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Figure 1. Example of a global imaging spectroscopy data cube. RGB image derived from 

LPJ-PROSAIL simulated reflectance data. 

1. Dataset overview 
 

Imaging the reflectivity of the land surface (soils, vegetation, water/ice/snow) offers insights into 

its health, composition, and productivity. This process, known as imaging spectroscopy or 

hyperspectral remote sensing, improves the resolution of detail of which we can measure Earth’s 

biodiversity, function, and heterogeneity. By the end of this decade, numerous polar-orbiting 

(i.e., global coverage), full-range visible and shortwave near-infrared (VSWIR, i.e., 400-2500 

nm spectral range) spaceborne missions will have been launched to capture this information in 

unprecedented detail, including NASA’s highly anticipated Surface Biology and Geology (SBG) 

mission (Cawse-Nicholson et al. 2021) and the ESA’s Copernicus Hyperspectral Imaging 

Mission for the Environment (CHIME; Celesti et al. 2022).  

 

These VSWIR, spaceborne imaging spectrometers will measure the ratio of incoming solar 

radiance to reflected radiance from a large number of nearly contiguous, narrow spectral bands 

across a portion of the electromagnetic spectrum, signifying a great advancement over previous 

earth observation satellites. These detailed measurements of material’s spectral reflectance can 

identify and quantify their albedo, spectrally resolved reflectivity, and infer their chemical and 

physical properties (Goetz et al., 1985). Particularly powerful are the capabilities of imaging 

spectroscopy at being able to observe and quantify plant traits, such as chlorophyll content, water 

stress, and nitrogen and other nutrients across space (Asner and Martin 2016; Féret et al. 2019; 

Kokaly et al. 2009; Serbin et al. 2014; Singh et al. 2015; Wang et al. 2020), and also enable these 

retrievals through time (Cheng, Riaño, and Ustin 2014; Chlus and Townsend 2022). This 

information can be used to monitor vegetation function and health, assess crop yields, and track 
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the effects of climate change on vegetation and ecosystem biodiversity (Gamon et al. 2019; Jetz 

et al. 2016; Rocchini et al. 2022; Schweiger and Laliberté 2022). 

 

These and other missions alike promise to more accurately gather detailed reflectance data 

through this remote sensing process of imaging spectroscopy. However, up until launch (even 

shortly after), these missions depend on simulated datasets and predictive modeling to assess 

potential uncertainties, create workflows and algorithms, and generally provide the community 

with an understanding of the possibilities of these data. In this context, we introduce a 

dynamic land surface model that generates reflectance spectra ranging from 400 to 2,500 

nm, at a 10 nm resolution, covering the entire global land area on a daily time scale known 

as LPJ-PROSAIL. 

 

Up front, we must strongly emphasize that these data are simulated data and should under no 

circumstances be used to derive empirical understanding or ecological conclusions. The purpose 

of these data is for designing workflows, testing algorithms, and other pre-launch activities or 

activities in which testing of large spectroscopy datasets are needed. 

 

 

2. Summary of approach to creating data  
 

The basis of LPJ-PROSAIL is two coupled models, LPJ and PROSAIL. The first, the Lund-

Potsdam-Jena (LPJ; LPJ-wsl v2.0; Calle and Poulter 2021) model, is a dynamic global 

vegetation model (DGVM) that provides a prognostic understanding of how vegetation 

communities interact with the environment and each other, taking into account impacts from 

climate, soil resources, and texture, and land use change (Sitch et al. 2003). The LPJ DGVM 

divides the globe into 50km2 grid cells and estimates how different kinds of plant functional 

types (PFT’s; e.g., tropical trees, temperate grasses, etc.) photosynthesize and compete for 

resources. DGVMs typically simulate thousands of years of historical conditions until the model 

is “spun up” and then can match contemporary vegetation and carbon stocks and fluxes with a 

sufficient degree of accuracy (Prentice et al. 2007).  

