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ABSTRACT 
 

Growing evidence has emerged that climate change-induced shifts in phenology 
are having substantial impacts on ecosystem function, biodiversity, and carbon 
budgets at multiple scales. Timing of leaf-on and leaf-off periods also affects land 
surface albedo, exerting a strong control on surface radiation budgets and the 
partitioning of net radiation between latent and sensible heat fluxes. As a result, there 
is a critical need to produce accurate and timely global land surface phenology data 
sets.    

The goal of the VIIRS global land surface phenology (GLSP) product is to develop 
science quality standard data products that will enable continuity of a key standard 
Earth system data record from VIIRS data. This product will provide consistent 
spatial and temporal estimates of the timing and magnitude of vegetation 
phenological development across the globe, and will be suitable for characterizing 
and understanding interannual-to-decadal scale changes in ecosystem response to 
climate change. 

The VIIRS GLSP algorithm uses daily VIIRS Nadir BRDF (bidirectional reflectance 
distribution function)-Adjusted reflectances (NBAR) in combination with VIIRS land 
surface temperature, snow cover, and land cover type at each pixel as inputs. The 
VIIRS NBAR product is used to generate time series of the two band enhanced 
vegetation index at each 500m gridded pixel. The VIIRS GLSP will be produced once 
a year, and will provide twelve phenological metrics (seven phenological dates and 
five phenological magnitudes), along with quality assurance flags and metrics 
characterizing the confidence of phenology retrievals at each pixel.  
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1. Introduction 

Vegetation phenology is a sensitive indicator of biological responses to climate change 
(Cleland et al. 2012; Ivits et al. 2012; Morisette et al. 2009). Long-term records of vegetation 
phenology observed from both species-specific in -situ and from satellite observations have 
greatly contributed to improve understanding of the biological responses to climate change 
at regional to global scales (Cleland et al. 2007; Korner and Basler 2010; Parmesan and Yohe 
2003; Richardson et al. 2013; Walther 2010). Vegetation phenology is readily observable and 
easily understood by  the public; thus, it is widely acknowledged to be a key indicator that 
can be used to track ecosystem changes in response to climate change by the 
Intergovernmental Panel on Climate Change (IPCC 2007, 2014), the United States Global 
Change Research Program (USGCRP 2010, 2015), and the Environmental Protection Agency 
(EPA 2016).  

The phenological dynamics of vegetated ecosystems also influence a host of 
ecophysiological processes that affect hydrologic processes (Gerten et al. 2004; Hogg et al. 
2000; Vivoni 2012), biogeochemistry and nutrient cycling (Campbell et al. 2009; Cooke and 
Weih 2005), and land-atmosphere interactions (Heimann et al. 1998; Puma et al. 2013). 
Indeed, vegetation phenology affects terrestrial carbon cycling across a wide range of 
ecosystem and climatic regimes (Baldocchi et al. 2001; Churkina et al. 2005; Gray et al. 2014; 
Richardson et al. 2009b). The presence and absence of leaves affects land surface albedo 
(Moore et al. 1996; Ollinger et al. 2008; Williamson et al. 2016) and exerts strong control on 
surface radiation budgets and the partitioning of net radiation between latent and sensible 
heat fluxes (Chen and Dudhia 2001; Vivoni 2012). Therefore, investigations focused on 
monitoring climate change and modeling biospheric processes require accurate and timely 
information related to spatiotemporal dynamics of vegetation phenology.  While some data 
sets related to the phenology of particular plant species have been collected at specific sites 
and across networks, remote sensing provides the only way to observe and monitor 
phenological dynamics at landscape to global scales and at regular intervals.   

The VIIRS (Visible Infrared Imaging Radiometer Suite) Global Land Surface Phenology 
(GLSP) Product is being developed to meet the science and applications community needs 
for consistent and global records of land surface phenology. The product is based on 
established algorithms for estimating a long term record of global land surface phenology, 
and is being designed to provide continuity with the MODIS (Moderate-resolution Imaging 
Spectroradiometer) Global Land Cover Dynamics Product (MCD12Q2; Zhang et al., 2006; 
Ganguly et al., 2010).  Before describing the VIIRS GLSP algorithm and product specification, 
we will first provide a brief overview of the current state of the science.  

2. Background 

2.1. State of the Science 

In recent decades, growing season dynamics, including shifts in the timing of bud burst, 
leaf development, senescence, and changes in growing season length, have been widely 
studied in the context of ecosystem responses to climate change (Parmesan and Yohe 2003). 
Complex phenological responses have also been observed in controlled experiments where 
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warming was shown to accelerate the phenology of plant canopies (Cleland et al. 2012; 
Wolkovich et al. 2012), but elevated CO2 and nitrogen fertilization delayed flowering 
(Cleland et al. 2007). These biophysical and biochemical processes both influence and are 
diagnostic of ecosystem-climate interactions. As a consequence, there is a substantial need 
to accurately characterize the phenology of ecosystems, and by extension, the response of 
ecosystems to changes in the climate (Morisette et al. 2009). Many data sets related to plant 
phenology have been (or are being) collected at specific field sites or in networks focused on 
individual plants or plant species. However, because of the geographical and temporal 
sampling of these data sets, synthesis of such observations, to characterize regional to global 
scale patterns and dynamics in phenology, is extremely difficult. 

Moderate resolution satellite remote sensing provides global high temporal frequency 
measurements of land surface properties, and are therefore well-suited for monitoring 
seasonal-to-decadal patterns and trends in regional-to-global phenology (de Beurs and 
Henebry 2005a; Henebry and de Beurs 2013; Reed et al. 1994b; White et al. 1997; Zhang et 
al. 2003; Zhang et al. 2014). Phenological timing and magnitude derived from satellite data 
are estimated from temporal dynamics in vegetation indices and therefore do not provide 
directly observed features of plant phenology. Hence, remotely sensed observations of 
phenological dynamics are often referred to as “land surface phenology” (de Beurs and 
Henebry 2004; Henebry and de Beurs 2013). Indeed, the utility of coarse and moderate 
spatial resolution sensors for studies of land surface phenology has been well established 
over the last 20 years (de Beurs and Henebry 2005b; de Beurs and Henebry 2010; Justice et 
al. 1985; Reed et al. 1994a; White et al. 1997; Zhang et al. 2003). Landsat MSS was the first 
space-borne sensor used to characterize the seasonality of vegetation at landscape and 
regional scales (Thompson and Wehmanen 1979). However, detecting phenological 
transition dates requires higher temporal resolution than is currently afforded by Landsat–
class instruments, so moderate spatial resolution sensors such as the Advanced Very High 
Resolution Radiometer (AVHRR) (Goward et al. 1985), MODIS (Zhang et al., 2003), and 
SPOT-VEGETATION (Delbart et al. 2005)  are more commonly used for this purpose.    

