Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA)
Area of Study: Central Asia

Algorithm Theoretical Basis Document (ATBD)
USGS EROS
Sioux Falls, South Dakota
Document history

<table>
<thead>
<tr>
<th>Document Version</th>
<th>Publication Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td>Original</td>
</tr>
</tbody>
</table>
Contents
Document history ... 2
I. Members of the team .. 2
II. Historical context and background information ... 2
III. Hyperspectral input data: EO-1 Hyperion and ASD Spectroradiometer ... 4
IV. Algorithm description and Data processing ... 7
 1. Algorithms .. 6
 1.1 Algorithms details .. 6
 a. Image pre-processing and spectral library .. 8
 b. Algorithms for selection of optimal wavebands to detect crop types .. 9
 1.2 Programming and code ... 10
 2. Results .. 11
 a. Spectral Library .. 11
 b. Algorithms for Selection of Optimal Wavebands that Detect Crop Types 12
V. Constraints and limitations .. 17
VI. Conclusions ... 17
VII. Publications .. 17
VIII. Acknowledgements ... 17
IX. Contact information .. 18
X. Citations ... 18
XI. References ... 18
I. Members of the team

The Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) for Central Asia was produced by the following team members. Their specific role is mentioned below.

Dr. Isabella Mariotto, CEO and Geospatial Scientist, Terra Sensing Lab, LLC, and former Postdoctoral Research Scientist, USGS, with guidance from Dr. Thenkabail preprocessed and processed Hyperion images in ENVI and ArcGIS, extracted spectra from the images, developed algorithms in SAS to select optimal wavebands to detect crop types, and compiled GHISA for Central Asia. She also made significant contribution in writing the ATBD and User Guide for Central Asia.

Dr. Prasad S. Thenkabail, Research Geographer, United States Geological Survey (USGS), is the Principal Investigator (PI) of the GHISA project. Dr. Thenkabail was instrumental in developing the conceptual framework of the project and the product. He made significant contribution in writing the manuscript, Algorithm Theoretical Basis Document (ATBD), User Guide, and providing scientific guidance on the GHISA project.

Dr. Itiya P. Aneece, Postdoctoral Research Geographer, USGS, with guidance from Dr. Thenkabail, preprocessed Hyperion images in Google Earth Engine, extracted spectra from the images, and compiled GHISA for the conterminous United States. She also contributed to the manuscript, ATBD, and User Guide.

II. Historical context, background, and need for GHISA

Aneece and Thenkabail (2019a and 2019b) provided the overall context and overview of the global hyperspectral imaging spectral library of agricultural crops (GHISA) as follows:

“Agricultural crop characterization, modeling, mapping, and monitoring are crucial for accurately assessing crop traits, yields, and productivity (e.g., crop productivity, crop water productivity) which in turn helps in assessing and managing global food and water security. Since agricultural crops consume 80-90% of all human water use (Thenkabail et al., 2012, 2010), accurate cropland studies contribute to accurate water use assessments and crop water productivity assessments. Agricultural crop signatures greatly vary by crop type, growth stage, growing condition, management, soil type, climate, and a host of other factors (e.g., inputs like nitrogen, potassium, and phosphorous; pests, and diseases).

Agricultural characteristics and traits can be well established using hyperspectral data that are acquired with clear and precise knowledge of various crop variables. Any such study requires us to gather hyperspectral libraries of crops taking into consideration all factors mentioned above. Vegetation or agricultural crop hyperspectral data are widely used in research as detailed in the new four-volume book-set on hyperspectral remote sensing of vegetation (Thenkabail et al. 2018 a, b, c, d) as well as numerous research papers (Oliphalt et al. 2019, Teluguntla et al. 2018, Gumma et al. 2018, Aneece and Thenkabail 2018, Marshall et al. 2014, Mariotto et al. 2013, Thenkabail et al. 2013). These data are collected from various platforms (Ortenberg, 2018, Hoque and Phinn, 2018). Spaceborne sensors include the recently decommissioned United States of America’s (USA) Earth Observing-1 (EO-1) Hyperion (Aneece et al. 2018, Moharana and Dutta 2016,

