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 Using data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) on NASA's Terra spacecraft, NASA/JPL recently released the most detailed global 

emissivity map of the Earth termed the ASTER Global Emissivity Database (ASTER GEDv3), 

available at https://lpdaac.usgs.gov/products/community_products_table. ASTER GEDv3 was 

created by processing millions of cloud free ASTER data from 2000-2008 and calculating an 
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average emissivity of the surface at ~100 m spatial resolution at the five ASTER TIR 

wavelengths. Validation over a global set of sites showed a close match in spectral shape with 

lab measured spectra, and average band error of ~1%. 

 Since the ASTER-GEDv3 emissivities are static (mean from 2000-2008), an emissivity 

adjustment was necessary to account for land surface changes over heterogeneous land cover 

types that are subject to annual and inter-annual variability; for example due to snow and ice 

melt, agricultural practices, and droughts. The emissivity over desert regions will remain 

invariant over time in the absence of soil moisture. To account for these changes, a monthly 

mean ASTER GEDv4 emissivity product  at 0.05 resolution has been produced from 2000-2015 

by using snow cover data from the standard monthly MODIS/Terra snow cover monthly global 

0.05 deg product (MOD10CM), and vegetation information from the MODIS monthly gridded 

NDVI product (MOD13C2). The methodology for producing the monthly mean product 

including uncertainty is described below 

 

 

 

 The emissivity of vegetation and snow is high and constant (~0.98-1.0) across the TIR 

range from 8-12 µm, and as a result vegetation or snow cover systematically reduces the amount 

of spectral variation in emissivity for a given surface. Valor and Caselles, (1996) initially 

proposed a theoretical relationship between emissivity and NDVI based on observations made by 

van de Griend and Owe (1993), and various forms of this method have been adapted to routinely 

estimate emissivity for LST estimation from sensors including Advanced Very High Resolution 

Radiometer (AVHRR) (Sobrino and Raissouni 2000), ASTER (Jiménez-Muñoz et al. 2006), 

Landsat (Sobrino et al. 2004) and (Advanced) Along Track Scanning Radiometer (A)ATSR 

(Kogler et al. 2012). The emissivity-NDVI relationship is based on a theoretical approach in 

which the emissivity,   , of a mixed pixel (NDVI values between ~0.2 and 0.5) can be described 

as a linear relationship between the bare soil and vegetation fraction (Sobrino et al. 1990): 

                      (1) 

Where      and      are the emissivity of the vegetation and bare soil respectively at some 

wavelength,  , and    is the vegetation cover fraction (Carlson and Ripley 1997): 

2. Methodology 



 
     

            

               
 

(2) 

Where         and         are NDVI values for the full vegetation and bare soil 

components respectively on the scene. Valor and Caselles, 1996 concluded that emissivity can 

be calculated with an absolute error of 1-2 % for mixed vegetation pixels, decreasing to 0.7-1 % 

for fully vegetated pixels, with a mean error being of the order of 1 %.  

 Since ASTER GED includes the mean emissivity and NDVI (calculated from visible 

ASTER data bands), the adjustment approach first involves estimating the bare soil component 

for the ASTER pixel, and adjusting this value based on the vegetation information at the time of 

interest from an external data source, e.g. MODIS. The bare soil fraction for each band is 

estimated by apportioning the emissivity according to the fractional vegetation cover estimated 

from the mean ASTER NDVI product as follows: 

 
            

                    

          
 

(3) 

 

Where        is the ASTER-GEDv3 emissivity,             is the ASTER bare soil emissivity 

component,      is an average vegetation emissivity spectrum from the ASTER spectral library 

(Baldridge et al. 2009), and          is the ASTER vegetation cover fraction computed using (2). 

 Next, the vegetation adjusted ASTER emissivity is estimated based on the bare pixel 

component from (3) and the vegetation  cover fraction derived from MODIS for the time period 

of interest (e.g. monthly mean); 

       
                                         (4) 

 

 Where       
  is the adjusted ASTER emissivity for vegetation, and          is the 

vegetation cover fraction estimated from MODIS data using (2). The final step involves an 

additional adjustment for percent snow cover using the same linear adjustment procedure as in 

the previous step: 

       
                                    

  (5) 

Where       
   is the vegetation and snow adjusted ASTER-GEDv4 emissivity, and          is the 

MODIS snow cover fraction. 



