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Outline

* Visual Analysis and Interpretation
Techniques
* Digital Image Processing
— Data Input
— Pre-processing
— Analysis
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Visual Analysis and
Interpretation

* Traditionally applied to aerial
photography interpretation

 May be extended to satellite Imagery
— as primary interpretation method
— as “reality check” for computer analysis
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Grand Forks, ND: April 1997
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Elements of Image Interpretation - Shape




ements of Image Interpretation - Shadow
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Elements of Image Interpretation —
Tone and Color




Elements of Image Interpretation - Texture




Elements of Image Interpretation - Pattern




Elements of Image Interpretation -
Site, Situation and Association




Visual Interpretation

Pop Quiz
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Data Analysis and
Interpretation — Typical steps

* Problem Definition

« Data Collection

- Data Preprocessing/Reduction
* Analysis/Data Integration

* Interpretation

* Discovery/Decision Support
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Problem Definition

* Clearly define what needs to be done
« Conceptualize your project

* Define tasks associated with project
* Set intermediate goals
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Data Collection

» Clearly define needs of project
— Scale (IKONOS, ASTER, MODIS, etc.)
— Characteristics of data (band definitions)
— Availability (over study area, etc.)
— Cost
— Time
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Scale
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Data pre-processing

« Data input
— Media type (8mm tape, CD, DVD, DLT,
ftp)
— Data type: 8-bit, Integer (signed or
unsigned), 32-bit

— File format (generic binary, GeoTiff,
HDF, HDF-EOS)
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Media type

« 8mm tape: 5.0 Gb

« CD-ROM: 650-700 Mb

« DVD-ROM: 4.0 Gb

 DLT tape: 40 Gb

 ftp: limited by connection speed
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Data type

« 8-bit: 0-255
* Integer: 65536 values
— Signed: +/- 32768
— Unsigned: 0-65535
« 32-bit: 4294967296 values
— Primarily used for bit-parsing in QA data
—e.g. 10011000000011011001100000001101
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Bit parsing
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File Format

* Generic binary: simple array with
accompanying header file

— Almost universally accepted by
software packages

* GeoTiff: Projection information
contained in file
— Widely accepted
— Subtle differences in software packages
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File format - HDF

 What is HDF?

— Hierarchical Data Format
— “multi-object” file format

— Created at the Naitonal Center for
Supercomputing Applications (NCSA)

« Why HDF?
— Supports common types of data

— Efficient storage of large data sets

— Many types of data can be included within a
single HDF file (data, metadata, palettes, etc.)
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File format HDF-EOS

 HDF-EOS

— Specific to NASA Earth Observing
System

— Specific flags/data fields
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Data Pre-processing

Atmospheric correction (usually
already performed)

Convert data to reflectance values

Georeference data (remote sensing
and ancillary data sets) to common
reference system

Data reduction
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Atmospheric Correction

* Performed to convert from radiance
to reflectance

 Removes the effects of the
atmosphere
— Water vapor
— Ozone
— Atmospheric gases
— Aerosols
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Georeferencing

* Reprojecting
 Resampling
— Converts data into known reference
units
— Ability to work with ancillary data sets

— Ability to make measurements
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Map Projections

 Why are they necessary?

— Globes give the most realistic depiction
of Earth, but...
 Cannot see the entire Earth at once
* Inconvenient
* For practical use, size is a problem

« Computations on a sphere are much more
complex than those on a planar surface

« Construction of globes is difficult

2 USGS




Map Projections
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Flattening




Types of “developable” surfaces
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Data Reduction

* Mosaicking
* Resizing (spectrally, spatially)
* Masking
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Data Analysis and Interpretation

* Analysis — “the separating or

breaking up of any whole into its
parts”

* Interpretation — “the explanation of
the meaning or significance of any
part with respect to the whole”
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Data Analysis

* Driven by needs of study and limited
only by the skills and creativity of
researcher

* Projects will give us experience, but
as an introduction...
— Classification
— Band ratios
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Thematic Information Extraction:
Image Classification

B Aspen/PinedFir
|| Juniper

B Maple

] Mountain Mahogany
Big Sage:
Bitterbrush

Low Sagebrush
Mountain Shrub
Mountain Big Sage
Mountain Low Sage
Salt Desert Scrub
Annual Grass/Forb
Dry Meadow
Perennial Grass
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Classification

* Supervised vs. Unsupervised
* Clustering Algorithms

» Classification Algorithms
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Supervised Classification

* The process is guided by the user
* Involves collecting training site data

* Applies algorithm to training sites
and finds other similar regions

 Knowledge of field and spectral
characteristics are required prior to
classification
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Training Site

* Physical location on the surface of the
earth representing a specific class of
interest (land cover, soil, etc.)