 

The second model, PROSAIL, is a radiative transfer model (RTM), which is also a 

mathematically-based model that is used to understand how energy (light) interacts with a 

medium, in this case, soil and vegetation (Baldocchi et al. 1985; Verhoef 1998; Yuan et al. 

2017). PROSAIL itself is a combination of two models, a leaf-level model, PROSPECT (from 

the French Propriétés Spectrales, or Spectral Properties; Jacquemoud and Baret 1990), and SAIL 

(Scattering by Arbitrarily Inclined Leaves; Verhoef and Bach 2007). In simple terms, 

PROSPECT simulates the reflectance from a single leaf and SAIL translates the leaf level 

reflectance to the entire tree canopy scale, incorporating information like leaf area, leaf angle, 

and soil reflectance properties. Combining these two models, LPJ-PROSAIL simulates the plant 

functional types and each’s suite of plant traits and feeds that into PROSAIL to simulate canopy 

reflectance. 

 

Finally, secondary, downstream outputs from LPJ-PROSAIL are a simulated top-of-atmosphere 

(TOA) radiance data product and derived trait products from the reflectance products. The 

Radiance product is created by running the LPJ-PROSAIL reflectances through the ISOFIT 
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Figure 2. Workflow diagram of the LPJ processing architecture and linkage with 

PROSPECT-PRO and 4SAIL. Green parameters are dynamic within the LPJ model. 

Modified from Poulter et al., 2023. 

optimal estimation technique. We encourage readers to see Thompson et al. 2018 and visit the 

GitHub repository (https://github.com/isofit/isofit) if they wish to learn more about ISOFIT. As 

for the estimated trait products, those are created by comparing regression-based coefficients at 

each wavelength to the LPJ-PROSAIL reflectances (See the ATBD and Serbin et al., 2014 for 

more details).  

 

2.1. Inputs 

The LPJ DGVM requires at minimum daily or monthly gridded temperature, precipitation, cloud 

cover, CO2, soil type. For climate, data from the Climate Research Unit (Harris et al. 2020) is 

typically used, soil texture fractions are obtained from the Harmonized World Soil Database 

(FAO 2012) and regridded to 0.5°. Global mean annual atmospheric CO2 time-series data are 

obtained from NOAA. Other ancillary data such as land use (Hurtt et al. 2020) or other remote 

sensing data such as data from the Soil Moisture Active Passive (SMAP) mission (Entekhabi et 

al. 2014). The use of the ancillary inputs depends on the version of the data (see below for 

versioning). 

 

https://github.com/isofit/isofit
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Figure 3. (top) TOA radiance data from LPJ-

PROSAIL at 750 nm for July 2020. (middle) 

MERRA2 aerosols and (bottom) MERRA2 water 

vapor. Together, these data make up the 

atmospheric state for any given pixel for ISOFIT. 

PROSAIL requires specific absorption 

coefficients (SACs), which are 

empirically derived and obtained from 

the original PROSPECT model 

(Jacquemoud and Baret 1990). Beyond 

that, the necessary coefficients are either 

parameterized as static constants or 

dynamically derived from the model 

itself (see Poulter et al. 2023, and the 

Algorithm Theoretical Basis Document 

(ATBD) for more information). The 

original version of LPJ-PROSAIL used 

PROSPECT-5B (Féret et al. 2008) as 

the basis of the leaf RTM, but recently 

we have added PROSPECT-PRO (Féret 

et al. 2021) to improve fidelity and 

dynamic parameterization in LPJ-

PROSAIL. 

 

Unique to LPJ-PROSAIL are hardcoded 

spectra from various surfaces, those 

being snow and woody-branch material. 

These are used in the reflectance mixing 

scheme when vegetation is minimal or 

absent. In earlier versions of the model, 

the mixing scheme was very 

rudimentary but has since been 

improved in later versions. However, 

more research should be conducted in 

this realm regarding understanding how 

multi-surface spectra scale at increasing 

spectral scales. Also, for the Directional 

Reflectance stream, (i.e., top-of-canopy 

reflectance; see below), the diffuse and 

direct solar irradiance spectra are 

hardcoded in (again, we refer readers to 

Poulter et al., 2023). 

