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I. Members of the team 
 

The Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) for the 

conterminous United States (CONUS) was produced by the following team members. Their specific 

role is mentioned below. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey (USGS), is the 

Principal Investigator (PI) of the GHISA project. Dr. Thenkabail was instrumental in developing the 

conceptual framework of the project and the product. He made significant contribution in writing the 

manuscript, Algorithm Theoretical Basis Document (ATBD), User Guide, and providing scientific 

guidance on the GHISA project. 

 

Dr. Itiya P. Aneece, Postdoctoral Research Geographer, USGS, with guidance from Dr. Thenkabail, 

preprocessed Hyperion images in Google Earth Engine, extracted spectra from the images, and 

compiled GHISA for the conterminous United States.  She also contributed to the manuscript, 

ATBD, and User Guide. 

 

II. Historical context, background, and need for GHISA 
 

Agricultural crop characterization, modeling, mapping, and monitoring are crucial for accurately 

assessing crop traits, yields, and productivity (e.g., crop productivity, crop water productivity) which 

in turn helps in assessing and managing global food and water security. Since agricultural crops 

consume 80-90% of all human water use (Thenkabail et al., 2012, 2010), accurate cropland studies 

contribute to accurate water use assessments and crop water productivity assessments. Agricultural 

crop signatures greatly vary by crop type, growth stage, growing condition, management, soil type, 

climate, and a host of other factors (e.g., inputs like nitrogen, potassium, and phosphorous; pests, and 

diseases). Agricultural characteristics and traits can be well established using hyperspectral data that 

are acquired with clear and precise knowledge of various crop variables. Any such study requires us 

to gather hyperspectral libraries of crops taking into consideration all factors mentioned above. 

Vegetation or agricultural crop hyperspectral data are widely used in research as detailed in the new 

four-volume book-set on hyperspectral remote sensing of vegetation (Thenkabail et al. 2018 a, b, c, 

d) as well as numerous research papers (Oliphant et al. 2019, Teluguntla et al. 2018, Gumma et al. 

2018, Aneece and Thenkabail 2018, Marshall et al. 2014, Mariotto et al. 2013, Thenkabail et al. 

2013). These data are collected from various platforms (Ortenberg, 2018, Hoque and Phinn, 2018). 

Spaceborne sensors include the recently decommissioned United States of America’s (USA) Earth 

Observing-1 (EO-1) Hyperion (Aneece et al. 2018, Moharana and Dutta 2016, Oskouei and Babakan 

2016), Germany’s Environmental Mapping and Analysis Program (EnMAP) (Bracken et al. 2019, 

Okujeni et al. 2015), the Italian Compact High Resolution Imaging Spectrometer (CHRIS) onboard 

of the Project for On Board Autonomy (PROBA) satellite (CHRIS PROBA) (Verrelst et al. 2012, 

Lin et al. 2019 ), the German Aerospace Center (German: Deutsches Zentrum für Luft- und 

Raumfahrt e.V.) or DLR’s Earth Sensing Imaging Spectrometer (DESIS) (Krutz et al. 2019), and 

upcoming US NASA’s SBG (formerly known as HyspIRI; Lee et al. 2015, Iqbal et al. 2018, Clark 

2017), and the Japanese Hyperspectral Imager Suite (HISUI) (Matsunaga et al. 2018). Airborne 

sensors include NASA’s Airborne Visible InfraRed Imaging Spectrometer- Next Generation 

(AVIRIS-NG) (Bhattacharya et al. 2019, Ratheesh et al. 2019, Chaube et al. 2019, Jha et al. 2019), 

the US Hyperspectral Digital Imagery Collection Experiment (HYDICE) (Zhang et al. 2006), 
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Hyperspectral Sensor Surveying (AISA-EAGLE) (Mansour et al. 2012, Lausch et al. 2015, Abdel-

Rahman et al. 2015), hyperspectral imaging sensor (HyMap) (Riaza et al. 2014, Buzzi et al. 2014), 

Compact Airborne Spectrographic Imager (CASI) (Legleiter et al. 2016, Xu et al. 2018), 

AisaEAGLET (Doneus et al. 2014), and airborne Portable Remote Imaging SpectroMeter (PRISM) 

(Thompson et al. 2015, Mourolis et al. 2014). Drone-based sensors include Micro-Hyperspec X 

sensors (Dao et al. 2019, Guo et al. 2019), Rikola Hyperspectral camera (Ivushkin et al. 2019, 

Mozgeris et al. 2018), SOC710-GX (Rhee et al. 2018, Adao et al. 2017), Specim ImSpector V10 2/3 

(Franceschini et al. 2017, Meij et al. 2017), OCI-UAV-1000 (Cahalane et al. 2017, Manfreda et al. 

