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I. Members of the team 
 

The Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) for Central 

Asia was produced by the following team members. Their specific role is mentioned below. 

 

Dr. Isabella Mariotto, CEO and Geospatial Scientist, Terra Sensing Lab, LLC, and former 

Postdoctoral Research Scientist, USGS, with guidance from Dr. Thenkabail preprocessed and 

processed Hyperion images in ENVI and ArcGIS, extracted spectra from the images, developed 

algorithms in SAS to select optimal wavebands to detect crop types, and compiled GHISA for 

Central Asia.  She also made significant contribution in writing the ATBD and User Guide for 

Central Asia. 

 

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey (USGS), is the 

Principal Investigator (PI) of the GHISA project. Dr. Thenkabail was instrumental in developing 

the conceptual framework of the project and the product. He made significant contribution in 

writing the manuscript, Algorithm Theoretical Basis Document (ATBD), User Guide, and 

providing scientific guidance on the GHISA project. 

 

Dr. Itiya P. Aneece, Postdoctoral Research Geographer, USGS, with guidance from Dr. 

Thenkabail, preprocessed Hyperion images in Google Earth Engine, extracted spectra from the 

images, and compiled GHISA for the conterminous United States.  She also contributed to the 

manuscript, ATBD, and User Guide. 

 

II. Historical context, background, and need for GHISA 
 

Aneece and Thenkabail (2019a and 2019b) provided the overall context and overview of the global 

hyperspectral imaging spectral library of agricultural crops (GHISA) as follows: 

“Agricultural crop characterization, modeling, mapping, and monitoring are crucial for accurately 

assessing crop traits, yields, and productivity (e.g., crop productivity, crop water productivity) 

which in turn helps in assessing and managing global food and water security. Since agricultural 

crops consume 80-90% of all human water use (Thenkabail et al., 2012, 2010), accurate cropland 

studies contribute to accurate water use assessments and crop water productivity assessments. 

Agricultural crop signatures greatly vary by crop type, growth stage, growing condition, 

management, soil type, climate, and a host of other factors (e.g., inputs like nitrogen, potassium, 

and phosphorous; pests, and diseases).  

 

Agricultural characteristics and traits can be well established using hyperspectral data that are 

acquired with clear and precise knowledge of various crop variables. Any such study requires us to 

gather hyperspectral libraries of crops taking into consideration all factors mentioned above. 

Vegetation or agricultural crop hyperspectral data are widely used in research as detailed in the 

new four-volume book-set on hyperspectral remote sensing of vegetation (Thenkabail et al. 2018 a, 

b, c, d) as well as numerous research papers (Oliphant et al. 2019, Teluguntla et al. 2018, Gumma 

et al. 2018, Aneece and Thenkabail 2018, Marshall et al. 2014, Mariotto et al. 2013, Thenkabail et 

al. 2013). These data are collected from various platforms (Ortenberg, 2018, Hoque and Phinn, 

2018). Spaceborne sensors include the recently decommissioned United States of America’s 

(USA) Earth Observing-1 (EO-1) Hyperion (Aneece et al. 2018, Moharana and Dutta 2016, 



 

Oskouei and Babakan 2016), Germany’s Environmental Mapping and Analysis Program (EnMAP) 

(Bracken et al. 2019, Okujeni et al. 2015), the Italian Compact High Resolution Imaging 

Spectrometer (CHRIS) onboard of the Project for On Board Autonomy (PROBA) satellite (CHRIS 

PROBA) (Verrelst et al. 2012, Lin et al. 2019), the German Aerospace Center (German: Deutsches 

Zentrum für Luft- und Raumfahrt e.V.) or DLR’s Earth Sensing Imaging Spectrometer (DESIS) 

(Krutz et al. 2019), and upcoming US NASA’s SBG (formerly known as HyspIRI; Lee et al. 2015, 

Iqbal et al. 2018, Clark 2017), and the Japanese Hyperspectral Imager Suite (HISUI) (Matsunaga 

et al. 2018). Airborne sensors include NASA’s Airborne Visible InfraRed Imaging Spectrometer- 

Next Generation (AVIRIS-NG) (Bhattacharya et al. 2019, Ratheesh et al. 2019, Chaube et al. 

2019, Jha et al. 2019), the US Hyperspectral Digital Imagery Collection Experiment (HYDICE) 

(Zhang et al. 2006), Hyperspectral Sensor Surveying (AISA-EAGLE) (Mansour et al. 2012, 

Lausch et al. 2015, Abdel-Rahman et al. 2015), hyperspectral imaging sensor (HyMap) (Riaza et 

al. 2014, Buzzi et al. 2014), Compact Airborne Spectrographic Imager (CASI) (Legleiter et al. 