The utility of remote sensing time series for phenology-related studies has been widely 
demonstrated during last two decades. Specifically, by exploiting the growing archive of 
global optical satellite data, especially from AVHRR, MODIS and SPOT, a number of studies 
have revealed important spatial and temporal patterns in the time series of moderate to 
coarse resolution vegetation indices. Prominent examples include studies using AVHRR 
showing that northern hemisphere temperate and boreal regions (~40o-70o N) experienced 
increased growing season greenness related to surface warming during the period 1981 to 
1999 (Myneni et al. 1997; Zhou et al. 2001). More recent studies, utilizing a longer record of 
AVHRR data, suggest a more complex pattern with evidence of “browning” trends in the 
boreal forests of Southern Alaska, Canada, and in the interior of Russia (Angert et al. 2005; 
de Jong et al. 2011; Goetz et al. 2005; Zhang et al. 2007) and complicated impacts of climate 
modes on land surface phenology in the Northern Hemisphere (de Beurs and Henebry 2008; 
Zhang et al. 2007). Similar studies, conducted for tropical regions, suggest significant 
“greening” in regions such as the Sahel, associated with long-term trends in precipitation 
regimes (Herrmann et al. 2005; Hickler et al. 2005; Olsson et al. 2005; Seaquist et al. 2006). 
Despite their wide use, AVHRR data are not well suited for most vegetation monitoring 
applications because the sensors lack precise radiometric calibration, exhibit poor geometric 



  VIIRS GLSP ATBD 

6 
 

registration, and use spatial resampling methods that decrease their utility (Goward et al. 
1991).  

The availability of the MODIS data since 2000 provides a substantially improved global 
remote sensing data source with dramatically improved radiometric and geometric 
properties, atmospheric correction, and cloud screening, thereby enabling more reliable and 
consistent characterization of land surface phenology at spatial resolutions from 250 m to 
1000 m (Ganguly et al. 2010; Tan et al. 2011; Zhang et al. 2006).  Recently, MODIS phenology 
has been used to identify enhancement of ecosystem carbon uptake (Keenan et al. 2014b), 
and to characterize climate change impacts in tropical forests (Huete et al. 2006; Zhou et al. 
2014), arctic ecosystems (Zeng et al. 2013), and at global scales (Zhang et al. 2014). However, 
the MODIS sensors are aging and near the end of their current duty cycles.  The VIIRS sensors, 
onboard the Suomi National Polar-orbiting Partnership (NPP) satellite, launched on October 
28, 2011, is and will continue to provide a continuity of the MODIS data record (Justice et al. 
2013). This ATBD describes the algorithmic basis and product specification for extending 
the MODIS MCD12Q2 data record into the VIIRS era. 

2.2. Existing Algorithms and Products 

A number of different approaches have been developed over the last two decades to model 
the temporal trajectory of vegetation indices and estimate the timing of phenological 
processes from satellite remote sensing. To reduce the noise in vegetation index (VI) data, 
the maximum value composite (MVC) (Holben 1986), the constraint view-angle MVC 
(CVMVC)(van Leeuwen et al. 1999), and best index slope extraction (BISE) (Viovy et al. 1992) 
methods are commonly applied to create weekly, biweekly, or monthly composites that 
minimize cloud and atmospheric contamination. To further reduce noise, time series of VI 
data are often smoothed using a variety of different methods including Fourier harmonic 
analysis (Moody and Johnson, 2001), asymmetric Gaussian function-fitting (Jonsson and 
Eklundh, 2002), piece-wise logistic functions (Zhang et al., 2003), Savitzky–Golay filters 
(Chen et al. 2004), degree-day based convex quadratic models (de Beurs and Henebry 2004; 
Henebry and de Beurs 2013) and polynomial curve fitting (Bradley et al. 2007). 

 To produce phenology metrics at regional and global scales from the resulting time series 
of VI data, a wide array of methods has been developed. The commonly used methods include 
threshold-based techniques (Jonsson and Eklundh 2002; White et al. 1997), spectral analysis 
(Jakubauskas et al. 2001; Moody and Johnson 2001), and inflection point estimation in the 
time series of vegetation indices (Moulin et al. 1997; Zhang et al. 2003). All methods use time 
series of VI data to identify the timing of phenological metrics such as the start and end of 
the growing season. However, considerable differences exist in the various phenological 
detection methods (de Beurs and Henebry 2010; White et al. 2009).  

In parallel with these algorithm development activities, a large number of phenology 
products have been (or are being) developed for use by the community.  To date, the MODIS 
Land Cover Dynamics Product (MCD12Q2) is the only global product that is produced on an 
operational basis (Ganguly et al. 2010; Zhang et al. 2006). Other products include the MODIS-
based product generated at NASA-GSFC in support of the North American Carbon Program 
(Tan et al. 2011), a product being generated for the Contiguous United States (CONUS) by 
the US Forest Service  (Hargrove et al. 2009), the USGS long-term 1-km AVHRR phenology 
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product for the CONUS (1989-present; Reed, 1994), the 1 km Europe phenology based on 
the time-series of Terrestrial Chlorophyll Index (MTCI) from Multi-temporal Medium 
Resolution Imaging Spectrometer (MERIS) from 2002 to 2012 (Rodriguez-Galiano et al. 
2015), a global product based on FPAR developed by the ESA (Verstraete et al. 2008), and a 
global long-term climate modeling grid (CMG) LSP (LTCMG-LSP) product at a spatial 
resolution of 0.05°degrees from time series of AVHRR (1982-1999) and MODIS (2000-2015) 
(Zhang 2015; Zhang et al. 2014). In addition, a large number of land surface phenology 
products have been generated focused on specific sensors, time periods, and regions for 
specific  application purposes (Bolton and Friedl 2013; Boyd et al. 2011; Krehbiel et al. 2016; 
Melaas et al. 2013; Melaas et al. 2016).  

3. VIIRS Global Land Surface Phenology  

3.1. Product Overview 

The objective of the VIIRS GLSP product is to produce global datasets that provide 
quantitative characterization of dynamics in vegetation phenology at a spatial resolution of 
500m that provides continuity with the MODIS MCD12Q2 product. To do this, the GLSP 
product characterizes vegetation growth cycles using four key transition dates estimated 
from time series of two band enhanced vegetation index (EVI2) data: (1) greenup onset: the 
date of onset of EVI2 increase; (2) maturity onset: the date of onset of EVI2 maximum; (3) 
senescence onset: the date of onset of EVI2 decrease; and (4) dormancy onset: the date of 
onset of EVI2 minimum (Figure 1). These four phenological transition dates divide the 
vegetation growing cycle into four vegetation growing phases: greenup phase, maturity 
phase, senescent phase, and dormant phase. In addition, the algorithm also computes dates 
corresponding to the mid-point of the greenup and senescent phases, EVI2 values at greenup 
onset and maturity onset, the growing season integrated EVI2 (the sum of the modeled daily 
EVI2 values from the onset of EVI2 increase to the onset of EVI2 minimum), and the rates of 
change in EVI2 values during the growth and senescence phases (Table 1) (see Section 8 for 

Figure 1. Phenological metrics in a vegetation growing cycle. 
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details regarding the product specification). Table 1 summarizes the specification for the 
data sets and format of the product. 

Table 1.  VIIRS global land surface phenology metrics. *PGQ is the proportion of good 

quality EVI2 values. 