Hyperspectral data are collected and analyzed for various study sites in the world and the results are shared in reports and research papers. Unfortunately, the hyperspectral libraries of the crops or vegetation used in these papers are either not shared or shared by only a few researchers, often in an uncoordinated manner. Currently, a systematic Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) does not exist. The need for a GHISA is of utmost importance in the current scenario of increased availability of advanced hyperspectral sensors on various platforms (Ortenberg 2018, Hoque and Phinn 2018, Ghamisi et al. 2017, Panda et al. 2015). GHISA is a

“Comprehensive and systematic collection, collation, synthesis, standardization, and characterization of global agricultural crop hyperspectral signatures obtained from spaceborne, airborne (e.g., aircrafts, drones), platform-mounted, and ground-based hand-held spectroradiometers or imaging spectroscopy. The GHISA data are collected as near continuous spectra (e.g., every 1 or 10 nm) along a range of the electromagnetic spectrum (e.g., 400-2500 nm or 400-1000 nm or 8000-14000 nm). The collection and collation protocols of GHISA data are well defined and documented. GHISA data are processed using a standard set of protocols and algorithms for converting raw data into surface reflectance. Synthesis of GHISA data involves linking them to globally understood crop characteristics such as agroecological zones, precise geolocation, crop types, crop growing conditions, watering methods (e.g., irrigated or rainfed), and numerous other variables (e.g., inputs such as nitrogen applied, genome, etc). GHISA spectral libraries must have large sample sizes for each class to be robust. Characterization of GHISA data
could include, for example, a comparison of hyperspectral narrowband data with multispectral broadband data for every crop type”.

The need is multi-fold to understand, model, map, and monitor the following crop traits and/or help answer the following questions:

1. What are the typical hyperspectral signatures of individual agricultural crops? How do these hyperspectral signatures vary during different: (a) growth stages, (b) geographical area, (c) genomes, (d) management practices, (e) inputs, (f) and a host of other parameters (e.g., irrigation versus rainfed, soils)?
2. How does the same crop that is grown in different parts of the world change in its hyperspectral characteristics? Why?
3. How do hyperspectral signatures of crops acquired over an area for one season compare across years (e.g., during normal, drought, and wet years)?
4. What crop traits can be quantified by GHISA hyperspectral libraries? What are their accuracies?
5. How can technological advances over the years change the ability of the GHISA hyperspectral library to characterize a crop?
6. How do hyperspectral crop characteristics vary from crop to crop?
7. What advances can be made in understanding, modeling, mapping, and monitoring agricultural crops using hyperspectral narrowband data as opposed to multispectral broadband data?
8. What unique hyperspectral vegetation indices (HVIs) are developed that help advance our understanding of agricultural crop characteristics relative to multispectral broadband data derived vegetation indices (MBVIs)? What unique crop characteristics that cannot be characterized by MBVIs are characterized by HVIs?
9. How do the GHISA hyperspectral signatures of a particular crop acquired from different platforms (e.g., spaceborne, airborne, ground-based) compare and/or contrast?
10. How can GHISA help local, regional, federal, and international entities make informed decisions on agricultural practices?
11. How can other scientists voluntarily provide input on individual crops to a GHISA library? Crowd-sourcing spectral data collection might be an interesting off-shoot to pursue.

In a nutshell, GHISA provides a knowledge-bank of agricultural crops of the world grown in different countries, regions, agroecological zones, and conditions. It will serve many purposes of scientific and practical applications. For example, GHISA will be a signature bank for training algorithms for crop type mapping or to establish their quantitative traits to develop crop biophysical and biochemical models (Aneece and Thenkabail, 2018)”.

III. Hyperspectral input data: EO-1 Hyperion and ASD Spectroradiometer

This Algorithm Theoretical Basis Document (ATBD) provides a detailed account of the GHISA product, which is generated using Earth Observing-1 (EO-1) spaceborne hyperspectral Hyperion satellite sensor data. There are 70,000+ EO-1 Hyperion hyperspectral images (Figure 1) acquired over 2000 to 2015 time-frame and available for free from USGS EarthExplorer
(https://earthexplorer.usgs.gov/). For the full description of the EO-1 Hyperion data please refer to Barry (2001), Khurshid et al. (2006), and Scheffler and Karrasch (2014).