 

As for the TOA radiances, inputs to the 

ISOFIT routine are 1) an instrument 

model, 2) a surface model, and 3) an 

atmospheric state. The instrument 

parameterization we use is the “best 

estimate” of the capacity that an SBG 

like instrument would have. The 

instrument model defines the 
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Figure 4. Fraction of direct versus diffuse irradiance 

across wavelength. Around 650 nm the proportion of 

diffuse and direct are equal. 

instrument’s error producing components, such as the instrument’s signal to noise ratio, smile, 

tilt, etc. The surface model we use is a generic terrestrial surface model, which in essence simply 

provides a compilation of possible surface reflectances. Finally, for the atmospheric state, we use 

MERRA2 aerosol optical thickness (AOT) data and total precipitable water vapor for the same 

day or month as the reflectance data (Figure 3).  

 

 

2.2. Outputs 

The main outputs from LPJ-PROSAIL are five different reflectance streams. The first four are 

the standard outputs from the SAIL model (Verhoef and Bach 2007), and the fifth is unique to 

LPJ-PROSAIL (but see also Shiklomanov et al. 2021): 

 

1. Bidirectional Reflectance (BDR) 

2. Bi-hemispherical Reflectance (BHR) 

3. Hemispherical-Directional Reflectance (HDR) 

4. Directional-Hemispherical Reflectance (DHR) 

5. Directional Reflectance (DR). 

 

The nomenclature for the first four reflectances are defined as incoming—outgoing/viewing 

reflectance. These reflectance streams change given the incident and viewing angles for the 

directional streams or are agnostic to these angles for the hemispherical streams. For a more in-

depth understanding of these angles, we refer readers to the 4SAIL publication (Verhoef and 

Bach 2007) and Schaepman-Strub et al. 2006 for reflectance angles more generally.  

 

The 5th reflectance stream, dubbed “Directional Reflectance”, is a linear combination of 

Directional-Hemispherical Reflectance and Bidirectional Reflectance. The weighting of each 

stream depends on the fraction of diffuse to direct solar illumination, which is hardcoded into the 

model but is itself a function of wavelength given a general atmospheric composition. The more 

direct solar irradiance, the more heavily Bidirectional Reflectance is weighted. This occurs at 

longer wavelengths, as the fraction of 

direct irradiance increases due to 

decreased scattering effects from the 

relative size of the atmospheric 

particles (Figure 4). Conversely, at 

lower wavelengths, there is more 

scattering, and as such, Directional-

Hemispherical Reflectance is given 

more weight. We consider DR a 

simulation of “what a satellite 

observes”, and for this reason, DR can 

also be thought of as the closest proxy 

to top-of-canopy reflectance. All five 

of these reflectance streams considered 

an individual science datasets layer 

and are provided within each 

collection.  
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The current, final output from LPJ-PROSAIL are the post-processed TOA radiances. 

Forthcoming, we will translate the top-of-canopy reflectance stream into various vegetation trait 

products as a secondary output, similar to the level 2+ products from various satellite missions. 

Initially, we will simulate the core trait products of the SBG mission, namely top-of-canopy 

chlorophyll, top-of-canopy nitrogen (N), leaf mass per area (LMA) and equivalent water 

thickness (EWT), with the possibility to host other products as determined by the SBG or 

CHIME user communities. Each simulated trait map will be hosted as individual science dataset 

layers provided in the collection.  
 

 

3. Collections 
 

There are three primary types of collections: 1) reflectances, 2) radiances, and 3) derived 

vegetation traits from the reflectances. Each collection is global in extent (longitudes from -180 

to 180 degrees East and latitudes from -90 to 90 degrees North) and unprojected using the EPSG 

code 4326 coordinate reference system and WGS84 datum. The temporal granularity is either 

daily or monthly, depending on version, and the spatial resolution is either at the native 

resolution as LPJ (0.5 degree, ~50km2) or downscaled to a higher resolution (~1km). For more 

information regarding downscaling procedures, see the ATBD. Finally, all files are in NetCDF 

version 4 format with the dimensions: [lon, lat, layer, time]. For the reflectance and radiance 

collections, the layer dimension is the band wavelengths (typically 211 in size). For other 

datasets, the layer is a single dimension that represents the dataset itself (i.e., a vegetation trait 

layer). 