VIIRS phenology Product Fields Units Data format  
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      P
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e
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Onset of greenness increase 

Day of 
Year 

(DOY) 

Format : uint16 
Range : 1 to 32767 
 

Onset of greenness maximum 

Onset of greenness decrease 

Onset of greenness minimum 

Date at mid greenup phase 

Date at mid senescent phase 

Growing season length Number of 
Days 

Format: uint16 
Range: 1 to 365 

EVI2 at onset of greenness increase  
EVI2 

Format: uint16  
Range: 0 to 10,000 
Scale: 10,000 EVI2 at onset of greenness maximum 

Summation of growing season EVI2 at a 
giving time 

∑EVI2 
Format: uint16  
Range: 0 to 32767 

Rate of change in greenness increase  
ΔEVI2/dT 

Format: uint16  
Range :0 to 32767 Rate of change in greenness decrease 

C
o

n
fi

d
en

ce
* 

  

Greenness agreement in a growing season  
N/A

Format: uint8   
Range : 0 to 100 

PGQ during a growing season 

PGQ around onset greenness increase 

PGQ around onset greenness maximum 

PGQ around onset greenness decrease 

PGQ around onset greenness dormancy 

Phenology quality assurance  
N/A

Format: uint8   
Bit fields to hold different 
quality states 

 

3.2. VIIRS Land Surface Phenology Algorithm  

The basis for the VIIRS GLSP algorithm is the MODIS land cover dynamics (MLCD) 
algorithm in collection 5 (Ganguly 2010). The MLCD V005 algorithm currently uses 8-day 
MODIS Nadir BRDF (bidirectional reflectance distribution function)-Adjusted reflectances 
(NBAR-MCD43A4) (Schaaf et al. 2002; Schaaf et al. 2011) and MODIS land surface 
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temperature data at each pixel as inputs. In order to generate the VIIRS GLSP product, the 
MLCD algorithm has been refined to allow for more flexible EVI2 trajectories (Zhang 2015) 
using daily V006 NBAR values (Wang et al. 2012). Here we provide a description of the 
algorithm used for the VIIRS GLSP product, including specific refinements that are being 
developed for the VIIRS product and that are not included in the MCD12Q2 algorithm.  

The conceptual basis and processing flow for the VIIRS GLSP product are presented in 
Figures 2 & 3.  Following this framework, estimation of land surface phenology metrics 
included in the product involves nine main steps, which are listed below (Figure 2): 

1. Visible and near infrared VIIRS NBAR data are ingested and used to compute the two 
band enhanced vegetation index (EVI2), along with ancillary data including VIIRS snow 
cover and land surface temperature (LST). 

2. The background EVI2 value at each pixel (i.e., the minimum snow-free value) is identified 
and EVI2 values in the time series flagged as snow-contaminated are replaced with the 
background value.  Details related to this procedure are provided in Section 4. 

3. Data gaps associated with clouds and missing observations are filled using nonlinear 
interpolation (Section 4). 

4. The time series of EVI2 data at each pixel are smoothed using a Savitzky-Golay filter and 
a running local median filter (Section 4). 

5. To identify individual growth and senescence phases, time periods with sustained EVI2 
increase and decrease are identified in the EVI2 time series at each pixel. To do this, a 
five-point moving slope technique is used, where transitions from periods of increasing 

Figure 2. Flowchart in the development of VIIRS phenology product 
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EVI2 to periods of decreasing EVI2 are identified by changes from positive to negative 
slope over five-point moving window, and vice versa. Because slight decreases or 
increases in EVI2 can be caused by local or transient processes unrelated to vegetation-
growth cycles, two heuristics are applied to exclude such variation: (1) the change in EVI2 
within any identified period of EVI2 increase or decrease must be larger than 20% of the 
annual range in EVI2 for the given pixel; and (2) the ratio of the local maximum EVI2 to 
the annual maximum EVI2 should be at least 0.25. This approach screens out short-term 
variation unrelated to growth and senescence cycles in a EVI2 time series, while at the 
same time allowing multiple growth cycles within any 12-month period to be identified.  

6. Each vegetation growth cycle identified in the EVI2 data is modeled using a Hybrid 
Piecewise Logistic Model (HPLM) for each increasing and decreasing phase, separately. 
The HPLM accommodates EVI2 trajectories that are associated with both favorable 
conditions and stress conditions in vegetation growth using the following formulas 
(Figure 3): 

  

 
(2)          condition    stress   Vegetation

(1)          condition growth      Favorable
      

2
e1

c

2
12

22

11

a

2

1





















btb

btba

EVI
dt

EVI
e

c

tEVI  

 
where t is time in the day of year (DOY), a is related to the vegetation growth time, b is 
associated with the rate of plant leaf development, c is the amplitude of EVI2 variation, d 
is the vegetation stress factor, and EVI2b is the background value. In order to determine 
whether the plant suffers from stress or not, the time series fit to equations 1 and 2 are 
compared by using an index of agreement  described in Section 6, and the function with 

Figure 3. Schematic illustrating how transition dates are estimated from HPLM-LSPD algorithm 
(Zhang et al., 2003; Zhang 2015). 
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the best fit is used. The HPLM approach has several advantages: (1) it provides a simple, 
bounded, continuous function for modeling vegetation growth and decay processes; (2) 
each parameter can be assigned a biophysical meaning related to vegetation growth or 
senescence; (3) the algorithm is capable of describing either symmetric or asymmetric 
seasonal EVI2 dynamics; (4) it simulates multiple cycles of vegetation growths flexibly; 
and (5) the logistic model has been widely tested based on field measurements, webcam 
data, and remotely sensed data (e.g., Richards, 1959; Ratkowsky, 1983; Birch et al., 1998; 
Zhang et al., 2003; Richardson et al., 2006; Ahl et al., 2006), and it performs better than 
either the Fourier-based or asymmetric Gaussian functions for fitting remote sensing-
based phenology development (Beck et al. 2006).  

7. Phenological transition dates in each growth or senescence phase are identified using the 
rate of change in the curvature of the fitted HPLM models (Figure 3). Specifically, 
transition dates correspond to the day-of-year (DOY) on which the rate of change in 
curvature in the EVI2 data exhibits a local minima or maxima. These dates indicate when 
the annual cycle transitions from one approximately linear stage to another. Formally, at 
any time t, the curvature (K) for the HPLM given above is:  

 

 
(3)                                                

21

2

2

3
2'

''

EVI

EVI

ds

d
K






 

where α is the angle (in radians) of the unit tangent vector at time t along a differential curve, 

s is the unit length of the curve, EVI2′ and EVI2″ are separately the first and second derivatives 

of equation 2. The curvature is small if the rate of change in EVI2 is relatively constant with 

time, and is large when the rate of change varies rapidly. 

The curvature change rate (K’) is the first derivative of the curvature K for the HPLM, which 

is the change in radians per unit length along the curve. During growth or senescence 
periods, when vegetation transitions from a dormant phase to a greenup up phase, or 
vice versa, three extreme points can be identified in the EVI2 curvature change rate (K’). 
During periods of increasing EVI2, the two maximum values correspond to the onset of 
EVI2 increase and the onset of EVI2 maximum, respectively (Figure 3). Transition dates 
indicating the onset of EVI2 decrease and EVI2 minimum during a senescence phase are 
estimated in a similar fashion.  