![Image of Global NDVI Map](https://example.com/global.ndvi.map.png)

Figure 1. Spaceborne EO-1 Hyperion hyperspectral data acquired over the world from year 2000 to 2015. Over 70,000+ images are available for free download from the USGS EarthExplorer (https://earthexplorer.usgs.gov/). Each image is 185 km x 7.5 km and has 242 spectral bands each 10 nanometer wide in 400-2500 nm range (Source: Thenkabail et al., 2012).

This document describes the GHISA production scheme for **Central Asia** based on EO-1 Hyperion and ASD spectroradiometer data acquired in irrigated croplands of the Syr Darya River Basin (SRB) in Uzbekistan over Kuva and Galaba farms (Figure 2). Detailed descriptions of these data are provided in Mariotto et al. (2013) as well as in Thenkabail et al. (2013), Biradar et al. (2009), Cai and Thenkabail (2010) and Cai et al. (2008). There were three EO-1 Hyperion images (Table 1). The two areas were selected based on multiple Hyperion images available for the site as well as availability of five major world crops (wheat, rice, corn, alfalfa, cotton). Hyperion data for the 2007 growing season were selected because Hyperion is the only known source of spaceborne hyperspectral data covering the entire world consistently over long time-periods. Such data will enable a comprehensive and systematic study of the world’s agricultural crops over multiple years. Crop biomass discrimination was also studied for all five leading world crops.

Several thousand hyperspectral ASD (Analytical Spectral Devices) Spectroradiometer data were consistently collected for each ground point location for the five crops – wheat, cotton, corn, rice, and alfalfa – (Figure 2) in 59 different days (41 days in 2006 and 18 days in 2007) during the 2006 and 2007 crop growing seasons (Table 1). Crop biomass discrimination was also studied for all five leading world crops.

It is imperative to monitor crops and assess global food security, especially with increasing global populations, urbanization, and changing dietary preferences. Knowledge of crop types and crop
growth stages can help assess crop productivity. Remote sensing can be used to classify vegetation, and hyperspectral remote sensing specifically can enable the differentiation of crop types and crop growth stages.

![Figure 2](image)

Figure 2. Study area: Galaba and Kuva farm fields in the Syr Darya river basin, Central Asia. Measurements were carried out in 1232 randomly chosen points scattered across farmers’ plots. Crop types are shown for Galaba [Source: Mariotto et al., 2013].

Table 1. Hyperion images and Spectroradiometer data in two irrigated areas of 5 leading word crops. Three Hyperion hyperspectral images and several thousands of field ASD Spectroradiometer data were used to extract crop type information in the years 2006 and 2007 [Source: Mariotto et al., 2013]*,**.

<table>
<thead>
<tr>
<th>Satellite / Sensor</th>
<th>Number of images</th>
<th>Acquisition Dates</th>
<th>Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD- Spectroradiometer</td>
<td>Several thousands</td>
<td>every 15-20 days May to Oct 2006 and 2007</td>
<td>Wheat, Cotton, Maize, Rice, and Alfalfa</td>
</tr>
</tbody>
</table>

*Original Hyperion images contain 242 bands, out of which 198 are calibrated and available in Google Earth
Engine. After removing problematic bands mostly affected by atmospheric noise, 158 bands were retained from 400 nm to 2500 nm. **ASD Spectroradiometer wavelengths (1 nm) were averaged at 10 nm coincident to the band centers of the 158 Hyperion (10 nm width) selected bands.**

