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1 Introduction 

This is the user guide for the MEaSUREs (Making Earth System Data Records for Use in 

Research Environments) Land Surface Temperature (LST) product derived from the Low Earth 

Orbit (LEO) satellite data record from the MODIS and VIIRS instruments. The LEO-LST 

product will include global LST produced on climate modeling grids (CMG) on monthly 

timesteps from 2002-2029. This is version 1.0 of the ATBD and the goal is maintaining a ‘living’ 

version of this document with changes made when necessary.  

Land Surface Temperature and Emissivity (LST&E) are critical variables used in a wide range of 

Earth science studies. They are necessary inputs for surface energy balance models used in 

drought monitoring, soil moisture estimation, and monitoring water consumptive use (Anderson 

et al. 2011a; Hain et al. 2011; Semmens et al. 2016). They are used for the retrieval of climate 

variables such as tropospheric water vapor and air temperature (Seemann et al. 2008; Susskind 

and Blaisdell 2008; Yao et al. 2011). They are also used to monitor climate warming trends (Hall 

et al. 2012; Schneider and Hook 2010), measure the urban heat island effect (Dousset and 

Gourmelon 2003; Luvall et al. 2015) and heat waves (Dousset et al. 2011; Luvall et al. 2015), 

detect land cover and land use change (French et al. 2008; Hulley et al. 2014a), and map surface 

composition (Hook et al. 2005; Vaughan et al. 2005).  

NASA has identified LST&E data as an important Earth System Data Record (ESDR) (NASA 

2005, 2011) along with other international organizations (e.g. Global Climate Observing System 

(GCOS), 2003; Climate Change Science Program (CCSP), 2006). LST was recently designated 

as an Essential Climate Variable (ECV) by GCOS and several international initiatives have been 

established to utilize LST&E data including the EarthTemp network 

(http://www.earthtemp.net/), GlobTemperature (http://www.globtemperature.info/) and the 

International Land Surface Temperature and Emissivity Working Group (ILSTE-WG, 

http://ilste-wg.org/).  

LST&E products from MODIS (MxD21) and VIIRS (VNP21) are currently produced 

operationally by NASA on daily timescales using thermal infrared (TIR) data in the 8-13 µm 

range from the MODIS instruments on the NASA-EOS platforms (Aqua, Terra) at 1-km spatial 

resolution at nadir (Hulley et al. 2017; Malakar and Hulley 2016), and from moderate resolution 

TIR bands (M-bands) from the VIIRS instrument on the Suomi-NPP (SNPP) platform at 750-m 

spatial resolution (Hulley et al. 2017; Islam et al. 2017). These products are generated using a 

consistent Temperature Emissivity Separation (TES) algorithm to physically retrieve both LST 

and spectral emissivity consistently for both sensors with high accuracy and well defined 

uncertainties (Islam et al. 2017). A study led by PI Hulley demonstrated continuity between the 

MYD21 (MODIS Aqua) and VNP21 LST products at the <±0.5 K level in LST RMSE, with 

differences that are invariant to environmental conditions and land cover type (Hulley et al. 

2017). Continuity between the MODIS and VIIRS LST&E products will ensure a consistent and 

well characterized long term LST&E data record for better monitoring and understanding trends 

in Earth system behavior.  

The MEaSUREs LEO-LST product will be generated by regridding the monthly Climate 

Modeling Grid (CMG) products from MODIS-Aqua (MYD21 from 2002) and VIIRS on SNPP 

(VNP21 from 2011) and NOAA-20 (VJ121 from 2018) and making them available on 0.25, 0.5, 

and 1 degree optimized climate grids with well characterized per-pixel uncertainties. During 

overlap years, i.e. MYD21 and VNP21 from 2011 onward, and for VNP21 and VJ121 from 2023 



8 

 

onward (at the end of MODIS-Aqua) we will merge the two products using a ‘combination of 

states of information’ approach to provide a long-term well calibrated and consistent LST record 

at 1-km resolution on monthly timesteps. 

 

 
 

Figure 1. An example LEO-LST gridded daytime image at 0.25 degree resolution for July 2003. 

 

The long-term MODIS-VIIRS LST record will be of use to the global climate modeling 

community, for example in Observations for Model Intercomparisons Project (obs4mips). 

Obs4mips is an activity to make observational products such as LST more accessible for climate 

model intercomparisons and evaluation. It provides data specifications that are closely aligned 

with the Coupled Model Intercomparison Project (CMIP) making it possible to make data 

available via the same searchable distributed system used to serve and disseminate the rapidly 

expanding set of  simulations made available for community research. 