2016, Xu et al. 2018), AisaEAGLET (Doneus et al. 2014), and airborne Portable Remote Imaging 

SpectroMeter (PRISM) (Thompson et al. 2015, Mourolis et al. 2014). Drone-based sensors include 

Micro-Hyperspec X sensors (Dao et al. 2019, Guo et al. 2019), Rikola Hyperspectral camera 

(Ivushkin et al. 2019, Mozgeris et al. 2018), SOC710-GX (Rhee et al. 2018, Adao et al. 2017), 

Specim ImSpector V10 2/3 (Franceschini et al. 2017, Meij et al. 2017), OCI-UAV-1000 (Cahalane 

et al. 2017, Manfreda et al. 2018), MicroHSI 410-SHARK (Manfreda et al. 2018), and Pika series 

by Resonon (Kanning et al. 2018). Ground-based sensors include ASD Field Spec (Salem 2017, 

Padghan and Deshmukh 2017), Ocean Optic USB4000 (Middleton 2010), and UniSpec DC 

Spectrometer Analysis System (Davidson et al. 2016) ), and Spectral Evolution field portable 

spectroradiometers (Maimaitiyiming et al. 2016).  

 

Hyperspectral data are collected and analyzed for various study sites in the world and the results 

are shared in reports and research papers. Unfortunately, the hyperspectral libraries of the crops or 

vegetation used in these papers are either not shared or shared by only a few researchers, often in 

an uncoordinated manner. Currently, a systematic Global Hyperspectral Imaging Spectral-

library of Agricultural crops (GHISA) does not exist. The need for a GHISA is of utmost 

importance in the current scenario of increased availability of advanced hyperspectral sensors on 

various platforms (Ortenberg 2018, Hoque and Phinn 2018, Ghamisi et al. 2017, Panda et al. 

2015). GHISA is a 

  

“Comprehensive and systematic collection, collation, synthesis, standardization, and 

characterization of global agricultural crop hyperspectral signatures obtained from spaceborne, 

airborne (e.g., aircrafts, drones), platform-mounted, and ground-based hand-held 

spectroradiometers or imaging spectroscopy. The GHISA data are collected as near continuous 

spectra (e.g., every 1 or 10 nm) along a range of the electromagnetic spectrum (e.g., 400-2500 nm 

or 400-1000 nm or 8000-14000 nm). The collection and collation protocols of GHISA data are 

well defined and documented. GHISA data are processed using a standard set of protocols and 

algorithms for converting raw data into surface reflectance. Synthesis of GHISA data involves 

linking them to globally understood crop characteristics such as agroecological zones, precise 

geolocation, crop types, crop growing conditions, watering methods (e.g., irrigated or rainfed), 

and numerous other variables (e.g., inputs such as nitrogen applied, genome, etc). GHISA spectral 

libraries must have large sample sizes for each class to be robust. Characterization of GHISA data 



 

could include, for example, a comparison of hyperspectral narrowband data with multispectral 

broadband data for every crop type”. 

The need is multi-fold to understand, model, map, and monitor the following crop traits and/or 

help answer the following questions: 

 

1. What are the typical hyperspectral signatures of individual agricultural crops? How do 

these hyperspectral signatures vary during different: (a) growth stages, (b) geographical 

area, (c) genomes, (d) management practices, (e) inputs, (f) and a host of other parameters 

(e.g., irrigation versus rainfed, soils)? 

2. How does the same crop that is grown in different parts of the world change in its 

hyperspectral characteristics? Why? 

3. How do hyperspectral signatures of crops acquired over an area for one season compare 

across years (e.g., during normal, drought, and wet years)? 

4. What crop traits can be quantified by GHISA hyperspectral libraries? What are their 

accuracies?  

5. How can technological advances over the years change the ability of the GHISA 

hyperspectral library to characterize a crop? 

6. How do hyperspectral crop characteristics vary from crop to crop?  

7. What advances can be made in understanding, modeling, mapping, and monitoring 

agricultural crops using hyperspectral narrowband data as opposed to multispectral 

broadband data? 

8. What unique hyperspectral vegetation indices (HVIs) are developed that help advance our 

understanding of agricultural crop characteristics relative to multispectral broadband data 

derived vegetation indices (MBVIs)? What unique crop characteristics that cannot be 

characterized by MBVIs are characterized by HVIs? 

9. How do the GHISA hyperspectral signatures of a particular crop acquired from different 

platforms (e.g., spaceborne, airborne, ground-based) compare and/or contrast? 

10. How can GHISA help local, regional, federal, and international entities make informed 

decisions on agricultural practices? 

11. How can other scientists voluntarily provide input on individual crops to a GHISA library?  

Crowd-sourcing spectral data collection might be an interesting off-shoot to pursue. 