* Multiple training sites for each class are
necessary to capture class variability

« Goal is to tie spectral response as
recorded by the satellite to ground target
characteristics

2 USGS




Classification Algorithms

* Density Slice (single band)
* Parallelepiped

 Minimum distance to mean
 Maximum likelihood

 Others...
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Density Slice




Parallelepiped Classification

A three-dimensional figure all of whose face
angles are right angles, so all its faces are
rectangles and all its angles are right
angles.

A parallelepiped classification

e = pixels in class 1
+ = pixels in class 2
+ = pixelsin class 3
» = unclassified pixels

Wss = mean of Band A,
class 2

gy = mean of Band B,
class 2

i
is formed by defining the range | S PR
| , o | % fclass 3
of spectral values from each o | S A
H = i T 1T alg s *
available band of the EM ST pgedspe Tt |
spectrum that define a surface 3= NV
feature. This forms an n- SR R B O B e
dimensional “cube” which RS
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Parallelepiped Classification (cont.)

* Bounds (range of acceptable values in each band) are
determined from training sets identified on the image with
supporting field data.

* Training sets that define the spectral properties of a
surface feature can be used to determine the standard
deviation of the spectral information for that feature. This
standard deviation can be used to determine boundaries.

* The algorithm tests a pixel to see if its spectral values fall
within the n-dimensional bounds for each class. Each
pixel is assigned to the first class that it fits.

* This procedure requires little computational rigor and is
therefore very fast.
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Parallelepiped (box) classification
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Minimum Distance to Means

- Similar to Parallelepiped classifier, but instead of bounding
areas, the user supplies spectral class means in n-
dimensional space and the algorithm calculates the
distance between a candidate pixel and each class.

 The candidate pixel is assigned to the class with the
smallest spectral Euclidian distance (minimum distance) to
the candidate pixel.

 The distance is calculated using either an n-dimensional
Pythagorean theorem, or a “Round-the-Block” measure
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Minimum distance to means classification
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Maximum Likelihood

» Uses spectral class probabilities to determine class ownership of
a particular pixel. Uses mean and variance and co-variance
estimates for each spectral class.

« The probability is calculated for each class.
« The pixel is assigned to the class with the largest probability

« Therefore, if MDM uses D_, as the measure for association,
Maximum Likelihood uses P_, which is the probability of pixel ‘b’
belonging to class ‘a’

« Assumes that the statistics for each spectral class have a
Gaussian (normal) distribution.

« Spectral classes with bi- or tri-modal distributions in any of the n
bands imply that more than one ground class is represented in the
training data.
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Maximum likelihood classification
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Unsupervised classification

 The unsupervised classification process generates “natural”
clusters of spectral data in multi-dimensional space.

 The user has little input and “allows” the computer to
generate spectral means, variances, and co-variances from
the available imagery.

« Spectral clusters are assigned to ground based
informational classes using a posteriori information.

« Spectral clusters will tend to better represent the range of
variation present in the image as contrasted with the
supervised approach.

« Spectral clusters may not be an exact match to informational
classes that the user desires.
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Unsupervised classification (cont.)

« Unsupervised classification is usually a “two-pass”
process of:

1. Generating Spectral Clusters

2. Minimum Distance to Means classifier (or other as
desired)

 The first pass (cluster generation), can be a single stage
operation of identifying spectral clusters from a sample of
data, or it can be an iterative operation that generates
clusters, and re-evaluates cluster assignments during
repetitive steps.
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Isodata clustering

 ISODATA - Iterative self-organizing data
analysis technique

« The ISODATA clustering method uses Euclidian distance in n-
dimensional feature space to iteratively generate spectral clusters.

 This is an unsupervised classification approach that attempts to
minimize spatial bias by utilizing feature space and not “image
space” to generate spectral clusters.

» Initial spectral clusters are allocated (seeded) within n-
dimensional feature space according to the standard deviation
distance from the central mean.
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ISODATA clustering

To perform ISODATA clustering, the user specifies:

* N - the maximum number of clusters to be considered. Since each
cluster is the basis for a class, this number becomes the
maximum number of classes to be formed. The ISODATA
process begins by determining N arbitrary cluster means. Some
clusters with too few pixels can be eliminated, leaving less than
N clusters.