8. For each cycle of vegetation growth and senescence, four phenological transition dates 
are recorded based on the day of year (DOY) when K’ is at a maximum (during periods of 
EVI2 increase) and at a minimum (during periods of EVI2 decrease) (Figure 3). The 
corresponding phenological transition dates are defined as the onset of EVI2 increase 
(A), the onset of EVI2 maximum (C), the onset of EVI2 decrease (D), and the onset of EVI2 
minimum (F). Day of year corresponding to the mid-point of greenup phase (B) and mid-
point of senescent phase (E) are also identified. Based on these transition dates, the 
length of the vegetation growing season is also calculated (A-F).  In addition, five EVI2 
values for each growing cycle are estimated from the fitted HPLM curves: (1) the EVI2 at 
the onset of greenness increase (A’); (2) the EVI2 at the onset of greenness maximum 
(C’), (3) the sum of the daily EVI2 during the complete cycle, (4) the rate of change in EVI2 
increase, and (5) the rate of change in EVI2 decrease.   
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9. Metrics characterizing VIIRS GLSP quality assurance and confidence in the phenology 
detections are recorded to provide information related to the overall confidence of the 
retrieved phenological metrics. This information is quantified using data quality 
information from the input EVI2 data set and HPLM model fit (Section 6).  

4. Input Data and Preprocessing  

4.1. Input data 

To estimate global phenology, the VIIRS GLSP product algorithm requires 24 months of 
data for each 12-month period: the 12 months of interest, bracketed by six months on either 
side.  Specific input data include 4 main parameters: 

1. The daily VIIRS NBAR product (VNP43I) is used to calculate EVI2.  EVI2 is calculated 
based on the same conceptual framework as the conventional EVI, but takes advantage 
of correlation between the red and blue wavelengths in surface reflectance spectra 
(Huete et al. 2006; Jiang et al. 2008): 

14.2
5.22






REDNIR

REDNIREVI



                                                          (1) 

where ρNIR is reflectance in the near infrared waveband and ρRED is reflectance in the red 
waveband. To reduce data volumes while retaining fine temporal resolution, daily EVI2 
values are aggregated to 3-day EVI2 composites by first selecting the best quality data 
within each 3-day window, and then using the maximum value composite method if more 
than one value remains. Similarly, corresponding NDVI values, along with quality flags 
from NBAR, are also recorded. 

2. A snow and ice flag provided by the VIIRS snow product is also available in VIIRS NBAR 
quality flags. Using this flag, data points associated with snow-covered surfaces are 
removed from the input time series and replaced with snow-free “background EVI2” 
values (Section 4.3).  This is important because the presence of snow introduces a large 
source of temporal variation in EVI2 that is not associated with vegetation phenology. 

3. Land surface temperature (LST) obtained from VIIRS are used to screen periods where 
land surface temperature is too low to support vegetation growth and to determine 
background EVI2 (Section 4.3). 

4. Land cover data is currently acquired from a static MODIS land cover product because a 
NASA VIIRS land cover product is currently not being produced. This dataset is used to 
determine whether the multiple cycles of vegetation growth are potentially possible for 
a specific land cover type. Specifically, forests are prescribed to have one growing cycle 
within a year, while croplands and grasslands can have multiple cycles. This rule helps 
characterize periods of relatively small EVI2 increases and decreases as artifacts or 
actual vegetation growth cycles. Moreover, land cover type is also used to estimate and 
prescribe the use of back-up EVI2 values (Section 5.1). 
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4.2. Smoothing and Gap Filling 

Temporal smoothing of VIIRS EVI2 data is necessary because time series of EVI2 is 
generally noisy (Figure 4). The smoothing algorithm being used for the VIIRS GLSP product 
is based on four key assumptions:  

1. Vegetation growth is a continuous process without sharp increases or decreases;  

2. The time between successive peaks in separate vegetation growth cycles is longer 
than three months in forests and longer than two months for other plant functional 
types;  

3. The magnitude of EVI2 values is lowered by contaminations from clouds, 
atmosphere, and snow cover; and 

4. Local maxima in the EVI2 time series are not always reliable.  

Persistent cloud cover is a major issue that significantly reduces the quality of EVI2 time 
series data. Globally, as much as 27% of the Earth’s land surface is sufficiently obscured by 

clouds to prevent acquisition of good satellite data for consecutive 16 day period, and 16% of 
the surface is obscured for more than two months (Ju and Roy 2008; Zhang et al. 2006). 
While cloud cover is explicitly identified in the VIIRS NBAR data, residual unscreened cloud 
influences are still present in the current iteration of the data.  Therefore, in the VIIRS GLSP, 
cloud-contaminated values in the EVI2 time series are detected by using the first three 
assumptions described above, and are filled using a moving average of two neighboring good 
quality values starting from the point close to the larger EVI2 values. 

 Unusually high EVI2 values can also arise from spuriously low red band values caused 
by incorrect atmospheric correction or a variety of other factors. To address this issue, all 
EVI2 values that are 90% larger than the corresponding NDVI, or EVI2 values that are 110% 

Figure 4. Sketch of temporal EVI2 variation from winter to summer in a boreal forest location. The 
dotted line represents the raw EVI2 acquired from satellite data which contain cloud and atmospheric 
contamination; the solid gray line represents snow cover; the dashed gray line indicates EVI2 during 
the period of snow melt; and the dark solid line is background EVI2; the dark dashed line represents 
the EVI2 during vegetation growth periods (Zhang 2015). 

  
Day of year 
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larger than any EVI2 values within the previous and succeeding one month period, are 
replaced using good quality neighboring values. These thresholds have been identified based 
on comparison of NDVI and EVI2 time series across the globe.    

After any cloud-contaminated values are replaced, Savitzky-Golay filters are applied to 
further reduce outliers in the EVI2 time series. Finally, a local median filter is applied to 
remove any remaining local outliers.   

4.3. Snow-Contamination and Assignment of Background EVI2 Values 

To account for the effect of snow on EVI2 data, the algorithm identifies the minimum 
snow-free EVI2 value (defined as the background EVI2, see Figure 4) for each pixel based on 
a two-year time series. The background EVI2 value represents the minimum EVI2 of the soil 
and vegetation mixture in an annual time series (Zhang 2015; Zhang et al. 2007). Assuming 
that vegetation is dormant during the winter (or with a cold surface with a daytime LST < 
278K), the maximum EVI2 value during a dormant phase reflects the snow-free surface 
background condition before the onset of the growing season. However, reliable EVI2 values 
during winter are not always obtained from any given two-year periods that are also snow 
and cloud free.  Thus, candidate background EVI2 values are determined using: (1) the mean 
of the 50% largest cloud and snow-free winter EVI2 values, where the winter period is 
determined based on LST values less than 278K, and (2) the mean of the 10% smallest cloud-
free EVI2 values during periods where LST>278K occurs during the 2-year period of interest. 
The average of these two values is used as the background value if both cases are available. 
In the areas with widespread evergreen vegetation at low-latitudes or in areas that do not 
have sufficient good quality EVI2 during winter, the latter is selected. Note that the LST is 
used to identify irregular EVI2 values contaminated by snow or partial snow (including snow 
under the canopy) cover, instead of determining an exact winter period by date. 

5. Related Technical Issues and Considerations 

5.1. Back-Up EVI2 Values 

The VIIRS GLSP algorithm often cannot provide reliable phenology detections for areas 
where the EVI2 values are consecutively missing due to cloud cover or other reasons. Indeed, 
cloud cover presents challenges in many parts of the tropics, sub-tropical monsoon climate 
regions, and some temperate and boreal zones.  