IV. Algorithms description and data processing

Hyperion images were preprocessed in ENVI (Harris Geospatial Solutions, Inc.) and ArcGIS (ESRI) software. Hyperion digital numbers (DNs) were converted to absolute units of radiance (W m−2 sr−1 μm−1), by splitting the VNIR and SWIR data into separate images because they were collected by two different spectrometers and thus had different calibration requirements (Scheffler and Karrasch, 2014, Datt et al. 2003, Bannari et al. 2015, Pervez et al. 2016). More recent approaches to processing hyperspectral data are discussed in Aneece and Thenkabail (2019a, 2019b) as well as in Aneece et al. (2018) and Aneece and Thenkabail (2018). Then, VNIR and SWIR digital numbers were converted to radiance by dividing digital numbers by 40 and 80 respectively (Barry 2001, Thenkabail et al. 2004, Thenkabail et al. 2013, Pervez et al. 2016). After recombining these datasets radiance was converted to apparent at-satellite reflectance (%) (Thenkabail, Enclona, Ashton, Legg, et al., 2004; Thenkabail, Enclona, Ashton, & VanDerMeer, 2004; Thenkabail et al., 2002, 2011), and finally to surface reflectance (%) after atmospheric correction (Figure 3). Atmospheric correction was performed using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool in ENVI, which incorporates the MODTRAN4 radiation transfer code (Berk et al., 1999). All images were georectified and re-projected to a common UTM coordinate system and WGS84 datum in ArcGIS. Hyperion imagery consists of 242 contiguous spectral bands, of which only 198 are radiometrically calibrated (Beckmann & Mckinney, 2006). Among these 198 bands, 158 bands without any noise and free of atmospheric window effects were selected for this study. It must be noted that FLAASH was used in pre-processing in this effort since these data were processed earlier. Currently, we are using generic approaches to pre-processing by coding and computing on the cloud as described in Aneece and Thenkabail (2019a, 2019b) as well as in Aneece et al. (2018) and Aneece and Thenkabail (2018).

For the ARD Spectroradiometer wavelengths, 1 nm wide were measured every 10 nm coincident to the band centers of the 158 Hyperion (10 nm width) selected bands. Reflectance values of the pixels intersecting the ground data points were extracted from each satellite image for each band in ArcGIS.

The recently decommissioned hyperspectral satellite-borne sensor Hyperion collected over 70,000 images throughout the world, all of which are freely available through the USGS EarthExplorer and Google Earth Engine (GEE). These images can be used to build a spectral library of crops in different areas, years, and growth stages. Three Hyperion images and several thousands of ASD field spectroradiometer data measurements in Central Asia in 2006 and 2007 were used to map five globally dominant crops (maize, cotton, rice, wheat, and alfalfa).
Figure 3. EO-1 Hyperion Pre-processing Workflow for GHISA Central Asia. [Source: Mariotto et al. 2013].
1. **Algorithms**

\[
L = \left(\frac{A \rho}{1 - \rho e S} \right) + \left(\frac{B \rho e}{1 - \rho e S} \right) + L_a \tag{1}
\]

\[
L_e \approx \left(\frac{(A + B) \rho e}{1 - \rho e S} \right) + L_a \tag{2}
\]

\[S\] = spherical albedo of the atmosphere
\[A\] and \[B\] = atmospheric and geometric coefficients
\[\rho_e\] = spatially averaged reflectance

1.1. **Algorithm details**

Algorithms for image pre-processing and spectral library (a.) and for selection of optimal wavebands to detect crop types (b.) are described below.

a. Image Pre-Processing and Spectral library

Hyperion images were preprocessed in ENVI and ArcGIS. FLAASH atmospheric correction was computed in ENVI. FLAASH incorporates the MODTRAN radiation transfer code. The spectral radiance at a sensor pixel, \(L\) (Equation 1), is calculated as the sum of the radiance reflected by each surface pixel (\(\rho\)) including correction (averaged value) for radiance scattering from surrounding pixels (\(\rho_e\)), that directly reaches the sensor and the radiance from surface that is scattered by the atmosphere into the sensor (\(L_a\)).

Then, wavelengths are recalibrated, and after water retrieval, pixel surface reflectances are calculated for all the sensor channels (Equation 2) by computing a spatially averaged radiance image \(L_e\). This involves removing of cloudy pixels (Matthew et al., 2000).

Users can also select a MODTRAN aerosol/haze model and set visibility options to correct for presence of clouds, as well as apply spectral polishing for artifact suppression in hyperspectral data. More details are available in https://www.harrisgeospatial.com/docs/FLAASH.html

Crop spectra were extracted from pixels of Hyperion images with known crop types in ArcGIS. They can also be extracted in ENVI. These spectra were compiled into an Excel spreadsheet and problematic (noisy) bands were removed: 355-416 nm, 926-931 nm, 1346-1467 nm, 1800-1971 nm, 2002-2022, and 2365-2577 nm. Crop spectra from the ASD spectroradiometer are derived from data available in the Excel spreadsheet.

b. Algorithms for Selection of Optimal Wavebands to Detect Crop Types.