2018), and MicroHSI 410-SHARK (Manfreda et al. 2018). Ground-based sensors include ASD Field 

Spec (Salem 2017, Padghan and Deshmukh 2017), Ocean Optic USB4000 (Middleton 2010), and 

UniSpec DC Spectrometer Analysis System (Davidson et al. 2016). These data are collected and 

analyzed for various study sites in the world and the results are shared in reports and research papers. 

Unfortunately, the hyperspectral libraries of the crops or vegetation used in these papers are either 

not shared or shared by only a few researchers, often in an uncoordinated manner. Currently, a 

systematic Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) does 

not exist. The need for a GHISA is of utmost importance in the current scenario of increased 

availability of advanced hyperspectral sensors on various platforms (Ortenberg 2018, Hoque and 

Phinn 2018, Ghamisi et al. 2017, Panda et al. 2015). GHISA is a “Comprehensive and systematic 

collection, collation, synthesis, standardization, and characterization of global agricultural crop 

hyperspectral signatures obtained from spaceborne, airborne (e.g., aircrafts, drones), platform-

mounted, and ground-based hand-held spectroradiometers or imaging spectroscopy. The GHISA 

data are collected as near continuous spectra (e.g., every 1 or 10 nm) along a range of the 

electromagnetic spectrum (e.g., 400-2500 nm or 400-1000 nm or 8000-14000 nm). The collection 

and collation protocols of GHISA data are well defined and documented. GHISA data are processed 

using a standard set of protocols and algorithms for converting raw data into surface reflectance. 

Synthesis of GHISA data involves linking them to globally understood crop characteristics such as 

agroecological zones, precise geolocation, crop types, crop growing conditions, watering methods 

(e.g., irrigated or rainfed), and numerous other variables (e.g., inputs such as nitrogen applied, 

genome, etc). GHISA spectral libraries must have large sample sizes for each class to be robust. 

Characterization of GHISA data could include, for example, a comparison of hyperspectral 

narrowband data with multispectral broadband data for every crop type” (Thenkabail and Aneece, 

this document). The need is multi-fold to understand, model, map, and monitor the following crop 

traits and/or help answer the following questions: 

 

1. What are the typical hyperspectral signatures of individual agricultural crops? How do these 

hyperspectral signatures vary during different: (a) growth stages, (b) geographical area, (c) 

genomes, (d) management practices, (e) inputs, (f) and a host of other parameters (e.g., 

irrigation versus rainfed, soils)? 

2. How does the same crop that is grown in different parts of the world change in its 

hyperspectral characteristics? Why? 

3. How do hyperspectral signatures of crops acquired over an area for one season compare 

across years (e.g., during normal, drought, and wet years)? 

4. What crop traits can be quantified by GHISA hyperspectral libraries? What are their 

accuracies?  

5. How can technological advances over the years change the ability of the GHISA 

hyperspectral library to characterize a crop? 

6. How do hyperspectral crop characteristics vary from crop to crop?  
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7. What advances can be made in understanding, modeling, mapping, and monitoring 

agricultural crops using hyperspectral narrowband data as opposed to multispectral 

broadband data? 

8. What unique hyperspectral vegetation indices (HVIs) are developed that help advance our 

understanding of agricultural crop characteristics relative to multispectral broadband data 

derived vegetation indices (MBVIs)? What unique crop characteristics that cannot be 

characterized by MBVIs are characterized by HVIs? 

9. How do the GHISA hyperspectral signatures of a particular crop acquired from different 

platforms (e.g., spaceborne, airborne, ground-based) compare and/or contrast? 

10. How can GHISA help local, regional, federal, and international entities make informed 

decisions on agricultural practices? 

 

In a nutshell, GHISA provides a knowledge-bank of agricultural crops of the world grown in 

different countries, regions, agroecological zones, and conditions. It will serve many purposes of 

scientific and practical applications. For example, GHISA will be a signature bank for training 

algorithms for crop type mapping or to establish their quantitative traits to develop crop 

biophysical and biochemical models (Aneece and Thenkabail, 2018). 