 

3.1. 0.5-Degree Monthly Reflectances  

Long name LPJ-PROSAIL L2 Global Simulated Dynamic Surface 

Reflectance 

Short name LPJ_L2_SSREF 

Granule details  

- Science dataset layers 5 (each reflectance stream) 

- Dimensions 720 x 360 x 211 x 12 (lon x lat x bands x time) 

- Pixel size ~ 50km2 

- Data type 16-bit Integer (i.e., “short” format) 

- Units Unitless 

- Valid range 0-10,000 

- Scaling factor 0.0001 

 

3.2. 0.5-degree Monthly TOA Radiances 

Long name LPJ-PROSAIL L2 Global Simulated Dynamic TOA Radiance 

Short name LPJ_L2_SRAD 

Granule details  

- Science dataset layers 1 

- Dimensions 720 x 360 x 211 x 12 (lon x lat x bands x time) 

- Pixel size ~ 50km2 

- Data type 16-bit Integer (i.e., “short” format) 
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- Units Unitless 

- Valid range 0-10,000 

- Scaling factor 0.01 

 

3.3. 0.5-degree Monthly Vegetation Traits 

Long name LPJ-PROSAIL L3 Global Simulated Vegetation Traits 

Short name LPJ_L3_SVT 

Granule details  

- Science dataset layers 4 (each trait) 

- Dimensions 720 x 360 x 12 (lon x lat x time) 

- Pixel size ~ 50km2 

- Data type 32-bit Float  

- Units - Chlorophyll (ug/cm2) 

- Nitrogen (%) 

- LMA (g/m2)  

- EWT (cm) 

 

- Valid range - Chlorophyll = [0, 100] 

- Nitrogen = [0, 10]  

- LMA = [0,1500] 

- EWT = [0, 2] 

 

- Scaling factor None 

  

3.4. Short name naming convention 

The short name naming conversion is as follows: “DDD_LL_SPPP.VVV” 

DDD LPJ to abbreviate LPJ-PROSAIL 

LL LL indicating the equivalent processing level of the data (L2 or L3) 

S S indicating simulated data 

PPP PPP indicating the product (REF = reflectance, RAD = radiance, VT = vegetation 

traits. 

VVV VVV flags the version of the data. 

 

 

4. Versioning 
 

The current versioning structure of the data (as of this draft) of the dataset is as follows. Of note, 

some of these data products are not yet available but this is the planned versioning structure. If 

the data is not available, reasoning is provided below.  

 

4.1. Version 1 (V001).  

V001 is the original data from the publication of Poulter et. al., 2023. This data is output only as 

a single year of data for the year 2020. This version contains only LPJ_L2_SSREF surface 

reflectances. 
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4.2. Version 2 (V002).  

V002 data is the original data from the publication but spanning from 2000 through to the current 

year (although will probably be depreciated after the year 2023). This version contains only 

LPJ_L2_SSREF surface reflectances. 

 

4.3. Version 2.1 (V021).  

V021 data represents an internal improvement in the architecture of LPJ-PROSAIL, resulting in 

improved simulated reflectances (see ATBD and Currey et al., In prep). V021 data span 2000-

current year. This version contains both LPJ_L2_SSREF surface reflectances and 

LPJ_L2_SRAD TOA radiances. 

 

4.4. Version 3 (V003).  

V003 data represents an increase in the spatial resolution of the data (see ATBD). V003 data 

spans a shorter time frame 2020-current year given the enormous size of these data. This version 

currently is only available for LPJ_L2_SSREF surface reflectances.  