T - a convergence threshold, which is the maximum percentage of
pixels whose class values are allowed to be unchanged
between iterations.

* M - the maximum number of iterations to be performed.

2 USGS




Initial ISODATA Clusters

The initial cluster means are evenly distributed
between (mA-sA, mB-sB) and (mA+sA, mB+sB).
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ISODATA First Pass
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Pixels are assigned to each initial spectral clusters based on the minimum
distance. As pixels are assigned to clusters, the cluster mean is re-
calculated to include the influence of that pixel. As means are
recalculated, the cluster position moves in feature space.
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ISODATA Second Pass

Band B
data file values

Band A
data file values

For the second iteration, the means of all clusters are recalculated, causing
them to shift in feature space. The entire process is repeated—each
candidate pixel is compared to the new cluster means and assigned to the
closest cluster mean.
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ISODATA

Post-clustering Assignment

*Clusters are assigned to an information class based on available
ancillary information (i.e., field reference data, maps, aerial photos,
analyst experience)

If clusters are confused between two or more information classes
it is assigned to a “mixed” class

*Clusters are often split or merged

2 USGS




ISODATA pros and cons

* Pros

— Not geographically biased to any particular
part of the image

— Successful at finding inherent spectral
clusters

« Cons
— Need to know a priori number of classes
— May be time consuming

2 USGS




Band Ratios

Enhances spectral differences between bands

Usually, simply dividing one spectral band by
another produces relative intensities

Can create complex ratios (e.g., vegetation
indices) by dividing mathematical equations or by
multiple ratios
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Emissivity Spectra of Some Rock
Forming Minerals
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Image Processing:
Spectral Indices

Spectral indices are designed
to convert spectral reflectance
into biophysical information
that can be interpreted directly
by a user.
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Normalized Difference Vegetation Index
(NDVI)
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The feature space between Red and NIR reflectance
show not only the effect of vegetation on spectral
response but also the effect of soil characteristics.

NIR Reflectance

22 USGS Red Reflectance
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Soil color, moisture, texture, and organic matter affect
the relationship between NIR / Red reflectance in a
linear fashion which can be described by a least-
squares regression.

Within any given landscape, low and high points of this
relationship may be composed of areas of deep
shadow (low) and areas of snow or rock outcrop (high)
as well as areas of different soil color and moisture.
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varying amounts of vegetation cover which absorbs
Red light and reflect NIR.




Soil Adjusted Vegetation Index

Huete (1988) suggested a vegetation index designed to
minimize the effect of the soil background. He called this
index the soil-adjusted vegetation index (SAVI).

SAVI= (NIR-red)
(NIR+red+L) * (1+L)

Huete showed that depending on vegetation cover, the
NDVI for different cover conditions did not converge at the
same location. Huete established an L-factor which
adjusted the NDVI so that different vegetation densities
would intersect the soil line at the same location.

For high vegetation cover, the value of L is 0.0, and L is 1.0
for low vegetation cover. For intermediate vegetation cover
L=0.5.
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Near-Infrared Reflectance
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Enhanced Vegetation Index (EVI)

Adapted from SAVI — more linear relationship to vegetation
variables (e.g. biomass, LAI, etc.)

Addition of blue band information for scattering correction
EVI= G* (NIR-Red)/(NIR+ C1*Red — C2 * Blue + L)

where G (gain factor) = 2.5
C1=6
C2=175
L =1
aUSGS




Spectral Unmixing

* The reflectance of each pixel is assumed to be a linear
combination of each material (endmember) within the pixel

 For example, if 25% of a pixel is grass, 25% bare soil, and
50% trees, the reflectance (spectrum) for that pixel is a
weighted average of 25% the spectrum of grass, 25% the
spectrum of bare soil, and 50% the spectrum of trees.

« Linear unmixing is solving for the abundance values of each
endmember for every pixel.

« The number of endmembers must be less than the number
of spectral bands and all endmember in the image must be
used.

« Results are highly dependent on quality of endmember input
data. These can be created from image or taken from
spectral libraries.
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Part 1. Preparing MODIS
data for Analysis

* Import data into Imagine

* View image

* Perform reprojection of image
* View reprojected image

* Perform band ratio’ing

— Make NDVI
— Make SAVI
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Part 2. Preparing ASTER
data for Analysis

* Import ASTER data into ENVI
* Rotate image

* Perform Principal Components
Analysis (PCA)

 Sharpen image

2 USGS
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