To address these data gaps, the VIIRS GLSP approach employs a backup algorithm to fill 
the EVI2 values at pixels with consecutive missing values.  For the VIIRS GLSP product, if the 
EVI2 values are consecutively missing for more than one month during the growing season, 
then EVI2 values with good quality in years directly preceding or following (if available) are 
first used to fill the missing observations in the year of interest.  These cases are identified 
as “"processed, temporal backup algorithm" in the quality control (QC) field.   

If the gap of missing EVI2 data is still larger than one month, after the above processing, 
the algorithm then uses available data from pixels in close proximity with the same land 
cover type.  The final methodology for doing this requires knowledge of land cover and 
region-specific correlation length scales (i.e., to ensure the filling is done using statistically 
similar pixels). To distinguish between data from the main algorithm and gap-filled data, 
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quality assurance flags that explicitly identify values that have been filled using this strategy 
are included with the product. Specifically, this condition is referred to as "processed, spatial 
backup algorithm" in the QC field.   

5.2. Limitations to Land Surface Phenology Retrievals 

The VIIRS GLSP algorithm does not provide values where seasonal variation in EVI2 is 
low (e.g., arid and evergreen ecosystems).  This leads to missing values in the product for 
pixels in almost all regions, but especially in arid and evergreen tropical ecosystems. 
Specifically, barren areas with no detectable phenology are identified as pixels where the 
annual amplitude is less than 0.02 EVI2 units.  Evergreen systems are identified as pixels 
with maximum EVI2 greater than 0.6 and amplitude of variation in EVI2 less than 0.08. In 
these cases, we simply use "No processed, other" in the QC field.   

5.3. Geographic Variability in Growing Season Timing 

The timing of growing seasons varies geographically, especially between the northern 
and southern hemispheres.  Further, vegetation growth can have one or more cycles during 
a 12-month period.  To account for both these properties, the algorithm used for this product 
allows for a maximum of two growth cycles in any given year.   

To implement this feature, the product is provided with two “layers” corresponding to 
the first and second cycle (if present) at each pixel occurring during the period of interest.  
Further, depending on the location and period, a pixel may possess an incomplete cycle 
(truncated at the beginning or end).  The combination of these factors introduces substantial 
complexity to the format in which these data are stored.  Specific scenarios and examples are 
presented in Figure 5, and are discussed in the text that follows. Specifically, to allow for 
these different patterns, the algorithm is designed to accommodate four distinct scenarios:  

1. Case (a) in Figure 5 presents the simplest scenario: a single, complete growth cycle 
centered near the mid-point of the 12-month period. In this case, the phenological 
metrics listed in Table 1 are recorded in the first layer of the product, and the second 
layer is populated entirely with fill values.  

2. Cases (b), (c), and (d) illustrate situations in which two partial cycles are present during 
a 12-month period of interest. In these cases, the phenological parameters are recorded 
in layers 1 and 2, as appropriate, fill values are used for the phenological events that occur 
outside of the 12-month period, and the EVI2 area for both cycles is set equal to the fill 
value.   

3. Case(e) illustrates the situation where two complete growth cycles are present and 
transition dates for each are provided in the two layers provided.  

4. Cases (f), (g), and (h) illustrate examples where there are two incomplete cycles and one 
complete cycle.  In this situation, only phenological metrics in the first two cycles are 
recorded. All parameters in the third cycle are recorded in the next period. 

Note that the preceding or subsequent 12-month product period will capture the rest of 
the cycle for those cases with incomplete cycles (cases b, c, d, f, g, h). 
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6. VIIRS GLSP Quality Assurance  

Quality assurance (QA) information is included as part of the VIIRS GLSP product. To this 
end, information related to the model fit and the proportion of high quality data used to 
estimate vegetation growth models is employed to quantify the relative quality of the LSP 
metrics at each pixel. The goal of this QA information is to characterize goodness of fit based 
on differences between the modeled values and satellite measurements at each pixel.  A 
variety of metrics can be used for this purpose (e.g., root mean squared error (RMSE), the 
coefficient of determination, or residual standard deviation); however, these parameters are 
not comparable across different biomes and climate regimes. For example, because the 
magnitude of EVI2 values is higher over humid regions, model RMSEs tend to be larger in 
forests than that in shrublands, even though the models perform much better in forests. 

         Figure 5. Characteristic vegetation growth cycles within a 12-month period 
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Moreover, the coefficient of determination can be strongly influenced by a few extreme 
samples. To address this, we use an index of model agreement (Willmott 1981; Zhang 2015):  
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where n is the number of observations with good (or better) quality (note: input data with 
lower quality are not used to fit the model), P(i) is the fitted value, O(i) is the observation, and 
Ō is the mean observed value. Thus, the AI value provides a measure of relative error in 
model estimates at each pixel. It is dimensionless and ranges from 0 to 100, where 0 
describes complete disagreement between estimated and observed values, and 100 
indicates that the estimated and observed values are identical. It is also sensitive to 
differences between observed and estimated means (Willmott, 1981), and therefore 
provides a goodness of fit measure that is comparable across biomes.   

Because the quality of the fitted model at each pixel is strongly dependent on the number 
of good quality observations during the vegetation growing season (Zhang et al. 2009), the 
proportion of good quality (Pgq) EVI2 values for a given pixel is also included in the quality 
assurance data for that pixel.  Based on sensitivity analysis, error in vegetation phenology 
detection using logistic models is at a minimum if the temporal resolution of the vegetation 
index is finer than 8 days (Zhang et al. 2009). In other words, vegetation temporal 
trajectories can be realistically reconstructed if there is a good EVI2 observation within each 
8-day period during the growing season. For the VIIRS GLSP we are using 3-day inputs, and 
the Pgq during each growing season at each pixel is calculated as: 

100
T

N
P

gq

gq
                                                             (4) 

where Pgq is the proportion of good quality observations (ranging from 0 to 100), T is the 
total number of 3-day EVI2 during a growing season, and Ngq is the number of three 3-day 
moving windows that contain good quality observations.   

To generate an aggregate QA score based on both the AI and Pgq at each pixel during each 
growth cycle, the proportion of good quality data and the index of agreement, both of which 
scale from 0 to 100, are fused to produce the overall measure of confidence. Specifically, the 
overall quality assurance (QA) of phenological detections in the VIIRS GLSP product is 
defined as:  

 QA=0 (processed, good quality), if Pgq ≥60 and AI≥60 

 QA=1 (processed, other quality), if 20≤Pgq <60 or if AI<60 and Pgq ≥20 

 QA=2 (processed, backup algorithm), if the length of consecutive missing EVI2 >30 days   

 QA=3 (not processed, bad quality), if Pgq<20% 

 QA=4 (not processed, other), if the growing season amplitude in EVI2<0.08 in forests 

and EVI2<0.02 in other ecosystems 

Further, as we mentioned earlier, the four key phenological dates are the most important 

metrics in the product. To fully provide a confidence metric for each phenological date included 
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in the VIIRS GLSP product, local EVI2 quality around each transition date is used to describe the 

confidence in the corresponding phenological detection. Specifically, the local confidence for each 

transition date metric is defined as the proportion of good EVI2 values during the three 3-day 

periods before and after the detected phenological timing (Figure 6). This time period was 

determined based on a previous sensitivity analysis of phenology date detections (Zhang et al. 
2009). Note that a low local confidence does not necessarily indicate that the detected 
phenological timing is incorrect, just that the uncertainty associated with the estimated date 
is high. 