Algorithms for selection of optimal wavebands that detect the five leading crop types were developed in SAS (Statistical Analysis System, SAS Institute Inc.). Crop type discrimination was computed through the following statistical analyses for Hyperion and ASD Spectroradiometer data: (a) Least square means for assessing differences in band reflectance between three-, four-,
and five-crop types (wheat, cotton, maize, rice and alfalfa) by month. Pairwise comparisons of means were produced using the generalized linear model (GLM) procedure with the LSMEANS method in SAS. The tests were conducted for each month to see in which months the crops are best separated from each other, and which Hyperspectral Narrow Bands (HNBs) provided the best results.

(b) **Stepwise discriminant analysis** (STEPDISC procedure in SAS) using Wilk's lambda method (Wilks, 1935) is a powerful approach to select a subset of the wavebands that best separate crop types. The Wilk's lambda is the likelihood ratio criterion (ratio of within-group variance to the total variance) with a value ranging from 0 to 1: the higher the Wilk's lambda, the lesser the separability between crop types (0 means 100% separability of wheat, cotton, maize, rice, and alfalfa) (at significance level of \(\alpha = 0.999 \)). Then, the Wilk's lambda values are plotted against the number of bands to determine the number of bands sufficient to best separate the 5 crops (when the curve becomes asymptotic or near-asymptotic) and their wavelength centers.

(c) **Principal component analysis (PCA)** (Pearson, 1901) establishes prominent bands most important for capturing highest variance in data, and helps eliminate data redundancy. The PCA was explored for each crop type separately to determine how best the characteristics of that crop are captured. The PCA was performed using the PRINCOMP procedure in SAS.

(d) **Correlation between narrowbands for determining optimal hyperspectral narrowbands**: to overcome the redundancy of HNBs, correlation between all combinations of narrowbands of Hyperion and spectroradiometer HNBs were conducted. The squared coefficients, R2, values were plotted in Lambda (\(\lambda_1 \)) by Lambda (\(\lambda_2 \)) plots to determine the HNB-centers and widths that provide the best and the redundant information.

(e) **Discriminant model and error matrices**: Finally, the most frequently occurring wavebands resulting from the LSmeans, Wilk's lambda, PCA, and lambda–lambda plots of hyperspectral Hyperion and Spectroradiometer data for the 5 leading crop types were analyzed through discriminant analysis (PROC DISCRIM is SAS), which resulted in error matrices (Congalton & Green, 2009).

The optimal band selection process is discussed in great detail by a series of recent book series by Thenkabail et al. (2018a,b,c,d) as well as in papers (Aneece and Thenkabail, 2018, Thenkabail et al., 2013, Mariotto and Thenkabail, 2013).

The resulting spectra, along with image information, geographic coordinates, crop type labels, and crop growth stage labels were compiled into the Global Hyperspectral Imaging Spectral-library of Agricultural crops (GHISA) for Central Asia.

1.2. Programming and code

The Hyperion and ASD Spectroradiometer processing steps were coded in SAS. The codes are available for download along with this ATBD.

2. Results

a. Spectral Library

An illustration of the Hyperion hyperspectral profiles of cotton and corn in two different farms are reported in Figure 4. Illustration of Hyperion hyperspectral profiles of two cotton growth stages are shown in Figure 5 (a). Some spectroradiometer hyperspectral profiles of three growth stages of
cotton, maize, and rice are shown in Figure 5. Data to derive all spectral profiles are in excel format and available to download.

Figure 4. Illustration of Global Hyperspectral Imaging Spectral library of Agricultural crops (GHISA) of Central Asia for two crops. N is number of spectra included in the average. [Source: Mariotto et al., 2013].