 

In a nutshell, GHISA provides a knowledge-bank of agricultural crops of the world grown in 

different countries, regions, agroecological zones, and conditions. It will serve many purposes 

of scientific and practical applications. For example, GHISA will be a signature bank for 

training algorithms for crop type mapping or to establish their quantitative traits to develop 

crop biophysical and biochemical models (Aneece and Thenkabail, 2018)”. 

 

III. Hyperspectral input data: EO-1 Hyperion and ASD 

Spectroradiometer 
 

This Algorithm Theoretical Basis Document (ATBD) provides a detailed account of the GHISA 

product, which is generated using Earth Observing-1 (EO-1) spaceborne hyperspectral Hyperion 

satellite sensor data. There are 70,000+ EO-1 Hyperion hyperspectral images (Figure 1) acquired 

over 2000 to 2015 time-frame and available for free from USGS EarthExplorer 



 

(https://earthexplorer.usgs.gov/). For the full description of the EO-1 Hyperion data please refer to 

Barry (2001), Khurshid et al. (2006), and Scheffler and Karrasch (2014).  

 

 
 

Figure 1. Spaceborne EO-1 Hyperion hyperspectral data acquired over the world from year 2000 

to 2015. Over 70,000+ images are available for free download from the USGS EarthExplorer 

(https://earthexplorer.usgs.gov/). Each image is 185 km x 7.5 km and has 242 spectral bands each 

10 nanometer wide in 400-2500 nm range (Source: Thenkabail et al., 2012). 

 

This document describes the GHISA production scheme for Central Asia based on EO-1 

Hyperion and ASD spectroradiometer data acquired in irrigated croplands of the Syr Darya River 

Basin (SRB) in Uzbekistan over Kuva and Galaba farms (Figure 2). Detailed descriptions of these 

data are provided in Mariotto et al. (2013) as well as in Thenkabail et al. (2013), Biradar et al. 

(2009), Cai and Thenkabail (2010) and Cai et al. (2008). There were three EO-1 Hyperion images 

(Table 1). The two areas were selected based on multiple Hyperion images available for the site as 

well as availability of five major world crops (wheat, rice, corn, alfalfa, cotton). Hyperion data for 

the 2007 growing season were selected because Hyperion is the only known source of spaceborne 

hyperspectral data covering the entire world consistently over long time-periods. Such data will 

enable a comprehensive and systematic study of the world’s agricultural crops over multiple years. 

Crop biomass discrimination was also studied for all five leading world crops. 

 

Several thousand hyperspectral ASD (Analytical Spectral Devices) Spectroradiometer data were 

consistently collected for each ground point location for the five crops – wheat, cotton, corn, rice, 

and alfalfa – (Figure 2) in 59 different days (41 days in 2006 and 18 days in 2007) during the 2006 

and 2007 crop growing seasons (Table 1). Crop biomass discrimination was also studied for all 

five leading world crops. 

 

It is imperative to monitor crops and assess global food security, especially with increasing global 

populations, urbanization, and changing dietary preferences. Knowledge of crop types and crop 

about:blank
about:blank


 

growth stages can help assess crop productivity. Remote sensing can be used to classify 

vegetation, and hyperspectral remote sensing specifically can enable the differentiation of crop 

types and crop growth stages. 

 

 

Figure 2. Study area: Galaba and Kuva farm fields in the Syr Darya river basin, Central Asia. 

Measurements were carried out in 1232 randomly chosen points scattered across farmers' plots. 

Crop types are shown for Galaba [Source: Mariotto et al., 2013]. 

 

Table 1. Hyperion images and Spectroradiometer data in two irrigated areas of 5 leading word 

crops. Three Hyperion hyperspectral images and several thousands of field ASD 

Spectroradiometer data were used to extract crop type information in the years 2006 and 2007 

[Source: Mariotto et al., 2013]*,**. 

Satellite / Sensor  Number of images Acquisition 

Dates 

Crops 

Hyperion-EO1 

 

 

 

ASD-

Spectroradiometer  

3 

 

 

 

Several thousands 

29/5/2007 

01/8/2007 

06/8/2007 

 

every 15-20 

days May to 

Oct  

2006 and 2007 

Wheat, Cotton, Maize, Rice, and 

Alfalfa 

 

 

 

Wheat, Cotton, Maize, Rice, and 

Alfalfa 

*Original Hyperion images contain 242 bands, out of which 198 are calibrated and available in Google Earth 



 

Engine. After removing problematic bands mostly affected by atmospheric noise, 158 bands were retained from 400 

nm to 2500 nm. 