 

1.1 File format  

 

The LEO-LST products are distributed in HDF5 format and can be read in by HDF5 software. 

Information on Hierarchical Data Format 5 (HDF5) may be found at 

https://www.hdfgroup.org/HDF5/. The HDF format was developed by NCSA and has been 

widely used in the scientific domain.  HDF5 can store two primary types of objects: datasets and 

groups. A dataset is essentially a multidimensional array of data elements, and a group is a 

structure for organizing objects in an HDF5 file. HDF5 was designed to address some of the 

limitations of the HDF4. Using these two basic objects, one can create and store almost any kind 

of scientific data structure, such as images, arrays of vectors, and structured and unstructured 
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grids. They can be mixed and matched in HDF5 files according to user needs. HDF5 does not 

limit the size of files or the size or number of objects in a file. The scientific data results are 

delivered as SDSs with local attributes including summary statistics and other information about 

the data.  

The LEO-LST data product files contain one set of Attributes (metadata) describing information 

relevant to production, archiving, user services, input products, geolocation and analysis of data, 

as well as provenance and Digital Object Identifier (DOI) of the product attached to the root 

group (the file). The attributes listed in Table 4 are not described further in this user guide. 

 

1.2 LEO-LST Product 

  

The LEO-LST data product consists of Land Surface Temperature (LST) and LST error estimate 

and is produced on global climate modeling grids at 0.25, 0.5 and 1 degree resolution on monthly 

time steps since 2002.  

1.3 Product Availability 

The LEO-LST product will be made available at the NASA Land Processes Distributed Active 

Archive Center (LPDAAC), https://earthdata.nasa.gov/ and can be accessed via the Earthdata 

search engine.  

2 LEO-LST Product 

2.1 Algorithm Description 

2.1.1 Regridding 

The process for resampling the original 0.05° resolution LST grids to coarser climate modeling 

grids of 0.25°, 0.5°, and 1° resolution does simply involve averaging the 0.05° grid cells to the 

coarser resolution. This would only be valid if the scene was homogeneous in emissivity with 

low LST variation, the LST and emissivity were uncorrelated, and their distribution was 

symmetrical about the mean value. Instread we recaulcate the effective surface radiance as a sum 

of individual scene elements, 𝑛, within each 0.25°, 0.5°, and 1° grid cell as follows: 
 

 
�̅�𝜆 = 휀�̅� ∙ �̅�𝜈(�̅�𝑠) =

1

𝑛
∑ 휀𝑖,𝜆 ∙ 𝐵𝜆(𝑇𝑖,𝑠)

𝑛

𝑖=1

 
1 

 

Where 휀𝜆 is emissivity for wavelength, 𝜆; 𝑇𝑠 is surface temperature (LST); and 𝐵𝜆 is the Planck 

function:   

 

𝐵𝜆 =
𝑐1

𝜋𝜆5
(

1

exp (
𝑐2

𝜆𝑇
) − 1

) 2 

 
 

 

𝑐1 = 2𝜋ℎ𝑐2= 3.74∙ 10−16 W∙m2 (1st radiation constant) 
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h = 6.63∙ 10−34 W∙s2 (Planck’s constant) 

c2 = h∙c/k = 1.44× 104 µm∙K (2nd radiation constant) 

k = 1.38× 10−23 W∙s∙K-1 (Boltzmann’s constant) 

c = 2.99∙ 108 m∙s-1 (speed of light) 

 

The final LST for the respective grid cell, i, is then computed by inverting the Planck function and 

accounting for the surface emissivity for that pixel: 

   𝐿𝑆𝑇𝑖 = 𝐵𝜆
−1/휀�̅� 3 

 

The processing steps involved in producing the LEO-LST product are outlined schematically in 

Figure 2, and a list of the inputs are listed in Table 1. 

 

 

 

 

Figure 2. Conceptual diagram describing computation of LEO-LST.  
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Table 1: Input datasets required to produce the LEO-LST product. 