7. Product Implementation and Initial Accuracy Assessment 

This section includes two elements.  First, we present results from the VIIRS GLSP in 
North America in 2013 and 2014.  Second, we discuss the evaluation of VIIRS GLSP. Note that 
the VIIRS reflectance algorithms were still being revised and that the input data were not 

Figure 7.  Spatial pattern of the onset of greenness increase (first cycle) in 2013. 
 

 
 

Figure 6. Determination of local confidence for four phenological transition dates denoted by green dots.  
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stable when these results were generated. We anticipate test results will improve modestly 
when the final updated VIIRS NBAR and LST products are available.   

7.1. VIIRS GLSP algorithm Results in North America 

The VIIRS GLSP algorithm 
was tested using 500m spatial 
resolution using daily VIIRS 
NBAR time series observations 
from July 2012 to June 2015. We 
obtained 14 tiles of these data 
from the VIIRS NBAR VNP43I4 
product developer (collaborator 
Crystal Schaaf, University of 
Massachusetts Boston) because 
the official VIIRS NBAR products 
were not yet available when we 
generated these results. These 
tiles (H08V04, H08V05, H08V06, 
H09V04, H09V05, H09V06, 
H10V04, H10V05, H10V06, 
H11V04, H11V05, H12V04, 
H12V05 and H13V04) cover the 
entire Contiguous United States 
(CONUS), southern Canada, and 
northern Mexico. Land surface 
temperature and land cover 
were acquired from the MODIS 
products (MYD11, MCD12).    

 Figure 7 shows the spatial 
pattern in the day of year 
corresponding to the onset of 
greenness increase in 2013. In 
the eastern regions, greenup 
started in late February in the 
south, and shifted northwards 
gradually. Greenup onset occurs 
10-20 days later than 
surrounding natural vegetation 
in the croplands of the mid-west 
and the Mississippi valley. In 
western regions, the geo-graphic 
patterns in the timing of greenup 
onset are complex and do not 
show an obvious latitudinal 
gradient. Greenup starts during June and July in the southwest, where monsoon precipitation 

Figure 8.  Confidence of VIIRS GLSP detection in 2013. (a) 
confidence in the index of model agreement (AI), (b) 
confidence in the proportion of good quality 
observations(Pgq), (c) local confidence in greenup onset. The 
light gray inside the land area represents confidence “0” or no 
phenology detection while outside the land indicates out of the 
selected VIIRS tiles. Back color in (b) indicates no good VIIRS 
observations for more than consecutive one month (including 
cloud cover and other impacts).  
 

 
 

a

b
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drives vegetation seasonality.  Two cycles of vegetation growth are also evident locally in 
areas such as Texas, where the first growing cycle starts in late January, followed by a second 
cycle in late August. Other phenological transition dates show similar spatial patterns.  

  Figure 8 shows maps of the confidences associated with the VIIRS GLSP detections. The 
agreement index for the HPLM model was very high in much of the central and eastern 
CONUS, and was generally larger than 90%, in regions where forests and croplands are 
dominant (Figure 8a). In the western areas, the agreement index was substantially lower, 
because shrublands and savannas are the major vegetation cover, and vegetation seasonality 
cannot always be detected in these land covers due to a low amplitude in the seasonality of 
EVI2 time series, and in some years, because of drought affecting these land covers.  

 The proportion of good VIIRS observations show spatial patterns that are different from 
those exhibited by the agreement index (Figure 8b). In the eastern areas, cloud 
contamination is much more frequent than in the western region, leading to lower values of 
Pgq. Note that black pixels reflect large proportions of missing VIIRS EVI2, which are likely 
associated with instrument problems or problems with upstream data processing.  

 Finally, local confidence values associated with individual phenological transition dates 
reflect variability in the quality of the VIIRS input data. This is demonstrated in the local 
confidence values assigned to the timing of the EVI2 increase onset (Figure 8c). In both the 
mid-western and northwestern US, frequent cloud cover reduced the detection accuracy of 
the spring greenup onset.   

7.2. Evaluation of VIIRS GLSP 

Robust characterization of error and uncertainty in land surface phenology metrics is a 
critical requirement and goal of the VIIRS GLSP product.  However, validation of land surface 
phenology is very challenging. In-situ measurements of phenology are rare, and where 
available, are often based on citizen scientist observations of individual plants or species 
collected at scales well below the spatial resolution of the VIIRS product. These data are 
therefore difficult to compare with satellite-based measurements of land surface phenology. 
For example, we have previously exploited data sets collected by staff at the Harvard Forest 
and Hubbard Brook LTER (Long Term Ecological Research) sites for the evaluation of MODIS 
Land Cover Dynamics product (Ganguly et al. 2010; Zhang et al. 2006).  However, these data 
are representative of a fairly narrow ecological zone (northeastern hardwood forests) and 
are collected using different methods and metrics that are not designed for comparison with 
satellite-derived measures of land surface phenology. We have also previously quantified 
errors associated with different vegetation index compositing periods and methods (Zhang 
et al., 2009).  For the VIIRS GLSP, we are evaluating product accuracy using two sources of 
assessment data that more directly complement the nature and scale of VIIRS measurements.  
Specifically, we are using data from the so-called “PhenoCams” and data based on retrievals 
of land surface phenology from dense time series of Landsat data (e.g., Melaas et al., 2013).  

PhenoCam observations have become a valuable tool for evaluating and understanding 
satellite-derived land surface phenology because they provide consistent and continuous 
measurements of canopy-scale vegetation canopy conditions (Hufkens et al. 2012; 
Richardson et al. 2009a; Richardson et al. 2007; Sonnentag et al. 2012). The PhenoCam 
network currently includes over 300 cameras that provide over roughly 600 site years of 
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data distributed across North America (http://klima.sr.unh.edu/). Analysis of PhenoCam 
data relatively early in the PhenoCam project, provided proof-of-concept demonstrations  
regarding the utility of the PhenoCam products for assessing land surface phenology results 
(Klosterman et al. 2014). The weakness of PhenoCams for assessment of the VIIRS GLSP is 
that they use primarily visible color bands, which are not equivalent to satellite vegetation 
indices derived from red and near infrared reflectances (although more and more of the 
PhenoCams are now including NIR information as well). Moreover, the mismatch in the 
camera’s oblique view angle with the satellite pixel view angle introduces substantial 
uncertainty in comparisons of PhenoCam time series to satellite VI time series (Elmore et al. 

Figure 9. Comparison between VIIRS GLSP and PhenoCam measurements. (a) PhenoCam sites, (b) VIIRS 
EVI2 and PhenoCam VCI in the Harvard Forest site, (c) scatter plots of phenological timing between VIIRS 
EVI2 detections and PhenoCam measurements. 
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2012; Graham et al. 2010; Hufkens et al. 2012; Keenan et al. 2014a). This is exacerbated by 
the difference in the field-of –view of the two products.   