 Data from the global monthly MODIS snow cover 0.05 product (MOD10CM), and the 

MODIS monthly gridded NDVI product (MOD13C2) were used to estimate          and 

         in (4) and (5).  

 An example of the adjusted ASTER GEDv4 monthly product for the year 2004 with 

corresponding uncertainty is shown in Figure 1 for March (top), June (middle) and September 

(bottom) 2004 for band 12 (9.1 µm). Uncertainties are given in absolute percent (%). Note the 

largest uncertainties are over regions that had the largest seasonal changes in phenology (e.g. 

Sahel), and over semi-arid regions (Australian outback). Uncertainties are lowest over desert 

landscapes and over fully covered snow regions (Greenland). 

 Figure 2 shows an additional example focused on two regions, highlighting changes due 

to snow cover over the Rocky Mountains in Colorado, USA, and due to vegetation phenology 

over the Sahel region in Senegal, North Africa. Over the Sahel region (Figure 2a), emissivities 

over the grasslands are lower during the dry period in March when grasses are in a senesced and 

dry state, but an increase in emissivity can clearly be seen during June and September due to 

summertime rainfall that results in greener and denser vegetation cover that is more evident 

along the fringes of desert and grassland regions in the north of the images. Corresponding 

emissivity uncertainty in % (Figure 2b) are highest over pixels that had the largest vegetation 

adjustment based on (4). Higher emissivities (bright red) during January over the Rockies 

(Figure 2c) are a result of increased wintertime snow cover at high elevations, while a decrease 

in emissivity can be seen in subsequent months of March and June due to snowmelt and 

subsequent exposure to background vegetation (orange) and rocks (blue) during the warmer melt 

periods. Corresponding emissivity uncertainties (Figure 2d) are highest over pixels that had the 

largest snow adjustment based on (5).  

 

 

 

 A Temperature Emissivity Uncertainty Simulator (TEUSim) was developed at JPL for 

simulating LST&E uncertainties from various sources of error for the TES algorithm using in the 

creation of ASTER GED in a rigorous manner for any appropriate TIR sensor (Hulley et al. 

2012). These include random errors (noise), systematic errors (calibration), and spatio-

temporally correlated errors (atmospheric). The MODTRAN 5.2 radiative transfer model was 

3. Uncertainty Analysis 



used for the simulations with a global set of radiosonde profiles and surface emissivity spectra 

representing a broad range of atmospheric conditions and a wide variety of surface types. This 

approach allows the retrieval algorithm to be easily evaluated under realistic but challenging 

combinations of surface/atmospheric conditions. The TEUSim is designed to separately quantify 

error contributions from the following potential sources: 

1. Noise  

2. Model  

3. Atmospheric correction  

4. Undetected cloud  

5. Calibration 

 A set of global radiosonde profiles from the SeeBor database were adjusted to simulate 

real data by applying estimated uncertainties from the MODIS MOD07 atmospheric product 

(Seemann et al. 2006; Seemann et al. 2003). Using a dataset of 80 clear sky cases over the SGP 

ARM site (Tobin et al. 2006), MOD07 air temperature RMS errors showed a linearly decreasing 

trend from 4 K at the surface to 2 K at 700 mb, and a constant 2 K above 700 mb (Seemann et al. 

2006). These reported values were used to perturb the air temperature profiles at each associated 

level using a random number generator with a mean centered on the RMS error. The uncertainty 

of the water vapor retrievals were estimated to be between 10–20% (Seemann et al. 2006). 

Accordingly, the relative humidity profiles were adjusted by scaling factors ranging from 0.8 to 

1.2 in MODTRAN using a uniformly distributed random number generator.  

 The total emissivity uncertainty for band i in the TES algorithm based on model, 

atmospheric and measurement noise contributions can be written as: 

                             
   

 (6) 

where       is the model error due to assumptions made in the TES calibration curve,       is the 

atmospheric error, and       is the error associated with measurement noise. These errors are 

assumed to be independent. 

 The second uncertainty source in ASTER GEDv4 is due to the monthly adjustment based 

on MODIS vegetation and snow cover information. This uncertainty was estimated as the 

magnitude of the difference in emissivity from the adjustment, multiplied by the uncertainty 

based on the theoretical emissivity/NDVI relationship (Valor and Caselles 1996).  