 

III. Hyperspectral and reference input data 
 

1. EO-1 Hyperion hyperspectral data 

 
This Algorithm Theoretical Basis Document (ATBD) provides a detailed account of the GHISA 

product, which is generated using Earth Observing-1 (EO-1) spaceborne hyperspectral Hyperion 

satellite sensor data. There are 70,000+ EO-1 Hyperion hyperspectral images (Figure 1) acquired 

over 2000 to 2015 time-frame and available for free from USGS EarthExplorer 

(https://earthexplorer.usgs.gov/). For the full description of the EO-1 Hyperion data please refer to 

Barry (2001), Khurshid et al. (2006), and Scheffler and Karrasch (2014).  

 

https://earthexplorer.usgs.gov/
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Figure 1. Spaceborne EO-1 Hyperion hyperspectral data acquired over the world from year 2000 to 

2015. Over 70,000+ images are available for free download from the USGS EarthExplorer 

(https://earthexplorer.usgs.gov/). Each image is 185 km x 7.5 km and has 242 spectral bands each 10 

nanometer wide in 400-2500 nm range (Source: Thenkabail et al., 2012). 

 

This document describes the GHISA production scheme for the conterminous United States 

(CONUS) based on EO-1 Hyperion data acquired in various agroecological zones of USA over 

multiple sites (Table 1, Figure 2). Detailed descriptions of these data are provided in Aneece and 

Thenkabail (2018) and Aneece et al. (2018). There were 66 EO-1 Hyperion images (Table 1), the 

location of which are shown in Figure 2. These are representative images for each agroecological 

zone (FAO, 2018) with each site or benchmark area (Figure 2) having multiple images (Table 1). 

Each benchmark area was selected based on multiple Hyperion images available for the site as well 

as availability of two or more major world crops (e.g., wheat, rice, corn, soybeans, cotton). Further, 

these crops were also studied for their growth stages (emergence/ very early vegetation, early-mid 

vegetation, late vegetation, critical, senescence, and harvest). 

 

The 99 EO-1 Hyperion images (Table 1) were selected for CONUS for the 2008 to 2015 time-period 

because during this time the United States Department of Agriculture (USDA) reference data (see 

section III.2) were available for the entire CONUS. Hyperion data were selected because Hyperion 

is the only known source of spaceborne hyperspectral data covering the entire world consistently 

over long time-periods. Such data will enable a comprehensive and systematic study of the world’s 

agricultural crops over multiple years. It is imperative to monitor crops and assess global food 

security, especially with increasing global populations, urbanization, and changing dietary 

preferences.  Knowledge of crop types and crop growth stages can help assess crop productivity. 

Remote sensing can be used to classify vegetation, and hyperspectral remote sensing specifically can 

enable the differentiation of crop types and crop growth stages.   

 

Table 1: Hyperion images in seven agroecological zones (AEZs) and the leading world crops 

https://earthexplorer.usgs.gov/
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within these images. We used a total of 99 Hyperion hyperspectral images spread across seven 

agroecological zones (AEZs) from 2008 to 2015 in the US. The dominant leading world crops 

in each of these images are also shown. [Source: Aneece and Thenkabail, 2018]. 
 

Number of Hyperion Images* 
 

 
AEZ** 

Crop Type- 

Discrimination 

Crop Growth Stage- 

Discrimination 
 

Years 
 

Crops 

2 0 4 2011-2012 Cotton 

5 1 12 2013-2015 Cotton, Winter Wheat 

6 3 12 2011-2014 Corn, Soybean 

7 2 2 2012 Corn, Rice 

8 0 12 2008-2014 Corn 

9 2 12 2008-2015 Corn, Cotton, Soybean, Winter Wheat 

10 3 12 2009-2015 Corn, Soybean 

Total 11 66 2008-2015 Corn, Cotton, Rice, Soybean, Winter Wheat 
 

*Original Hyperion images contain 242 bands, out of which 198 are calibrated and available in Google Earth Engine. After removing problematic 

bands most affected by atmospheric noise, we retained 131 bands from 356 nm to 2577 nm. 