Figure 5. Illustration of GHISA of Central Asia for three crops. GHISA illustrated for one crop in two growth stages (Hyperion) or three (ASD spectroradiometer) growth stages; and for three
growth stages for two other crops. N is number of spectra included in the average. [Source: Mariotto et al., 2013].

b. Algorithms for Selection of Optimal Wavebands that Detect Crop Types.

Algorithms for selecting best Hyperion and ASD spectroradiometer wavebands that detect the five leading crop types are derived from five statistical analyses:

1) *Least square means* has assessed differences in band reflectance between three-, four-, and five-crop types (wheat, cotton, maize, rice and alfalfa) by month are reported in Table 2;

2) *Stepwise discriminant analysis* of three crop types (cotton, maize, and wheat) has allowed selection of a subset of the wavebands that best discriminate crop types, and are reported at 99% confidence level in Figure 6;

3) *PCA* has selected the prominent bands that capture the highest variance in data for each crop type, and overcome data redundancy. The minimum set of unique bands (up to 5) computed through PCA that best explain the variability in reflectance across the different crop types are shown in Table 3;

4) *Correlation* between narrowbands, resulting in a total of 12,403 Pearson coefficients, has determined the optimal hyperspectral narrowbands and overcome data redundancy; and

5) *Discriminant model* has determined the final most frequently occurring wavebands (Figure 7) resulting from the above four statistical analyses. Its accuracies for both Hyperion and ASD Spectroradiometer in discriminating crop types are shown in Tables 4-6.

All the algorithms are in SAS format and are available to download.

Table 2. Least square means of crop types reflectance showing significant statistical discrimination power at 95% confidence level for Hyperion and ASD Spectroradiometer bands [Source: Mariotto et al., 2013]. Note: The data were collected during 2006 and 2007 growing seasons.

<table>
<thead>
<tr>
<th></th>
<th>Cotton, Maize, Wheat</th>
<th>Cotton, Maize, Wheat, Rice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Band centers (nm)</td>
<td>Band centers (nm)</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>July</td>
</tr>
<tr>
<td>Hyperion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectroradiometer</td>
<td>581, 591</td>
<td>610-681, 702,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1441-1451,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1588-1740,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1961-2073,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2133-2194,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6. Crop type discrimination from Stepwise discriminant analysis: (a) Wilk’s lambda separability of cotton, maize, and wheat for Hyperion and ASD Spectroradiometer; (b) Wilk’s lambda separability of cotton, maize, and rice for spectroradiometer. Note: The lower the Wilk’s Lambda, the greater the separability. n = number of pixels examined.

Table 3: The best Hyperion and ASD Spectroradiometer narrowband centers for the first five PCAs, selected on factor loadings (eigenvectors) for the five crop types.
HYPERION

<table>
<thead>
<tr>
<th>Wavebands (nm)</th>
<th>Frequency of occurrence of wavebands</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 529 620 712 803 905 993 1087 1175 1266 1508 1599 1669 1760 2012 2103 2194 2285</td>
<td></td>
</tr>
<tr>
<td>Wavebands (nm)</td>
<td>Frequency of occurrence of wavebands</td>
</tr>
<tr>
<td>400 529 620 712 803 905 993 1087 1175 1266 1508 1599 1669 1760 2012 2103 2194 2285</td>
<td></td>
</tr>
</tbody>
</table>

SPECTRORADIOMETER

<table>
<thead>
<tr>
<th>Wavebands (nm)</th>
<th>Frequency of occurrence of wavebands</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 529 620 712 803 905 993 1087 1175 1266 1508 1599 1669 1760 2012 2103 2194 2285</td>
<td></td>
</tr>
<tr>
<td>Wavebands (nm)</td>
<td>Frequency of occurrence of wavebands</td>
</tr>
<tr>
<td>400 529 620 712 803 905 993 1087 1175 1266 1508 1599 1669 1760 2012 2103 2194 2285</td>
<td></td>
</tr>
</tbody>
</table>

PCA Analysis

<table>
<thead>
<tr>
<th>Wavebands (nm)</th>
<th>Frequency of occurrence of wavebands</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 529 620 712 803 905 993 1087 1175 1266 1508 1599 1669 1760 2012 2103 2194 2285</td>
<td></td>
</tr>
<tr>
<td>Wavebands (nm)</td>
<td>Frequency of occurrence of wavebands</td>
</tr>
<tr>
<td>400 529 620 712 803 905 993 1087 1175 1266 1508 1599 1669 1760 2012 2103 2194 2285</td>
<td></td>
</tr>
</tbody>
</table>
Figure 7. Frequency of occurrence of Hyperion narrowbands in LS-means, Wilk’s lambda, PCA, and $\lambda_1-\lambda_2$ R^2. Groups of close narrowbands most frequently occurring (frequency \geq6) are ranked by progressive numbers above columns (1= most frequent).