 

4.5. Version 4 (V004).  

V004 data will represent an increase in the temporal resolution of the data, from daily to monthly 

(see ATBD). V004 data spans a shorter time frame 2020-current year given the large size of 

these datasets.  
 
 

Data Knowledge 
 

5.1. Important considerations 

These data are simulated data, and as such, they should not be used to deduce ecological 

information for decision making. The intended purpose of these data is for testing various 

algorithms, workflows, and data management practices. Furthermore, like all process-based 

model output, these data are based on many assumptions across a global context, and as such, the 

fidelity of these data with in-situ data is moderate.  

 

Of note, there are currently no LP_L3_SVT datasets because global trait algorithms and models 

have yet to be developed or deployed yet. Similarly, given the simulated nature of these data 

products, there are no associated QA/QC data with these data, other than limited point-level 

evaluations as presented in Poulter et al. 2023.  
 

5.2. Related datasets  

A notable alternative to these data is the NASA Ames Global Hyperspectral Synthetic Data 

(AGHSD, pronounced “August”) that were created based on 1km MODIS data for 2019. More 

information can be found in Wang et al. 2023 and on the website: AGHSD Portal (nasa.gov). 
 

 

6. Examples of Application 
 

https://data.nas.nasa.gov/aghsd/
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Example R code of conducting various common operations on the LPJ-PROSAIL data. This 

example was created using R markdown, the script which can be found in the linked GitHub 

repo at the bottom of this example. 

6.1.  Example Spatial Operations. 
Overview 
This is a simple example of how to use various geospatial operations like crop(), mask(), extract(), and 
reproject(). 
 
Packages 
library(tidyverse) 
library(terra) 
library(ncdf4) 
library(readr) 
library(ggplot2) 
library(tidyterra) 
library(RColorBrewer) 
library(rworldmap) 
library(ggpubr) 
 
LPJ path and dataset 
# We use LPJ_L2_SSREF.V021 for this example  
dp <- '~/path/to/data/' 
git <- '~/path/to/gitRepo/Global_trait_PLSRs/' 
lpj.nc <- 'lpj-prosail_levelC_DR_Version021_m_2020.nc'  
 
NEON data 
# In this example, well extract spectra from each NEON site.  
# You can download from here: https://www.neonscience.org/field-sites/explore-field-
sites or in line in R. 
# You can also pull from the Github repo 
# Note: You might need to Run R in admin mode to use download.file(). 
# Note 2: This file gets updated regularly, but the version below is the version on 
GitHub. 
 
# neon <- 
'https://www.neonscience.org/sites/default/files/NEON_Field_Site_Metadata_20230309.cs
v' 
# download.file(neon, '~/Current Projects/SBG/LPJ/Global_trait_PLSRs/data/') 
 
neon <- read_csv(file.path(git, 'data/NEON_Field_Site_Metadata_20230309.csv')) 
 
Extract the data 
lpj.array <- nc_open(file.path(dp, lpj.nc)) 
# To extract all lons, lats, and bands, but select only one month, we will use  
# the start and count functionality of ncdf library. 
# the dimensions of the data are lon, lat, wavelength, and time. To select all 
# values from a dimension, we set start = 1 and count = -1 (for all values).  
# In the final dimension placeholder, we select 5 for the 5th month, and 1  
# since we only want that one value. 
 
start = c(1,1,1,5)  
count = c(-1,-1,-1,1) 
rfl <- ncvar_get(lpj.array, 'DR', start, count) # 'DR' is the reflectance stream. 
dim(rfl) # should be [720, 360, 211] representing [lon, lat, band]. 
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Figure 5. Example reflectance at 650 nm (just before the red edge) 

## [1] 720 360 211 
# To plot as a raster in R, lon and lat need to be transposed as such: 
rfl <- aperm(rfl, perm = c(2,1,3)) 
 
Convert to a SpatRaster 
lpj.r <- rast(rfl, crs = crs('EPSG:4326'), ext = c(-180,180,-90,90)) 
names(lpj.r) <- paste0('band', seq(400,2500,10)) 
 
