the HLS input dataset, the 
accuracy of the DIST-ALERT product is calculated from all HLS time-steps with respect to the reference 
disturbance time-series so that the reported accuracy will apply to all observations and thus all phenological 
stages. The DIST-ALERT product will be compared to the reference time-series by matching the respective 
dates. There is an associated date for each disturbance/no-disturbance label in the reference time-series which 
corresponds to the time of the high-resolution Planet acquisitions. For each HLS acquisition date, DIST-
ALERT will be compared with the reference data label from the same date when possible. For HLS dates 
without a coincident reference label, if the closest preceding and following reference date have the same 
label, this is compared with the DIST-ALERT label. If the two reference dates have different labels this time 
step is excluded as it is unknown when the disturbance occurred between these two dates. Given that the 
validation assessment covers an entire year with all HLS acquisition dates evaluated, all seasons are assessed 
and any errors due to intra-annual variation will be quantified.  
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The DIST-ALERT has two types of disturbances: provisional and confirmed. Both types of disturbances in 
DIST-ALERT will be evaluated against the high-resolution derived time-series. Typically, the confirmed 
disturbances in the DIST-ALERT product are expected to have a higher accuracy as they have been 
repeatedly observed. However, given that for minimum latency DIST-ALERT products may be used as soon 
as HLS scenes are characterized and before a new disturbance can be confirmed from repeat observations, 
we will also validate provisional alerts. The overall user’s and producer’s accuracies of both products will be 
reported and provide a globally representative measure of DIST product performance.

The assessment of the vegetation cover indicator layer pertains to the vegetation layers of the DIST suite used 
as inputs to the disturbance detection algorithms and distributed with the DIST product. Although this layer is 
without a formal requirement, providing a general assessment of this intermediate layer’s utility is valuable for
users and for increasing the transparency of the disturbance detection algorithm. The assessment uses 3 by 3 
pixel grids of vegetation cover derived from field data collected contemporaneously with a Landsat 8 or 
Sentinel 2 overpass. Each grid is aligned with the DIST-ALERT product pixels and is produced using sub-
meter maps from field data collected using a drone-based multi-spectral sensor, with example data shown in 
Figure 14. The field data are associated with a given date and compared to the DIST-ALERT from the same 
day as the field work. Specifically, the vegetation indicator layer is compared to the co-located 3 by 3 grid of 
vegetation cover derived from the field work collected during different seasons. A comparison of the 
vegetation indicator layer with respect to field reference maps will be reported, including RMSE and R .

Figure 13: Example validation data from ~3-4m PlanetScope imagery over a residential expansion site near Dallas, 
Texas, centered at 32.654N,97.500W.  From left to right, image from 12-31-2019, image from 12-29-2020, and mapped 
vegetation loss in black overlay.  All cloud-free PlanetScope data (not shown here) will be used to refine data of 
disturbance estimation. Sample 30m HLS pixel shown in red outline exhibits vegetation loss.
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5.2. Uncertainties

Confusion matrices of yes/no disturbance accuracies and associated uncertainties will be calculated from the 
global sample of reference data as compared to instantaneous DIST-ALERT and annual summary DIST-
ANN data similar to the method outlined by (Ying et al., 2017).  Overall accuracy for the disturbances ≥50% 
of DIST-ALERT is specified to exceed 80% and of DIST-ANN, 90% and both have an overall accuracy of 
99%.  For vegetation cover, we will report correlation measures for our opportunistically acquired drone-
based field data.

5.3. Validation Errors

Errors will be assessed and assigned to categories.  Errors of omission, for example disturbances unrelated to 
vegetation loss, will be quantified and their overall contribution to error calculated, justifying or not the use of 
a complementary/back-up spectral distance algorithm.  Both omission and commission errors will be 
aggregated by climate domain/ecozone and disturbance type.  In this way, users will know which 
applications may be more readily supported by the DIST products.  

6. Algorithm Implementation

6.1. Algorithm Availability

Figure 14: Example 4cm NIR-RED-GREEN imagery over an agricultural landscape using a WingtraONE Gen II drone 
with a Mica-Sense Red Edge-MX multi-spectral camera. Each sample site will characterized into yes/no vegetation cover, 
for both photosynthetically active and photosynthetically and non-photosynthetically active data.
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github.com/gladumd/OPERA_DIST/
The implementation codes of the algorithm are open to the public on GitHub.

6.2. Input Data Access

https://search.earthdata.nasa.gov/search?q=HLS
The DIST product employs single-date HLS tiles, each processed for all valid land observations. HLS data
access is through the Land Processes Distributed Active Archive Center (LPDAAC). Daily input volumes
range from 0.5-2.0Tb and processed outputs are estimated to be 0.5Tb daily.

6.3. Output Data Access

https://search.earthdata.nasa.gov/search?q=OPERA%20HLS%20alert
Final product layers are available through the LPDAAC. Users can access the data product through NASA’s
Earthdata Search.
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