Table 4. Overall accuracies, determined by discriminant model, of best Hyperion narrowbands in discriminating 3 crops: cotton, maize, and wheat. The wavebands were selected based on published research, now available in Thenkabail et al. (2018a,b,c,d).

<table>
<thead>
<tr>
<th>No. of bands</th>
<th>Waveband center (nm)</th>
<th>Overall Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three bands</td>
<td>NIR, FMIR</td>
<td>81.1</td>
</tr>
<tr>
<td>Five bands</td>
<td>blue, red, NIR, FMIR</td>
<td>82.3</td>
</tr>
<tr>
<td>Nine bands</td>
<td>VIS, Red edge, NIR, FMIR</td>
<td>83.5</td>
</tr>
<tr>
<td>Twelve bands</td>
<td>VIS, Red edge, NIR, FNIR, EMIR, FMIR</td>
<td>86</td>
</tr>
<tr>
<td>Fifteen bands</td>
<td>VIS, Red edge, NIR, FNIR, EMIR, FMIR</td>
<td>87.2</td>
</tr>
<tr>
<td>Twenty-nine bands</td>
<td>VIS, Red edge, NIR, MSNIR, FNIR, EMIR, FMIR</td>
<td>90.2</td>
</tr>
</tbody>
</table>

Table 5. Overall accuracies, determined by discriminant model, of best spectroradiometer narrowbands in discriminating 5 crops: alfalfa, cotton, maize, rice, and wheat. The wavebands were selected based reported research, now available in later edition (Thenkabail et al. 2018a,b,c,d).

<table>
<thead>
<tr>
<th>No. of bands</th>
<th>Waveband center (nm)</th>
<th>Overall Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One band</td>
<td>blue</td>
<td>71.2</td>
</tr>
<tr>
<td>Two bands</td>
<td>blue, red</td>
<td>75.7</td>
</tr>
<tr>
<td>Four bands</td>
<td>437, 681, 773, 1992</td>
<td>77.5</td>
</tr>
<tr>
<td>Seven bands</td>
<td>437, 681, 773, 1074, 1992, 2143, 2335</td>
<td>83.8</td>
</tr>
<tr>
<td>Eleven bands</td>
<td>437, 681, 773, 1074, 1124, 1477, 1609, 1740, 1992, 2143, 2335</td>
<td>84.7</td>
</tr>
<tr>
<td>Twenty-one bands</td>
<td>437, 457, 478, 498, 620, 640, 651, 671, 681, 773, 1074, 1124, 1477, 1609, 1740, 1992, 2143, 2335</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 6. Classification accuracy matrix of 5 crops using best 21 spectroradiometer narrowbands (blue, red, NIR, FNIR, EMIR, FMIR)

<table>
<thead>
<tr>
<th>Observed crop types</th>
<th>Classified crop types</th>
<th>Omission error %</th>
<th>Commission error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Cotton</td>
<td>Maize</td>
<td>Rice</td>
</tr>
<tr>
<td>No. Classified crop type samples</td>
<td>Alfalfa</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>% Classified into crop type</td>
<td>Alfalfa</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>No. Classified crop type samples</td>
<td>Cotton</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>% Classified into crop type</td>
<td>Cotton</td>
<td>0</td>
<td>97.67</td>
</tr>
<tr>
<td>No. Classified crop type samples</td>
<td>Maize</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Classified into crop type</td>
<td>Maize</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. Classified crop type samples</td>
<td>Rice</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Classified into crop type</td>
<td>Rice</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No. Classified crop type samples</td>
<td>Wheat</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>% Classified into crop type</td>
<td>Wheat</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
V. Constraints and limitations