Input Data Set Long Name Data Used 

MYD21C3 C6.1 MODIS MYD21 Monthly 

Climate Modeling Grid 

(CMG) Collection 6.1  

Daytime LST 

Daytime LST error 

Nighttime LST 

Nighttime LST error 

VNP21C3 C2 VIIRS VNP21 Monthly 

Climate Modeling Grid 

(CMG) Collection 2  

Daytime LST 

Daytime LST error 

Nighttime LST 

Nighttime LST error 

CAMELv2 Combined ASTER and 
MODIS Emissivity for 
Land version 2.0 

Emissivity  

 

2.1.2 Combining the VIIRS and MODIS LST products 

During overlap periods of MODIS and VIIRS data (2011-2023) we combine the two products 
using a “combination of states of information” approach (Tarantola 2005). The question of how to 
combine different sources of information is a question common to many areas of science.  In 
general, if we have N unbiased estimates of a quantity d, we combine these estimates by taking a 
weighted average. A systematic approach to developing the weighting rule and error estimation is 
through “combination of states of information”. If d1 and d2 are two estimates of the same state 
with uncertainties 𝛿1 and 𝛿2, then the weights are simply proportional to the inverse of these 
variances, and normalized to add up to one. The variances combine to provide an error of the 
combined estimate. These rules extend with matrix logic to allow for all the correlations of the 
data in space and time that may need to be accounted for. For example, once the LST uncertainty 
is known for each pixel on a scene using for the MODIS and VIIRS products, we can write the 
weighted mean LST as: 

 
𝐿𝑆𝑇̅̅ ̅̅ ̅  =

1

(𝑤1 + 𝑤2) 
(𝑤1 ∙ 𝐿𝑆𝑇𝑀𝑌𝐷21 + 𝑤2 ∙ 𝐿𝑆𝑇𝑉𝑁𝑃21) (2) 

where 𝑤1 and 𝑤2 are weighting factors based on the LST uncertainty for each product, 𝛿, as 

follows: 𝑤 = 1/𝛿2, and the combined uncertainty of the weighted mean LST product is 𝛿𝐿𝑆𝑇 =
(1/(𝑤1 + 𝑤2))1/2.  

 

2.2 Scientific Data Sets (SDS) 

The LEO-LST product contains 14 scientific data sets (SDSs): Day and Nighttime LST and 

associated errors for each grid resolution (ODG = One Degree, HDG = Half Degree, QDG = 
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Quarter Degree). Details of each SDS including data type and units are shown in Table 2, and the 

associated attributes of each SDS is shown in Table 3.  

 

 

Table 2. The Scientific Data Sets (SDS) in the LEO-LST product.  

 

 

 

 

 

 

 

Table 3. The attributes assigned to each dataset. 

 

 

 

 

 

 

 

2.3 Attributes 

Archived with the SDS are attributes (metadata) describing characteristics of the data. Contents 

of these attributes were determined and written during generation of the product at JPL and are 

used in archiving and populating the database at the LPDAAC to support user services. They are 

stored as very long character strings in parameter value language (PVL) format. Descriptions of 

the attributes are given here to assist the user in understanding them. The product specific 

metadata in Table 4 give details on ancillary data sets. 

 

 

 

Field Name Resolution Type Unit Scale factor 
LST_Day_ODG 1.0° int16 Kelvin 0.02 

LST_Day_err_ODG 1.0° int8 Kelvin 0.04 

LST_Night_ODG 1.0° int16 Kelvin 0.02 

LST_Night_err_ODG 1.0° int8 Kelvin 0.04 

LST_Day_HDG 0.5° int16 Kelvin 0.02 

LST_Day_err_HDG 0.5° int8 Kelvin 0.04 

LST_Night_HDG 0.5° int16 Kelvin 0.02 

LST_Night_err_HDG 0.5° int8 Kelvin 0.04 

LST_Day_QDG 0.25° int16 Kelvin 0.02 

LST_Day_err_QDG 0.25° int8 Kelvin 0.04 

LST_Night_QDG 0.25° int16 Kelvin 0.02 

LST_Night_err_QDG 0.25° int8 Kelvin 0.04 

Lat 0.25° Float Decimal degrees n/a 

Lon 0.25° Float Decimal degrees n/a 

Field Name Type Unit Field Data 
long_name string   

units string   

Format String  scaled 

coordsys string  cartesian 

Valid_range Float   

_FillValue Float   

_Scale Float   

_Offset Float   
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Table 4. Standard attributes included in all LEO-LST products. 