**ASD Spectroradiometer wavelengths (1 nm) were averaged at 10 nm coincident to the band centers of the 158 

Hyperion (10 nm width) selected bands. 

 

IV. Algorithms description and data processing 
 

Hyperion images were preprocessed in ENVI (Harris Geospatial Solutions, Inc.) and ArcGIS 

(ESRI) software. Hyperion digital numbers (DNs) were converted to absolute units of radiance (W 

m−2 sr−1 μm−1), by splitting the VNIR and SWIR data into separate images because they were 

collected by two different spectrometers and thus had different calibration requirements (Scheffler 

and Karrasch, 2014, Datt et al. 2003, Bannari et al. 2015, Pervez et al. 2016). More recent 

approaches to processing hyperspectral data are discussed in Aneece and Thenkabail (2019a, 

2019b) as well as in Aneece et al. (2018) and Aneece and Thenkabail (2018). Then, VNIR and 

SWIR digital numbers were converted to radiance by dividing digital numbers by 40 and 80 

respectively (Barry 2001, Thenkabail et al. 2004, Thenkabail et al. 2013, Pervez et al. 2016). After 

recombining these datasets radiance was converted to apparent at-satellite reflectance (%) 

(Thenkabail, Enclona, Ashton, Legg, et al., 2004; Thenkabail, Enclona, Ashton, & VanDerMeer, 

2004; Thenkabail et al., 2002, 2011), and finally to surface reflectance (%) after atmospheric 

correction (Figure 3). Atmospheric correction was performed using the Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool in ENVI, which incorporates the 

MODTRAN4 radiation transfer code (Berk et al., 1999). All images were georectified and re-

projected to a common UTM coordinate system and WGS84 datum in ArcGIS. Hyperion imagery 

consists of 242 contiguous spectral bands, of which only 198 are radiometrically calibrated 

(Beckmann & Mckinney, 2006). Among these 198 bands, 158 bands without any noise and free of 

atmospheric window effects were selected for this study. It must be noted that FLAASH was used 

in pre-processing in this effort since these data were processed earlier. Currently, we are using 

generic approaches to pre-processing by coding and computing on the cloud as described in 

Aneece and Thenkabail (2019a, 2019b) as well as in Aneece et al. (2018) and Aneece and 

Thenkabail (2018). 

 

For the ARD Spectroradiometer wavelengths, 1 nm wide were measured every 10 nm coincident 

to the band centers of the 158 Hyperion (10 nm width) selected bands. Reflectance values of the 

pixels intersecting the ground data points were extracted from each satellite image for each band in 

ArcGIS. 

 

The recently decommissioned hyperspectral satellite-borne sensor Hyperion collected over 70,000 

images throughout the world, all of which are freely available through the USGS EarthExplorer 

and Google Earth Engine (GEE).  These images can be used to build a spectral library of crops in 

different areas, years, and growth stages. Three Hyperion images and several thousands of ASD 

field spectroradiometer data measurements in Central Asia in 2006 and 2007 were used to map 

five globally dominant crops (maize, cotton, rice, wheat, and alfalfa). 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3. EO-1 Hyperion Pre-processing Workflow for GHISA Central Asia. [Source: Mariotto et 

al. 2013]. 

EO-1 Hyperion Image 

Digital Numbers to 

Radiance 

Remove Problematic 

Bands 

Atmospheric 

Correction 

Georectification 

Bands retained are: 426-925, 932-1336, 1477-1790, 1981–1991, 2032-2355 

nm (Mariotto et al., 2013) 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), 

which incorporates the MODTRAN4 radiation transfer code.  

Georectification and reprojection to common UTM with ground data and 

WGS84 datum (Mariotto et al., 2013). 

Separate VNIR and 

SWIR (NOTE overlap) 

VNIR: 356 nm (Band 1) to 1058 (Band 70) (https://eo1.usgs.gov) 
         & 

SWIR: 852 nm (Band 71) to 2577 nm (Band 242) (https://eo1.usgs.gov) 

VNIR Radiance = Digital Numbers divided by 40 (Barry, 2001) 
       & 

SWIR Radiance = Digital Numbers divided by 80 (Barry, 2001) 



 

 

1.   Algorithms 

 

 

 

 

 

 

 
S = spherical albedo of the atmosphere 

A and B = atmospheric and geometric coefficients 

ρe = spatially averaged reflectance 

 

 

1.1. Algorithm details 

Algorithms for image pre-processing and spectral library (a.) and for selection of optimal 

wavebands to detect crop types (b.) are described below. 