 

**AEZs (agroecological zones) based on Food and Agriculture Organization (FAO) (FAO, 2018). 

 

Figure 2. Study areas throughout the US in various agroecological zones. US study areas, named 

according to agroecological zones (AEZs) in which they are located. AEZs as defined by FAO 

(FAO, 2018). [Source: Aneece and Thenkabail, 2018]. 
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2.  Reference data 
 
The USDA’s Cropland Data Layer (CDL) (USDA, 2018a; https://nassgeodata.gmu.edu/CropScape/) 

was used as reference data to determine what crops exist in what precise location across the CONUS 

across the years corresponding to image acquisition dates (Table 1, Figure 2) and then extract 

hyperspectral libraries of crops for the GHISA spectral library. In addition to labeling spectra by crop 

type in GHISA, we have also labeled them by crop growth stages (emergence/very early vegetation, 

early-mid vegetation, late vegetation, critical, senescence, and harvest). These growth stages were 

estimated using the crop calendars generated by the Center for Sustainability and the Global 

Environment (SAGE) in University of Wisconsin-Madison (Sacks et al., 2010).  These calendars 

were available for specific crop types in specific locations, across CONUS in different agroecological 

zones (Figure 2). They include planting and harvest dates, as well as monthly precipitation and 

temperature averages. We also inspected the spectral profiles to refine these labels. 

 

 

IV. Algorithm description and data processing 
 

Hyperion images were preprocessed in the JavaScript Application Programming Interface (API) of 

the Google Earth Engine (GEE) cloud-computing platform using the steps shown in Figure 3. To 

preprocess these images, we split the VNIR and SWIR data into separate images because they were 

collected by two different spectrometers and thus had different calibration requirements (Scheffler 

and Karrasch, 2014, Datt et al. 2003, Bannari et al. 2015, Pervez et al. 2016).  We then converted 

VNIR and SWIR digital numbers to radiance by dividing digital numbers by 40 and 80 respectively 

(Barry 2001, Thenkabail et al. 2004, Thenkabail et al. 2013, Pervez et al. 2016). After recombining 

these datasets, we converted radiance to surface reflectance using the SMARTS radiative transfer 

model (Gueymard, 1995, 2001) (Figure 3). After cloud and cloud shadow masking, spectra were 

extracted from pixels corresponding with known crop type locations, using the USDA CDL as 

reference (USDA, 2018 a, b).  These spectra were then smoothed using a 3-band moving average in 

R.  The crop calendars designed by the Nelson Institute for Environmental Studies, SAGE, 

University of Wisconsin-Madison (Sacks et al., 2010) were used to estimate crop growth stages, 

refined by visual inspection of the spectra.  Details on these steps, illustrated in Figure 3, are provided 

in 1a and 1b below.  More details on preprocessing steps are also provided in Aneece et al. (2018). 

 

The data processing to derive GHISA spectral library of agricultural crops for the entire CONUS 

area of USA is provided in section III and its subsections. The entire EO-1 Hyperion dataset of the 

CONUS area (Figure 1, and the subset used in this study: Figure 2, Table 1) is available in  GEE for 

the entire US from 2008 to 2015.  These raw images are ingested into GEE by the GEE team and are 

readily available to the user for preprocessing.  Accurate reference data on crop types corresponding 

to these images are available through the USDA  

CDL-(USDA,-2018b; 

https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php). Crop growth 

stage data were derived based on the SAGE dataset (SAGE, 2019; https://nelson.wisc.edu/sage/data-

and-models/crop-calendar-dataset/index.php).  

 

https://nassgeodata.gmu.edu/CropScape/
https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php
https://nelson.wisc.edu/sage/data-and-models/crop-calendar-dataset/index.php
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The recently decommissioned hyperspectral satellite-borne sensor Hyperion collected over 70,000 

images throughout the world, all of which are freely available through the USGS EarthExplorer and 

GEE.  These images can be used to build a spectral library of crops in different areas, years, and 

growth stages.  Sixty-six Hyperion images within GEE in seven agroecological zones throughout the 

US from 2008 to 2015 were used to map five globally dominant crops (corn, cotton, rice, soybean, 

and winter wheat) and their growth stages (emergence/very early vegetation, early-mid vegetation, 

late vegetation, critical, senescence, and harvest). 

 

 

 
Figure 3. Example EO-1 Hyperion Pre-processing Workflow. These are the most common 

methods available for pre-processing steps; other methods exist. Highlighted methods are those the 

authors recommend. [Source: Aneece et al. 2018]. 

 
 

1.   Algorithms 

a. Algorithm details 
 

Hyperion images were preprocessed in GEE.  Cloud-computing allows for the processing of large 

collections of images without limitations of personal storage space or personal computing power 

(Navulur et al., 2013).  Thus, it facilitates research at large temporal and spatial extents that would 
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otherwise not be possible.  For example, Padarian et al. (2015) conducted an analysis involving 

654,000 Landsat images in approximately 100 hours in GEE, which would have taken one million 

hours otherwise.  Since Hyperion images are already ingested into GEE, they could be visualized 

and analyzed within the platform.  Using the JavaScript API, we preprocessed the Hyperion images 

using the following steps.  Code for these steps is available through LP DAAC. 