Name Type Size Example 
AlgorithmVersion String variable 001 

DataResolution String variable 
Climate Modeling Grids: one, half, quarter 
degrees 

DayNightFlag String variable n/a 

EastBoundingCoordinate LongFloat 8  

IdentifierProductDOI String variable 10.5067/MEaSUREs/LSTE/LEOLSTCMG30.001 

IdentifierProductDOIAuthority String variable https:/doi.org 

LocalGranuleID String variable  

LongName String variable 
Low Earth Orbit Land Surface Temperature 
Monthly Global Gridded V001 

NorthBoundingCoordinate LongFloat 8  

PlatformShortName String variable Aqua, SNPP 

ProductionTime String variable  

Project String variable MEaSUREs 

RangeBeginningDate String variable  

RangeBeginningTime String variable  

SatelliteInstrument String variable Imager 

ShortName String variable LEOLSTCMG30 

VersionID String variable  

SouthBoundingCoordinate LongFloat 8  

WestBoundingCoordinate LongFloat 8  

 

2.4 LST uncertainty 

A key requirement of the LEO-LST is accurate knowledge of uncertainties from the various 

contributing products. Uncertainties must be rigorously estimated for a variety of different 

conditions on a pixel-by-pixel basis before they can be merged and incorporated into a time series 

of measurements of sufficient length, consistency, and continuity to adequately meet the science 

requirements of an Earth System Data Record( ESDR). Observing System Simulation Experiments 

(OSSEs) provide a rigorous approach to prepare for assimilation of data from new observing 

systems and to accelerate their application to operational prediction (Hoffman and Atlas 2016). 

An OSSE for TIR data termed the Temperature Emissivity Uncertainty Simulator (TEUSim) has 

been developed to quantify uncertainties in LST&E retrievals from a variety of algorithms and 

observing system characteristics (Hulley et al. 2012), with a schematic shown in Figure 3.  
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Figure 3. Schematic of the TIR OSSE used to model LST uncertainties in the LEO-LST product. The 

OSSE uses MODTRAN simulations with a global radiosonde database and ECOSTRESS spectral library 

to represent a wide range of different conditions. Here the error budget includes contributions from the 

retrieval algorithm (TES), sensor noise (NEdT) and atmospheric correction error (assuming 10% RH and 

2 K Tair random error) for a sensor modeled with 3, 5, and 6 TIR bands in the 8-12 µm range. 

 

These include random errors (instrument noise), systematic errors (calibration), and spatio-

temporally correlated errors (atmosphere). The sections below provide details of the TIR OSSE 

and application for use with the MEaSUREs LST products.  

The TEUSim is initialized with a sensor’s specific instrument and observing characteristics 

including instrument noise per band (NEdT), orbital height, viewing geometry, number of TIR 

bands, and type of LST&E algorithm. The MODTRAN 6.0 radiative transfer model is used for the 

simulations with a global set of radiosonde profiles (SeeBor V5.0) and surface emissivity spectra 

(ECOlib) (Meerdink et al. 2019) representing a broad range of atmospheric conditions and a wide 

variety of surface types. This approach allows the retrieval algorithm to be easily evaluated under 

realistic but challenging combinations of surface/atmospheric conditions. The outputs include a 

full error budget of LST error sources computed from the modeled inputs and the retrieved surface 

parameters including errors from 1) algorithm, 2) NEdT, 3) atmospheric correction, and 4) 

calibration error.  

The total uncertainties generated from TEUSim were parameterized according to satellite view 

angle (SVA), total water vapor column (TCW), and surface type using a least squares method fit 

to a quadratic function as follows: 

 
  𝛿𝐿𝑆𝑇𝐺𝑂𝐸𝑆 = 𝑎𝑜 + 𝑎1𝑇𝐶𝑊 + 𝑎2SVA + 𝑎3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎4𝑇𝐶𝑊2 + 𝑎5𝑆𝑉𝐴2          (1)  

 

Where δLST is the LST uncertainty (K) and ai are the land cover dependent regression coefficients. 

Using this parameterization LST uncertainties can be estimated on a pixel-by-pixel basis for any 

given sensor. 
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Figure 4 shows an example of the LST uncertainty estimated from TEUSim for the LEO-LST 

product at 0.25 degree resolution. LST uncertainties typically increase with increasing atmospheric 

water vapor content which is clearly seen in this image over the tropics and sub-tropical regions. 

The same methodology has been applied to the GEO LST product. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example LST uncertainty included within the LEO-LST product at 0.25 degree resolution. LST 

uncertainties typically increase with increasing atmospheric water vapor content which is clearly seen in 

this image over the tropics and sub-tropical regions.  
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