Despite these limitations, the PhenoCam archive represents one of the best available 
datasets for evaluating land surface phenology. To provide an initial assessment of VIIRS 
GLSP, we compiled PhenoCam data from across the CONUS in 2013 and 2014, which span a 
wide range of ecosystem and climate conditions and therefore provide a useful basis for 
VIIRS GLSP product assessment (Figure 9). To perform this assessment, daily vegetation 
contrast index (VCI) values were calculated using DN values from the red (R), green (G), and 

Figure 10. Comparison of phenological detections from VIIRS NBAR EVI2 (500m) and fused MODIS-
Landsat OLI data (30m) in 2013 in the central US (subset of Landsat scene path 26 and row 31).  (a) Land 
cover types in the comparison area, (b) enlarged local area (black box in a) for timing of greenup onset 
from VIIRS and fused OLI, (c) scatter plots of phenological timing between VIIRS and OLI measurements.   

(a)                                                                                         (b)                                                   

         
                                                            (c)  
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blue (B) color channels [VCI=G/(R+B)] in PhenoCam imagery. Phenological transition dates 
were then identified from the VCI time series using the VIIRS HPLM algorithm. Preliminary 
results comparing the transition dates estimated from the VIIRS EVI2 time series to those 
obtained from the PhenoCam VCI time series indicate that the VIIRS GLSP detections are very 
similar to the observations from PhenoCam, although the differences are somewhat larger in 
autumn than in the spring (Figure 9).  The average absolute difference (AAD) is 7 days and 
the root mean square difference (RMSD) is 9 days for the timing of greeness onset, and about 

 Figure 11. Comparison of phenological detections from VIIRS NBAR EVI2 and Landsat OLI data in 2014 
in the Sierra Nevada Mountains, California. (a) Land cover types, (b) spatial pattern of phenological 
metrics from OLI (30m) and VIIRS (500m), and (c) comparison between VIIRS GLSP and OLI phenology 
in relatively homogeneous areas. 

             
          (a)                                                                                                (b) 

 
                                                                       (c) 
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11 days for the timing of dormancy onset. As expected, the largest differences were 
associated with the timing of senescence onset. 

In addition to PhenoCam, the deep and growing archive of cloud-free Landsat data offers 
another independent source of phenological observations for the assessment of the VIIRS 
GLSP product. The Landsat Thematic Mapper family of sensors offers an atmospherically 
corrected multispectral nadir view to complement the RGB oblique view of the PhenoCams. 
These data are also freely accessible through Web Enabled Landsat Data (WELD) product 
(http://weld.cr.usgs.gov) (Roy et al., 2010). In addition, Landsat 8 Operational Land Imager 
(OLI) data have been available since February 2013. Although the temporal frequency of 
Landsat data is relatively poor for monitoring land surface phenology development, fused 
time series from Landsat and daily MODIS data can provide observations with high temporal 
and spatial resolution(Gao et al. 2006), which can then be used to measure field scale 
phenology and to evaluate the VIIRS GLSP(Gao et al. 2017). To this end, we estimated 
Landsat-scale phenological metrics from daily fused MODIS - Landsat8 OLI (path 26 and row 
31 in the central US) reflectances (30m) in 2013 and 2014, and compared these data to VIIRS 
GLSP detections at 500m (Figure 10). The results indicate that differences in homogeneous 
regions were much smaller than in regions with heterogeneous land cover, and that the 
overall AAD for the onset of greenness increase was less than 5 days.  Furthermore, in ~20% 
of the relatively homogeneous pixels, the AAD was less than 5 days for the all transition dates 

except for maximum EVI onset, and the RMSD was less than 8 days for all six phenological timing 

metrics (Figure 10). 

Another source of evaluation data that does not require fusing Landsat data with MODIS is 

to exploit the denser time series of available in so-called sidelap zones between adjacent Landsat 

scenes. We used this approach to evaluate the VIIRS GLSP semiarid environments, where land 
surface phenology is very complex because the phenological timing of grasses is not 
synchronous with overstory trees. In Figure 11, we show results for the Landsat 8 OLI 

imagery in the sidelap zone between path 43/row 33 and path 44/row 33 (the Sierra Nevada 

Mountains, California) in 2013 and 2014. Results from this comparison indicate that the six VIIRS 

GLSP phenological dates (500m) were all comparable to those estimated from Landsat OLI, with 

most ADD values less than 10 days and RMSD less than 14 days in 20% of the most homogeneous 

pixels (Figure 11). As for the comparison with PhenoCam results, differences in the vegetation 

greenup phase were much smaller than those in the senescence phase.  

In a final comparison, the VIIRS GLSP was compared with the MODIS Land Cover Dynamics 

Product (MCD12Q2) to provide a baseline understanding of the continuity between these two 

long-term GLSP products. MCD12Q2 results are estimated using the MODIS NBAR product 

(MCD43A4) which is produced from a combination of Terra MODIS and Aqua MODIS. Hence, 

MODIS NBAR time series have more cloud free observations than VIIRS NBAR time series. With 

this in mind, we calculated absolute difference of phenological dates between VIIRS GLSP and 

MODIS GLSP in New England tiles (H12V04) after applying a 3 by 3 smoothing window to both 

data sets. The smoothing is used to reduce some of the uncertainties brought about  by the effective 

spatial resolution difference as the actual size of  a 500m gridded VIIRS pixel represents a 
median effective resolution of 565m by 595m, while a  500m gridded MODIS pixel represent 
a median effective resolution of 833m by 618m (Campagnolo et al. 2016). The results indicate 

that the differences between these two products were less than 5 days and 10 days in more than 

http://weld.cr.usgs.gov/
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55% and 80% of pixels, respectively (Figure 12). Areas with differences larger than 20 days were 

generally associated with missing observations in VIIRS time series.  

 

8. Land Surface Phenology Specification 
 

VIIRS GLSP product is a level 4 product and follows the structure and file format used in high 

level of global VIIRS data. The data are saved in HDF5 (Hierarchical Data Format - Earth 

Observing System) file format in a Sinusoidal map projection. Since the VIIRS GLSP is detected 

Figure 12. Absolute timing differences for phenological metrics from VIIRS and MODIS over 

northeastern CONUS in 2013. (a) Spatial pattern and (b) proportion of pixels in six phenological 

metrics.  

                                                                       (a) 

 
                                                       (b) 
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for vegetated land surface, only 286 tiles are produced because other tiles are either water or have 

no vegetated pixels (Figure 13). Each tile covers 10-degree from 60°S to 80°N.    

 

8.1. Science Data Records 

The VIIRS Land Surface Phenology product includes eleven Science Data Sets (SDS) 
for each pixel. The longnames and formats of these SDSs are:   
 
 DataField Name     Format 
 ------------------------------------------------------------------------------------------ 
 DataField_1 Onset_Greenness_Increase   UINT16  
 DataField_2 Onset_Greenness_Maximum     UINT16  
 DataField_3 Onset_Greenness_Decrease                                UINT16   
 DataField_4 Onset_Greenness_Minimum          UINT16  
 DataField_5 Date_Mid_Greenup_Phase                                  UINT16 
                 DataField_6 Date_Mid_Senescence_Phase          UINT16 
 DataField_7 Growing_Season_Length   UINT16 
 DataField_8 EVI2_Onset_Greenness_Increase  UINT16 
 DataField_9 EVI2_Onset_Greenness_Maximum  UINT16  
 DataField_10 EVI2_Growing_Season_Area  UINT16 
 DataField_11 Rate_Greenness_Increase   UINT16 
 DataField_12 Rate_Greenness_Decrease   UINT16 
 DataField_13 Greenness_Agreement_Growing_Season  UINT8 

Figure 13. VIIRS Sinusoidal “10-degree” tile system. GLSP distributes in 286 tiles with vegetated 

pixels located between 60°S to 80°N.  
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 DataField_14 PGQ_Growing_Season    UINT8 
 DataField_15 PGQ_Onset_Greenness_Increase   UINT8 
 DataField_16 PGQ_Onset_Greenness_Maximum   UINT8 
 DataField_17 PGQ_Onset_Greenness_Decrease   UINT8  
 DataField_18 PGQ_Onset_Greenness_Minimum   UINT8 
 DataField_19 GLSP_QC    UINT8 
 
Each DataField (except DataField_13) includes two 16-bit (UINT16) values, one for each of 
two possible growth cycles in the 12-month period included. Missing data due to clouds or 
absence of detectable phenology will be given a value of 32767.  DataField_13 includes six 
8-bit (UINT8) values and fill value is 255. 