Constraints of the study included:
1. Limited availability of EO-1 Hyperion images during various growing periods;
2. Signal to noise ratio of EO-1 Hyperion data

VI. Conclusions

This is the first ever attempt to develop a comprehensive Global Hyperspectral Imaging Spectral-library of Agricultural Crops (GHISA). Three EO-1 Hyperion images in 2007 were analyzed along with several thousands of field ASD Spectroradiometer data collected in 2006 and 2007 were analyzed to develop GHISA hyperspectral libraries of agricultural crops of Central Asia. GHISA of Central Asia was developed for five major crops (corn, cotton, rice, alfalfa, and wheat). These hyperspectral libraries are made available for download through LP DAAC. Protocols for generating GHISA are available in this document. Other spectral libraries exist such as the USGS High Resolution Spectral Library (https://www.usgs.gov/energy-and-minerals/mineral-resources-program/science/usgs-high-resolution-spectral-library; https://www.usgs.gov/labs/spec-lab; Kokaly et al., 2017) that is focused on minerals, rocks, and soils, the ECOSTRESS Spectral Library 1.0 (https://speclib.jpl.nasa.gov/; Meerdink et al., 2019) that is focused on vegetation and non-photosynthetic vegetation, and the global vis–NIR soil spectral library (http://www.sciencedirect.com/science/article/pii/S0012825216300113; Rossel et al., 2019). This is the first, spectral library with overwhelming focus on agricultural crops of the world. Given the importance of agriculture for food and nutrition security of the global populations, this is an extremely important endeavor.

The goal of this effort is to build a comprehensive GHISA for the entire world using hyperspectral data from different platforms (e.g., spaceborne, airborne, drone-based, and ground-based) for the world’s leading agricultural crops. The signature collection strategy allows for alternative collections by new instruments like German Aerospace Center’s (DLR’s) Earth Sensing Imaging Spectrometer (DEISIS) onboard International Space Station (ISS) or laboratory bench spectrometers or new generation of hyperspectral sensors such as India’s HySIS (Hyperspectral Imaging Satellite) or upcoming new launches such as DLR’s The Environmental Mapping and Analysis Program (EnMAP) from time to time. These are readily available now and provide technical advantages of scale and atmospherically pure signature development. We also want those who use spectra to try to transform spectra to various transformations to see whether those transformations such as, for example, first- or second-order derivative spectra provide greater uniqueness than regular spectra. In this specific effort, we developed GHISA for Central Asia based on EO-1 Hyperion and ASD spectroradiometer data. We will continue this effort for other parts of the world using other platforms in the future. The GHISA releases come with user guides, ATBDs, and the data processing code whether performed in GEE or otherwise.
VII. Publications

VIII. Acknowledgements

This project was funded by the NASA ROSES HyspIRI research grant, NASA Science Mission Directorate's Earth Science Division. This project was funded by the United States Geological Survey (USGS). Support provided by the USGS Land Resources Mission Area (LRMA), and the National Land Imaging (NLI) and Land Change Science (LCS) programs are deeply appreciated.

IX. Contact information

LP DAAC User Services
U.S. Geological Survey (USGS)
Center for Earth Resources Observation and Science (EROS)
47914 252nd Street
Sioux Falls, SD 57198-0001
Phone Number: 605-594-6116
Toll Free: 866-573-3222 (866-LPE-DAAC)
Fax: 605-594-6963
Email: lpdaac@usgs.gov
Web: https://lpdaac.usgs.gov
For the Principal Investigators, feel free to write to:
Prasad S. Thenkabail at pthenkabail@usgs.gov
Isabella Mariotto at imariotto@terrasensinglab.com
Itiya Aneece at ianeece@usgs.gov

X. Citations

XI. References

https://lpdaac.usgs.gov/products/ghisaconusv001/

https://lpdaac.usgs.gov/products/ghisaconusv001/

https://lpdaac.usgs.gov/products/ghisaconusv001/

Manfreda, S., McCabe, M., Miller, P., Lucas, R., Madrigal, V., Mallinis, G., Dor, E., Helman, D.,