 

a. Image Pre-Processing and Spectral library 

Hyperion images were preprocessed in ENVI and ArcGIS. FLAASH atmospheric correction was 

computed in ENVI. FLAASH incorporates the MODTRAN radiation transfer code. The spectral 

radiance at a sensor pixel, L (Equation 1), is calculated as the sum of the radiance reflected by each  

surface pixel () including correction (averaged value) for radiance scattering from surrounding 

pixels (e), that directly reaches the sensor and the radiance from surface that is scattered by the 

atmosphere into the sensor (La) 

 
Then, wavelengths are recalibrated, and after water retrieval, pixel surface reflectances are 

calculated for all the sensor channels (Equation 2) by computing a spatially averaged radiance 

image Le. This involves removing of cloudy pixels (Matthew et al., 2000). 
 
Users can also select a MODTRAN aerosol/haze model and set visibility options to correct for 

presence of clouds, as well as apply spectral polishing for artifact suppression in hyperspectral 

data. More details are available in https://www.harrisgeospatial.com/docs/FLAASH.html 

 

Crop spectra were extracted from pixels of Hyperion images with known crop types in ArcGIS. 

They can also be extracted in ENVI. These spectra were compiled into an Excel spreadsheet and 

problematic (noisy) bands were removed: 355-416 nm, 926-931 nm, 1346-1467 nm, 1800-1971 nm, 

2002-2022, and 2365-2577 nm. Crop spectra from the ASD spectroradiometer are derived from data 

available in the Excel spreadsheet. 

b. Algorithms for Selection of Optimal Wavebands to Detect Crop Types.  

Algorithms for selection of optimal wavebands that detect the five leading crop types were 

developed in SAS (Statistical Analysis System, SAS Institute Inc.). Crop type discrimination was 

computed through the following statistical analyses for Hyperion and ASD Spectroradiometer 

data: (a) Least square means for assessing differences in band reflectance between three-, four-, 

https://www.harrisgeospatial.com/docs/FLAASH.html


 

and five-crop types (wheat, cotton, maize, rice and alfalfa) by month. Pairwise comparisons of 

means were produced using the generalized linear model (GLM) procedure with the LSMEANS 

method in SAS. The tests were conducted for each month to see in which months the crops are best 

separated from each other, and which Hyperspectral Narrow Bands (HNBs) provided the best 

results.  

(b) Stepwise discriminant analysis (STEPDISC procedure in SAS) using Wilk's lambda method 

(Wilks, 1935) is a powerful approach to select a subset of the wavebands that best separate crop 

types. The Wilk's lambda is the likelihood ratio criterion (ratio of within-group variance to the total 

variance) with a value ranging from 0 to 1: the higher the Wilk's lambda, the lesser the separability 

between crop types (0 means 100% separability of wheat, cotton, maize, rice, and alfalfa) (at 

significance level of α = 0.999). Then, the Wilk's lambda values are plotted against the number of 

bands to determine the number of bands sufficient to best separate the 5 crops (when the curve 

becomes asymptotic or near-asymptotic) and their wavelength centers. 

(c)Principal component analysis (PCA) (Pearson, 1901) establishes prominent bands most 

important for capturing highest variance in data, and helps eliminate data redundancy. The PCA 

was explored for each crop type separately to determine how best the characteristics of that crop 

are captured. The PCA was performed using the PRINCOMP procedure in SAS. 

(d) Correlation between narrowbands for determining optimal hyperspectral narrowbands; to 

overcome the redundancy of HNBs, correlation between all combinations of narrowbands of 

Hyperion and spectroradiometer HNBs were conducted. The squared coefficients, R2, values were 

plotted in Lambda (λ1) by Lambda (λ2) plots to determine the HNB-centers and widths that 

provide the best and the redundant information. 

 (e) Discriminant model and error matrices: Finally, the most frequently occurring wavebands 

resulting from the LSmeans, Wilk's lambda, PCA, and lambda–lambda plots of hyperspectral 

Hyperion and Spectroradiometer data for the 5 leading crop types were analyzed through 

discriminant analysis (PROC DISCRIM is SAS), which resulted in error matrices (Congalton & 

Green, 2009).  

 

The optimal band selection process is discussed in great detail by a series of recent book series by 

Thenkabail et al. (2018a,b,c,d) as well as in papers (Aneece and Thenkabail, 2018, Thenkabail et 

al., 2013, Mariotto and Thenkabail, 2013). 

 

The resulting spectra, along with image information, geographic coordinates, crop type labels, and 

crop growth stage labels were compiled into the Global Hyperspectral Imaging Spectral-library of 

Agricultural crops (GHISA) for Central Asia. 

 

1.2. Programming and code 

 
The Hyperion and ASD Spectroradiometer processing steps were coded in SAS. The codes are 

available for download along with this ATBD. 