# Examine the data 
ggplot() + 
    geom_spatraster(data = lpj.r, aes(fill = band650)) + 
    scale_fill_gradientn(colours = rev(brewer.pal(11, 'Spectral')), limits = c(0,1), 
na.value = 'transparent') + 
    theme_void() + 
    labs(title = 'May, 2020. Wavelength = 650 nm') 

 
Simple set of spatial operations 
Crop() 
# Next we’ll perform a simple set of spatial 11perations to make a nice RGB figure of 
the US, 
 
# First, obtain spatvector of the US. We’ll start with a shapefile of the world from 
rworldmap packages, 
# and subset it to the US. (We’ll also convert it to a SpatVector using vect().) 
world <- getMap() 
USA <- vect(subset(world, NAME == “United States”)) 
 
# Crop LPJ to that vector 
LPJ.NA <- crop(lpj.r, USA) 
plot(LPJ.NA$band400, smooth = T, main = ‘North America LPJ Reflectance, 400 nm’) 
plot(USA, add = T) 
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Figure 7. Same as Figure 6 but with only the U.S. displayed. 

     
Mask() 
LPJ.USA <- terra::mask(LPJ.NA, USA) 
plot(LPJ.USA$band780, smooth = T, main = ‘US LPJ Reflectance, 780 nm’) 
plot(USA, add = T) 

 
Extract() 
# Extract the points from a spat vector (we’ll plot later). 
neon.points <- vect(neon, geom=c(‘field_longitude’, ‘field_latitude’), crs = 
‘EPSG:4326’) 
neon.rfl <- terra::extract(LPJ.USA, neon.points) 
 

 

Figure 6. Plot example using terra::plot() instead of ggplot of North America. 
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# Set the neon site ID as the ID column 
neon.rfl$ID <- neon$field_site_id 
head(neon.rfl) 
# Convert to long format for ggplot 
neon.rfl.plot <- pivot_longer(neon.rfl, -ID, names_to = ‘Wavelength’, values_to = 
‘Reflectance’) %>%  
    tidyr::separate(Wavelength, into = c(NA, “Wavelength”), sep = “(?<=[a-zA-
Z])(?=[0-9])”, convert = T) 
head(neon.rfl.plot) 
## # A tibble: 6 × 3 
##   ID    Wavelength Reflectance 
##   <chr>      <int>       <dbl> 
## 1 ABBY         400      0.0092 
## 2 ABBY         410      0.0095 
## 3 ABBY         420      0.0097 
## 4 ABBY         430      0.0098 
## 5 ABBY         440      0.0101 
## 6 ABBY         450      0.0109 
 
Reproject() 
# Lets convert to NAD83 for display 
LPJ.USA.nad <- project(LPJ.USA, 'EPSG:4269') 
USA.nad <- project(USA, 'EPSG:4269') 
neon.points.nad <- project(neon.points, 'EPSG:4269') 
 
Plot RGR and spectra from NEON sites together 
# To make an RGB plot, you must know the band index location of the R, G, and B 
channels. 
# Well use Blue = 440, Green = 550, and Red = 660 
wl <- seq(400,2500,10) 
red <- which(wl == 660) 
green <- which(wl == 550) 
blue <- which(wl == 440) 
 
spatialPlot <- ggplot() + 
    geom_spatraster_rgb(data = LPJ.USA.nad, r = red, g = green, b = blue, 
max_col_value = 0.3) + 
    geom_spatvector_label(data = neon.points.nad, aes(label = field_site_id),  
                          alpha = 0.5) + 
    geom_spatvector(data = USA.nad, alpha = 0, linewidth = 1, color = 'black') + 
    scale_fill_manual(na.value = 'transparent') + 
    coord_sf(crs = 4269) + 
    theme_classic(base_size = 20) +  
    theme(plot.margin = margin(1, 0, 1, 0, "cm")) + 
    labs(x = 'Longitude', y = 'Latitude') 
 
 
spectraPlot <- ggplot(neon.rfl.plot) + 
    geom_line(aes(x = Wavelength, y = Reflectance, group = ID, color = ID)) + 
    scale_color_viridis_d() + 
    theme_bw(base_size = 20) + 
    theme(legend.position = c(0.99, 0.99),       # Position at the top right 
          legend.justification = c(1, 1),        # Justify plot's corner at that 
position 
          legend.background = element_blank(),   # Remove the background 
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Figure 8. (top) NEON sites displayed with an RGB plot of the U.S. derived from LPJ 