    
     

          (7) 

Where   
  is the adjusted emissivity from (4),    is the original ASTER GEDv3 retrieved 

emissivity, and     is the uncertainty in the emissivity/NDVI relationship for band i. Valor and 

Caselles, 1996 concluded that emissivity can be calculated with an absolute error of 1-2 % for 

mixed vegetation pixels, decreasing to 0.5-1 % for fully vegetated pixels, with a mean error 

being of the order of 1 %. In ASTER GEDv4 we assumed a maximum uncertainty of 2% for 

mixed pixels defined as having an NDVI between 0.2 and 0.5, and a minimum uncertainty of 

0.5% for fully vegetated pixels having an NDVI greater than 0.8. Uncertainties were then 

linearly interpolated between these NDVI assigned values to estimate    . Pixels that had large 

changes in emissivity due to the adjustment had correspondingly larger uncertainties, particularly 

over mixed pixels. Uncertainties due to adjustment,    
 , were set to zero over arid pixels 

(NDVI<0.2), so over most desert landscapes the total uncertainty was only due to algorithm 

uncertainty given by (6).  

 The total uncertainty per band and per pixel is then calculated as a combination of (6) and 

(7) as follows: 

 
            

          
  (7) 

Any studies using ASTER GEDv4 should include this uncertainty in their calculations and 

analysis. Future work will involve an additional adjustment over desert regions due to changes in 

soil moisture, which reduces the spectral contrast in emissivity and can result in large variations 

in the quartz bands (ASTER bands 10-12) (Hulley et al. 2010; Mira et al. 2007). Soil moisture 

information can be derived from microwave remote sensing measurements of top layer soil 

moisture, e.g. SMAP, SMOS, or AMSR-E.  

 

 



 

 

Table 1. The Scientific Data Sets (SDSs) in the ASTER GEDv4 product (Netcdf4) 

SDS Long Name Data type Units Valid 

Range 

Fill 

Value 

Scale 

Factor 

Offset 

emis10 Band 10 Emissivity uint8 n/a 1-255 0 0.002 0.49 

emis11 Band 11 Emissivity uint8 n/a 1-255 0 0.002 0.49 

emis12 Band 12 Emissivity uint8 n/a 1-255 0 0.002 0.49 

emis13 Band 13 Emissivity uint8 n/a 1-255 0 0.002 0.49 

emis14 Band 14 Emissivity uint8 n/a 1-255 0 0.002 0.49 

emis10_err Band 10 Emissivity 

Uncertainty 

uint8 n/a 1-255 0 0.002 n/a 

emis11_err Band 11 Emissivity 

Uncertainty 

uint8 n/a 1-255 0 0.002 n/a 

emis12_err Band 12 Emissivity 

Uncertainty 

uint8 n/a 1-255 0 0.002 n/a 

emis13_err Band 13 Emissivity 

Uncertainty 

uint8 n/a 1-255 0 0.002 n/a 

emis14_err Band 14 Emissivity 

Uncertainty 

uint8 n/a 1-255 0 0.002 n/a 

NDVI MODIS 

(MOD13C2) 

Normalized 

Difference 

Vegetation Index 

uint16 n/a 0-65535 0 0.001 n/a 

QFlag Quality Flag: 

0 = Land 

1 = Filled value 

2 = Ocean 

uint8 n/a 0-255 n/a n/a n/a 

 

  

4. Product Format and Description 



  

  

  

 

Figure 1. ASTER GEDv4 global emissivity with corresponding uncertainty for March (top), June 

(middle) and September (bottom) 2004 for band 12 (9.1 µm). Uncertainties are given in absolute 

percent (%). Note the largest uncertainties are over regions that had the largest seasonal changes 

in phenology (e.g. Sahel), and over semi-arid regions (Australian outback). Uncertainties are 

lowest over desert landscapes and over fully covered snow regions (Greenland). 

  



 

 

Figure 2. (a) ASTER GEDv4 monthly emissivity showing increasing emissivity due to 

vegetation green-up from summer rainfall over the Sahel, Senegal from Mar- Sep 2004, and (b) 

corresponding emissivity uncertainty estimate (%). (c) ASTER GEDv4 monthly emissivity 

showing decreasing emissivity with snowmelt from Jan-June 2004 over the Rocky Mountains in 

Colorado, and (d) corresponding emissivity uncertainty estimate (%). 
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