 

2. Results 

a. Spectral Library 

An illustration of the Hyperion hyperspectral profiles of cotton and corn in two different farms are 

reported in Figure 4. Illustration of Hyperion hyperspectral profiles of two cotton growth stages are 

shown in Figure 5 (a). Some spectroradiometer hyperspectral profiles of three growth stages of 



 

cotton, maize, and rice are shown in Figure 5. Data to derive all spectral profiles are in excel 

format and available to download. 

 

 
Figure 4. Illustration of Global Hyperspectral Imaging Spectral library of Agricultural crops 

(GHISA) of Central Asia for two crops. N is number of spectra included in the average. [Source: 

Mariotto et al., 2013]. 

 

 
Figure 5. Illustration of GHISA of Central Asia for three crops. GHISA illustrated for one crop in 

two growth stages (Hyperion) or three (ASD spectroradiometer) growth stages; and for three 



 

growth stages for two other crops. N is number of spectra included in the average. [Source: 

Mariotto et al., 2013]. 

 

b. Algorithms for Selection of Optimal Wavebands that Detect Crop Types.  

 

Algorithms for selecting best Hyperion and ASD spectroradiometer wavebands that detect the five 

leading crop types are derived from five statistical analyses:  

1) Least square means has assessed differences in band reflectance between three-, four-, and five- 

crop types (wheat, cotton, maize, rice and alfalfa) by month are reported in Table 2;  

2) Stepwise discriminant analysis of three crop types (cotton, maize, and wheat) has allowed 

selection of a subset of the wavebands that best discriminate crop types, and are reported at 99% 

confidence level in Figure 6;  

3) PCA has selected the prominent bands that capture the highest variance in data for each crop 

type, and overcome data redundancy. The minimum set of unique bands (up to 5) computed 

through PCA that best explain the variability in reflectance across the different crop types are 

shown in Table 3;  

4) Correlation between narrowbands, resulting in a total of 12,403 Pearson coefficients, has 

determined the optimal hyperspectral narrowbands and overcome data redundancy; and  

5) Discriminant model has determined the final most frequently occurring wavebands (Figure 7) 

resulting from the above four statistical analyses. Its accuracies for both Hyperion and ASD 

Spectroradiometer in discriminating crop types are shown in Tables 4-6. 

 

All the algorithms are in SAS format and are available to download. 

 

Table 2. Least square means of crop types reflectance showing significant statistical 

discrimination power at 95% confidence level for Hyperion and ASD Spectroradiometer bands 

[Source: Mariotto et al., 2013]. Note: The data were collected during 2006 and 2007 growing 

seasons. 

   Cotton, Maize, Wheat  

Band centers (nm) 

  Cotton, Maize, Wheat, Rice  

Band centers (nm) 

  June July August                July 

Hyperion   437,  

468-529, 569-712, 

722, 752, 763, 875-

925, 933-1336, 

1477-1498, 1790, 

2073, 2093, 2103, 

2123-2153, 2174, 

2244, 2264, 2285, 

2305-2355 

 

Spectroradiometer 581, 

591 

610-681, 702,         

1441-1451,  

1588-1740,  

1961-2073,  

2133-2194,  

2214 

 427-498, 610-681,  702            

1441-1451, 1588-1740, 2081-

2193, 2214,     

2244-2285 



 

 

 

       
 

 

Figure 6.  Crop type discrimination from Stepwise discriminant analysis: (a) Wilk’s lambda 

separability of cotton, maize, and wheat for Hyperion and ASD Spectroradiometer; (b) Wilk’s 

lambda separability of cotton, maize, and rice for spectroradiometer. Note: The lower the Wilk’s 

Lambda, the greater the separability. n = number of pixels examined. 

 

Table 3: The best Hyperion and ASD Spectroradiometer narrowband centers for the first five 

PCAs, selected on factor loadings (eigenvectors) for the five crop types. 



 

            % Variability explained Note: from SAS output  PCA: Eigenvalues of the Correlation Matrix

PCA1 PCA2 PCA3 PCA4 PCA5 PCA1 PCA2 PCA3 PCA4 PCA5 First two 

cumulative 

PCAs

First three 

cumulative 

PCAs

First four 

cumulative 

PCAs

First five 

cumulative 

PCAs

 HYPERION

b center 

(nm)

b center 

(nm)

b center 

(nm)

b center 

(nm)

b center 

(nm)