 

Hyperion data were collected by two spectrometers, one for the VNIR bands 1-70 and one for the 

SWIR bands 71-242 (Scheffler and Karrasch, 2014).  These spectrometers have different calibration 

requirements (Scheffler and Karrasch, 2014), so we separated them into two datasets for conversion 

from digital numbers (DN) to radiance (Rad).  This was done by dividing VNIR DN by 40, and 

SWIR DN by 80, as described by Barry (2001). 

 

Next, radiance was converted to surface reflectance (SR) using the Simple Model of the 

Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer model (Gueymard, 

1995, 2001).  This model was found to be 25 times faster than the 6S model, with only a 5% 

difference in satellite data processing results (Seidel et al. 2010).  To convert radiance to surface 

reflectance, Equation 1 (from Chavez, 1996 assuming no haze) was used, where L is at-satellite 

radiance in W m-2 sr-1 mm-1, Esun is solar irradiance in W m-2 sr-1 mm-1, θz and θv are zenith 

and viewing angles respectively in radians, T is transmittance (unitless), and Edown is diffuse 

downwelling radiance.  Transmittance (T) is calculated using Equation 2 (from Gueymard, 2001), 

where TRλ is Rayleigh transmittance (unitless) dependent on wavelength λ, Toλ is ozone 

transmittance (unitless), Tnλ is nitrogen dioxide transmittance (unitless), Tgλ is uniformly mixed 

gas transmittance (unitless), Twλ is water vapor transmittance (unitless), and Taλ is aerosol 

transmittance (unitless).  These components were calculated using methods described by Gueymard 

(1995, 2001).  Edown was calculated using Equations 3 and 4 (from Gopinathan and Polokoana, 

1986), where τD is the dimensionless transmission coefficient for direct solar radiation (Liu and 

Jordan, 1960).  For more details on atmospheric correction, please refer to Aneece and Thenkabail 

(2018) and Aneece et al. (2018). 

𝑆𝑅 =
𝜋∗𝐿

cos 𝜃𝑉∗(𝐸𝑠𝑢𝑛∗cos 𝜃𝑍∗𝑇+ 𝐸𝑑𝑜𝑤𝑛)
     (1)

T = TRλ ∗ Toλ ∗ Tnλ ∗ Tgλ ∗ Twλ ∗ Taλ                                              (2) 

Edown = Esun ∗ τD     (3) 

 

τD = 0.2710 − (0.2939 ∗ T )                                     (4) 

 

After conversion to surface reflectance, we masked out clouds and cloud shadows before extracting 

spectra.  Clouds were detected using threshold reflectance values in the blue band and the sum of 

reflectance in the red, green, and blue bands since clouds have very high reflectance in the visible 

region.  Cloud shadows were detected using threshold reflectance values in the sum of bands in the 

NIR and SWIR regions, in which regions cloud shadows have very low reflectance.  Threshold 

values depend on the image and user preference as to how conservative they want the mask to be.  

This is a very rudimentary mask, which also masks out some water bodies; that was acceptable for 
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this application, which only needed spectral signatures from cropland.  However, if a user wants to 

also study water bodies, a more detailed mask should be constructed. 

 

After masking out clouds and cloud shadows, spectra were extracted from pixels with known crop 

types, using the USDA CDL as reference.  These spectra were compiled into an Excel spreadsheet 

and problematic (noisy) bands were removed: 933-963 nm, 1114-1155 nm, 1336-1498 nm, 1780-

2042 nm, and 2365-2396 nm.  The spectra were then smoothed using a 3-band moving average.  The 

R script for doing this is also available in LP DAAC. 

 

The resulting spectra, along with image information, geographic coordinates, corresponding 

agroecological zone, crop type labels, and crop growth stage labels were compiled into the Global 

Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) for the US. 

 

b. Programming and code 
 
The Hyperion preprocessing steps were coded in GEE using the JavaScript Application 

Programming Interface (API). The code is available for download along with this ATBD. 

 

3. Results 
 

Using the 66 EO-1 Hyperion hyperspectral images of CONUS (Section III.1) and based on 

knowledge from the reference data (Section III.2), we derived the GHISA hyperspectral libraries of 

agricultural crops for their crop types (Figure 4, Table 2) and crop growth stages (Figure 5, Table 

3). 