8.2. Product Specification 

The product is distributed in the standard land Hierarchical Data Format (HDF5), and 
includes the following data layers, defining for each 500m pixel: 
 
Onset_Greenness_Increase:      UINT16        
      Description:   Days starting from January 1, 2000 
  Data conversions: 
                  DOY=file data - (given year-2000)*366 
    Cycle: Word 1 is first mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Units: Day 
    Valid Range: 1-32766 
 
Onset_Greenness_Maximum:      UINT16        
      Description:   Days starting from January 1, 2000 
  Data conversions: 
                  DOY=file data - (given year-2000)*366 
    Cycle: Word 1 is first mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Units: Day 
     Valid Range: 1-32766 
 
Onset_Greenness_Decrease:      UINT16        
      Description:   Days starting from January 1, 2000 
  Data conversions: 
                  DOY=file data - (given year-2000)*366 
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
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     Fill_Value:     32767 
     Units: Day 
     Valid Range: 1-32766 
 
Onset_Greenness_Minimum:      UINT16        
      Description:   Days starting from January 1, 2000 
  Data conversions: 
                  DOY=file data - (given year-2000)*366 
    Cycle: Word 1 is first Mode of the year and word 2 

is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
Units: Day 
Valid Range: 1-32766 
 
Date_Mid_Greenup_Phase:      UINT16        
      Description:   Days starting from January 1, 2000 
  Data conversions: 
                  DOY=file data - (given year-2000)*366 
    Cycle: Word 1 is first mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
    Units: Day 
    Valid Range: 1-32766 
 
Date_Mid_Greenup_Phase:      UINT16        
      Description:   Days starting from January 1, 2000 
  Data conversions: 
                  DOY=file data - (given year-2000)*366 
    Cycle: Word 1 is first mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Units: Day 
     Valid Range: 1-32766 
 
Growing_Season_Length:      UINT16        
      Description:   Number of days in a growing cycle  
 Data conversions: 
                  Day=file data  
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Units: Number of days 



  VIIRS GLSP ATBD 

29 
 

     Valid Range: 1-366 
 
EVI2_Onset_Greenness_Increase:      UINT16        
     Description: EVI2 value at onset of greenness increase during a growth cycle  
  Data conversions: 
                  EVI2=file data*0.0001 
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Valid Range:  1-10000 
 
EVI2_Onset_Greenness_Maximum:      UINT16        
     Description: EVI2 value at onset of greenness maximum during a growth cycle  
  Data conversions: 
                  EVI2=file data*0.0001 
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Valid Range:  1-10000 
 
EVI2_Growing_Season_Area:      UINT16        
     Description: EVI2 area under curve in a growing cycle  
  Data conversions: 
                  EVI2=file data*0. 01 
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Valid Range: 1-32766 
 
Rate_Greenness_Increase:      UINT16        

Description: Average rate of EVI2 increase during a greenup phase 
 Data conversions: 
                  EVI2/day=file data*0.0001 
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Units: EVI2 per day 
     Valid Range: 1-32766 
 
Rate_Greenness_Decrease:      UINT16        

Description: Average rate of VI decrease during a senescent phase 
 Data conversions: 
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                  EVI2/day=file data*0.0001 
    Cycle: Word 1 is first Mode of the year and word 2 
  is second mode of the year (other possible  
                       modes are not reported) 
     Fill_Value:     32767 
     Units: EVI2 per day 
     Valid Range: 1-32766 
 
Greenness_Agreement_Growing_Season:      UINT8        

Description: An index of model agreement between modeled EVI2 values and 
satellite measurements (good quality) during a growing season (0-100) 

Cycle: Word 1 is first Mode of the year and word 2 is second mode of the year (other 
possible modes are not reported) 

             Fill_Value:    255 
            Units: Dimensionless 
            Valid Range: 1-100 
 
PGQ_Growing_Season:      UINT8        

Description: Proportion of good quality VIIRS observations during a growing season 
(0-100) 

Cycle: Word 1 is first Mode of the year and word 2 is second mode of the year (other 
possible modes are not reported) 

             Fill_Value:    255 
             Units: Dimensionless 
           Valid Range: 1-100 
 
PGQ_Onset_Greenness_Increase:      UINT8        

Description: Proportion of good quality VIIRS observations around the onset of 
greenness increase (0-100) 

Cycle: Word 1 is first Mode of the year and word 2 is second mode of the year (other 
possible modes are not reported) 

             Fill_Value:    255 
           Units: Dimensionless 
           Valid Range: 1-100 
 
PGQ_Onset_Greenness_Maximum:      UINT8        

Description: Proportion of good quality VIIRS observations around the onset of 
greenness maximum (0-100) 

Cycle: Word 1 is first Mode of the year and word 2 is second mode of the year (other 
possible modes are not reported) 

             Fill_Value:    255 
             Units: Dimensionless 
             Valid Range: 1-100 
 
PGQ_Onset_Greenness_Decrease:      UINT8        
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Description: Proportion of good quality VIIRS observations around the onset of 
greenness decrease (0-100) 

Cycle: Word 1 is first Mode of the year and word 2 is second mode of the year (other 
possible modes are not reported) 

             Fill_Value:    255 
           Units: Dimensionless 
           Valid Range: 1-100 
 
PGQ_Onset_Greenness_Minimum:      UINT8        

Description: Proportion of good quality VIIRS observations around the onset of 
greenness minimum (0-100) 

Cycle: Word 1 is first Mode of the year and word 2 is second mode of the year (other 
possible modes are not reported) 

             Fill_Value:    255 
            Units: Dimensionless 
            Valid Range: 1-100 
 
GLSP_QC:      UINT16        

Description: Quality flags for vegetation phenology 
                  Note: First Word:  
                        the first three (0-2) bits are Mandatory QA  
                           0=processed, good quality 
                           1=processed, other quality 
                           2=processed, backup algorithm 

  3=not processed, bad quality 
                           4=not processed, other 
                         the next two (3-4) bits are TBD   
                         the 5-7 bits are Land Water mask  
                (as passed down from NBAR 
                            0 = Shallow ocean                        
                            1 = Land (Nothing else but land)           
                            2 = Ocean coastlines and lake shorelines   
                            3 = Shallow inland water                   
                            4 = Ephemeral water                        
                            5 = Deep inland water                      
                            6 = Moderate or continental ocean         
                            7 = Deep ocean                             
     Fill_Value:     255 
    Units: Dimensionless 
    Valid Range: 1-100 
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