Cotton 1608 885 732 437 427 66 24 5 2 1 90 95 97 98

1588 875 712 963 732

1568 824 722 1992 722

1578 854 742 953 742

1598 793 773 973 2042

Maize 722 1982 1124 943 1144 69 11 5 4 4 79 85 89 93

1558 1992 2335 933 1134

1608 1488 933 1488 1982

1638 2083 2204 2063 1992

1679 2153 2244 2163 2264

Wheat 1568 1064 773 915 1134 66 27 2 0.9 0.6 93 96 97 98

1578 1104 752 885 1124

1608 1084 763 895 1144

1619 1094 783 864 1155

1629 1054 793 875 963

 SPECTRORADIOMETER

Alfalfa 1769 1023 539 1790 681 48 45 5 1 0.6 93 98 99 99

2254 1003 549 2355 671

1528 993 529 2335 661

1518 1013 427 1780 691

2224 963 559 1477 2073

Cotton 488 1669 640 447 2355 56 32 9 1 0.9 88 97 98 99

498 1679 702 549 2042

478 1659 773 437 1982

508 1649 661 427 2052

559 1689 691 457 2073

Maize 681 1750 2355 2355 2305 54 40 2 1 0.7 94 97 98 99

671 1740 2345 2345 2335

2042 1730 2335 1790 2315

2032 1599 2325 2325 2224

2052 1609 2295 549 2274

Rice 1528 915 712 722 712 57 40 2 0.6 0.4 97 99 99 100

1518 905 722 732 702

1508 880 701 2325 590

1538 885 549 712 2325

1548 895 559 963 1074

Wheat 722 875 427 2345 2345 76 18 5 0.8 0.2 93 99 99 100

712 854 437 2355 2355

1720 864 447 2315 712

1709 834 457 2335 702

1679 824 468 2325 722
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Figure 7. Frequency of occurrence of Hyperion narrowbands in LS-means, Wilk’s lambda, PCA, 

and λ1-λ2 R
2. Groups of close narrowbands most frequently occurring (frequency  ≥6) are ranked 

by progressive numbers above columns (1= most frequent). 

 

Table 4. Overall accuracies, determined by discriminant model, of best Hyperion narrowbands in 

discriminating 3 crops: cotton, maize, and wheat. The wavebands were selected based on 

published research, now available in Thenkabail et al. (2018a,b,c,d). 

No. of bands Waveband center (nm) Overall Accuracy (%) 

Three bands           
NIR, FMIR 

885, 943, 2143 81.1 

Five bands             
blue, red, NIR, 
FMIR 

447,  651, 885, 943, 2143 82.3 

Nine bands           
VIS, Red edge, 
NIR, FMIR 

 447, 579, 651, 681, 722, 803, 885, 
943, 2143 

83.5 

Twelve bands       
VIS, Red edge, 
NIR, FNIR, EMIR, 
FMIR 

447, 579, 651, 681, 722, 803, 885, 
943, 1084, 1134, 1488, 2143 

86 

Fifteen bands       
VIS, Red edge, 
NIR, FNIR, EMIR, 
FMIR 

447, 579, 651, 681, 722, 803, 885, 
943, 1084, 1134, 1488, 1528, 
1982, 2123, 2143 

87.2 

Twenty-nine bands  
VIS, Red edge, 
NIR, MSNIR, FNIR, 
EMIR, FMIR 

447, 508, 579,  651,  681,  722, 
803,  824,  885,  933,  943,  953,  
963,  983,  1064,  1084,  1094,  
1124,  1134,  1144,  1195,  1205,  
1488,  1528,  1982,  2123,  2143,  
2264,  2274 

90.2 

 
 

Table 5. Overall accuracies, determined by discriminant model, of best spectroradiometer 

narrowbands in discriminating 5 crops: alfalfa, cotton, maize, rice, and wheat. The wavebands 

were selected based reported research, now available in later edition (Thenkabail et al. 

2018a,b,c,d). 

No. of bands Waveband center (nm) Overall Accuracy 
(%) 

One band  

blue 

437 71.2 

Two bands 

blue, red 

437, 681 75.7 



 

Four bands 
blue, red, NIR, FMIR 

437, 681, 773, 1992 77.5 

Seven bands 

 blue, red, NIR, FNIR, 
FMIR 

437, 681, 773, 1074, 1992, 2143, 2335 83.8 

Eleven bands  blue, red, 

NIR, FNIR, EMIR, FMIR 

437, 681, 773, 1074, 1124, 1477, 1609, 

1740, 1992, 2143, 2335 

84.7 

Twenty-one bands 

blue, red, NIR, FNIR, 
EMIR, FMIR 

437 457 478 498 620 640 651 671 681 773 

1074 1124 1477 1609 1740 19822 1992 2143 
2335 

92 

Eighty bands  
VIS, NIR, MSNIR, FNIR, 

EMIR, FMIR 

427 437 447 457 468 478 488 498 508 590 
600 610 620 630 640 651 661 671 681 691 

712 732 742 763 773 783 793 803 813 824 

834 844 854 864 875 885 895 905 915 925 
953 963 973 983 993 1003 1013 1033 1044 

1054 1064 1084 1094 1104 1114 1124 1134 

1144 1477 1599 1609 1659 1669 1679 1740 
1750 1790 1982 1992 2032 2042 2052 2063 

2073 2083 2103 2113 2123 2133 2335 

93.7 

 