 

Crop type reference training and validation data (Table 2) were gathered from 11 images across five 

AEZs for the five crops using USDA CDL data for reference. Illustrations of GHISA for example 

Hyperion images, with spectral averages by crop type are included in Figure 4.  Overall, there were 

2876 samples for training and 969 for validation. Across images, corn had 1104 training and 372 

validation samples. Soybean had 1087 training and 366 validation samples. Winter wheat had 551 

training and 184 validation samples. Rice had 86 training and 30 validation samples. Finally, cotton 

had 48 training and 17 validation samples. These data were used for crop type differentiation 

(Aneece and Thenkabail, 2018). 

 

Crop growth stage reference training and validation data (Table 3) were gathered from 99 Hyperion 

images in seven AEZs for the five crops. An illustration of the Hyperion hyperspectral profiles 

averaged by crop growth stages is shown in Figure 5. Overall, there were 5184 samples for training 

and 1739 for validation. Corn had six growth stages represented, with a total of 1916 training and 

641 validation samples. Soybean had all six growth stages represented, and 1563 training and 523 

validation samples. Winter wheat had four growth stages represented with 6188 training and 2076 

validation samples. Cotton had five growth stages represented, with 615 training and 208 validation 

samples. Lastly, Rice had two of the six growth stages represented, with 86 training and 30 validation 

samples. These data were used for crop growth stage differentiation (Aneece and Thenkabail, 2018). 



 - 13 - DCN 
Version 1.0 

 

Figure 4. Illustration of GHISA of the US for five crops. Global Hyperspectral Imaging Spectral 

library of Agricultural crops (GHISA) illustrated for five crops in particular agroecological zones 

and growth stages. N is number of spectra included in the average. [Source: Aneece and 

Thenkabail, 2018]. 



 - 14 - DCN 
Version 1.0 

Table 2. Samples for crop type discrimination. Training and validation sample sizes for crop type 

discriminant analyses and image classification analyses; "other" only for image classification. 

[Source: Aneece and Thenkabail, 2018]. 
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Figure 5. Illustration of GHISA of the US for five crops. Global Hyperspectral Imaging Spectral 

library of Agricultural crops (GHISA) illustrated for one crop in two growth stages in AEZ 7, and 

four to six growth stages for the other crops in AEZ 9. N is number of spectra included in the 

average. [Source: Aneece and Thenkabail, 2018]. 
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Table 3. Training and validation samples for crop growth stage discrimination. Training and 

validation sample sizes for discriminant analyses across crop types in seven agroecological zones 

(AEZs) using Global Hyperspectral Imaging Spectral library of Agricultural crops (GHISA) of the 

US for each crop in each of the six growth stages, where present, derived from Hyperion data. 

[Source: Aneece and Thenkabail, 2018]. 

 

 

 

V. Constraints and limitations__________________________________ 
 

Constraints of the study included: 

1. Limited availability of EO-1 Hyperion images during various growing periods; 

2. Absence of wall-to-wall coverage of CONUS by EO-1 Hyperion limited more 

comprehensive development of GHISA, especially for crops not covered here; 

3. Uncertainty in the reference CDL data. Although the CDL is the gold standard for crop type 

mapping in USA, uncertainties exist to an extent; 

4. Signal to noise ratio of EO-1 Hyperion data 
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VI. Conclusions______________________________________________ 

 
This is the first ever attempt to develop a comprehensive Global Hyperspectral Imaging Spectral-

library of Agricultural Crops (GHISA). We used 66 EO-1 Hyperion images for the 2008-2015 time-

period along with USDA CDL reference data to develop GHISA hyperspectral libraries of 

agricultural crops of the conterminous United States (CONUS) on the basis of crops grown in various 

agroecological zones. GHISA of CONUS was developed for five major crops (corn, cotton, rice, 

soybean, and winter wheat). These hyperspectral libraries are made available for download through 

LP DAAC.  Protocols for generating GHISA are available in this document and in Aneece and 

Thenkabail (2018) and Aneece et al. (2018).  Code used in processing the EO-1 Hyperion data in 

GEE is downloadable in LP DAAC. 

 

The goal of this effort is to build a comprehensive GHISA for the entire world using hyperspectral 

data from different platforms (e.g., spaceborne, airborne, drone-based, and ground-based) for the 

world’s leading agricultural crops. In this specific effort, we developed GHISA for the conterminous 

United States (CONUS) based on EO-1 Hyperion data. We will continue this effort for other parts 

of the world and for CONUS using other platforms in the future. The GHISA releases come with 

user guides, ATBDs, and the data processing code whether performed in GEE or otherwise. 
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