 

Table 6. Classification accuracy matrix of 5 crops using best 21 spectroradiometer narrowbands 

(blue, red, NIR, FNIR, EMIR, FMIR) 
 

  

Observed 

crop types                                   Classified crop types 

Omission 

error % 

Commission 

error % 

  Alfalfa Cotton Maize Rice Wheat   

         

No. Classified crop type samples Alfalfa 13 0 0 0 0 0 0 

% Classified into crop type  100 0 0 0 0   

         

No. Classified  crop type samples Cotton 0 42 1 0 0 2.3 0 

% Classified into crop type  0 97.67 2.33 0 0   

         

No. Classified crop type samples Maize 0 0 22 0 0 0 4.50 

% Classified into crop type  0 0 100 0 0   

         

No. Classified crop type samples Rice 0 0 0 3 7 70 10 

% Classified into crop type  0 0 0 30 70   

         

No. Classified crop type samples Wheat 0 0 0 1 22 4.3 30.4 

% Classified into crop type  0 0 0 4.35 95.65   

         



 

  Total Overall Error =15.3%     

    Overall Accuracy = 92%         

 

V. Constraints and limitations_________________________________ 
 

Constraints of the study included: 

1. Limited availability of EO-1 Hyperion images during various growing periods; 

2. Signal to noise ratio of EO-1 Hyperion data 

 

 

VI. Conclusions______________________________________________ 
 

This is the first ever attempt to develop a comprehensive Global Hyperspectral Imaging Spectral-

library of Agricultural Crops (GHISA). Three EO-1 Hyperion images in 2007 were analyzed along 

with several thousands of field ASD Spectroradiometer data collected in 2006 and 2007 were 

analyzed to develop GHISA hyperspectral libraries of agricultural crops of Central Asia. GHISA 

of Central Asia was developed for five major crops (corn, cotton, rice, alfalfa, and wheat). These 

hyperspectral libraries are made available for download through LP DAAC. Protocols for 

generating GHISA are available in this document. Other spectral libraries exist such as the USGS 

High Resolution Spectral Library (https://www.usgs.gov/energy-and-minerals/mineral-resources-

program/science/usgs-high-resolution-spectral-library; https://www.usgs.gov/labs/spec-lab; 

Kokaly et al., 2017) that is focused on minerals, rocks, and soils, the ECOSTRESS Spectral 

Library 1.0 (https://speclib.jpl.nasa.gov/; Meerdink et al., 2019) that is focused on vegetation and 

non-photosynthetic vegetation, and the global vis–NIR soil spectral library 

(http://www.sciencedirect.com/science/article/pii/S0012825216300113; Rossel et al., 2019). This 

is the first, spectral library with overwhelming focus on agricultural crops of the world. Given the 

importance of agriculture for food and nutrition security of the global populations, this is an 

extremely important endeavor. 

 

The goal of this effort is to build a comprehensive GHISA for the entire world using hyperspectral 

data from different platforms (e.g., spaceborne, airborne, drone-based, and ground-based) for the 

world’s leading agricultural crops. The signature collection strategy allows for alternative 

collections by new instruments like German Aerospace Center’s (DLR’s) Earth Sensing Imaging 

Spectrometer (DESIS) onboard International Space Station (ISS) or laboratory bench 

spectrometers or new generation of hyperspectral sensors such as India’s HySIS (Hyperspectral 

Imaging Satellite) or upcoming new launches such as DLR’s The Environmental Mapping and 

Analysis Program (EnMAP) from time to time. These are readily available now and provide 

technical advantages of scale and atmospherically pure signature development. We also want those 

who use spectra to try to transform spectra to various transformations to see whether those 

transformations such as, for example, first- or second-order derivative spectra provide greater 

uniqueness than regular spectra. In this specific effort, we developed GHISA for Central Asia 

based on EO-1 Hyperion and ASD spectroradiometer data. We will continue this effort for other 

parts of the world using other platforms in the future. The GHISA releases come with user guides, 

ATBDs, and the data processing code whether performed in GEE or otherwise. 

 

https://www.usgs.gov/energy-and-minerals/mineral-resources-program/science/usgs-high-resolution-spectral-library
https://www.usgs.gov/energy-and-minerals/mineral-resources-program/science/usgs-high-resolution-spectral-library
https://www.usgs.gov/labs/spec-lab
https://speclib.jpl.nasa.gov/
http://www.sciencedirect.com/science/article/pii/S0012825216300113
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