PROSAIL spectra. (bottom) Extracted LPJ-PROSAIL spectra for each NEON locations. 

          legend.box.background = element_rect(color = "black", size = 0.5), 
          legend.text = element_text(size = 15), 
          plot.margin = margin(0, 6, 0, 6, "cm"))    
 
annotate_figure( 
    ggarrange(spatialPlot, spectraPlot,  
              nrow = 2, ncol = 1,  
              heights = c(1, 1), widths = c(1,0.5)), 
    top = text_grob("LPJ-PROSAIL spectra extract from NEON sites, May 2020", size = 
25, face = "bold", color = "Black") 
) 
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6.2. Applying PLSR Trait coefficients 

 
This is a simple example of how to map PLSR coefficients across the LPJ-PROSAIL 
directional reflectance data output. Created in R markdown in the Github repo 
 

Packages 

library(dplyr) 
library(terra) 
library(ncdf4) 
library(readr) 
library(ggplot2) 
library(tidyterra) 
library(RColorBrewer) 
 

Data path and dataset 

dp <- '~/path/to/data/' 
lpj.nc <- 'lpj-prosail_levelC_DR_Version021_m_2020.nc' 
coefficients <- '~/Global_trait_PLSRs/Example_LPJ-PROSAIL_PLSR_coefficients.csv' 
 

Functions 

# Resample the bands of lpj-prosail to the same band centers as the coefficient data 
wl.interp <- function(y, wavelength) { 
    out <- approx(x = seq(400,2500,10), y = y, xout = wavelength,  
                  method = "linear", rule = 2)[[2]] 
    return(out) 
} 
 
# Funcation that maps PLSR coefficients across the LPJ-PROSAIL dataset using  
# the terra 'app' function. 
trait.map <- function(raster, coeffs, intercept = 0, coeffs_wl = seq(400,2500,10), 
na.rm = F) { 
    require(terra) 
     
    # first check if the coefficient wavelengths and lpj prosail have the same bands 
    if (dim(raster)[3] != length(coeffs_wl)) { 
        # if not, resample bands 
        raster <- app(raster, function (y, w) wl.interp(y, coeffs_wl)) 
    } 
     
    # applying the coefficients 
    traitmap <- app(raster, function (x) sum(x * coeffs, na.rm) + 
as.numeric(intercept)) 
    return(traitmap)     
} 
 

Extract the data 

lpj.array <- nc_open(file.path(dp, lpj.nc)) 
# To extract all lons, lats, and bands, but select only one month, we will use  
# the start and count functionality of ncdf library. 
# the dimensions of the data are lon, lat, wavelength, and time. To select all 
# values from a dimension, we set start = 1 and count = -1 (for all values).  
# In the final dimension placeholder, we select 7 for the 7th month, and 1  
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Figure 9. Example of 1 band (700 nm) from LPJ-PROSAIL. 

# since we only want that one value. 
start = c(1,1,1,7)  
count = c(-1,-1,-1,1) 
rfl <- ncvar_get(lpj.array, 'DR', start, count) # 'DR' is the reflectance stream. 
dim(rfl) # should be [720, 360, 211] representing [lon, lat, band]. 
## [1] 720 360 211 
# To plot as a raster in R, lon and lat need to be transposed as such: 
rfl <- aperm(rfl, perm = c(2,1,3)) 
 

Convert to a SpatRaster 

lpj.r <- rast(rfl, crs = crs('EPSG:4326'), ext = c(-180,180,-90,90)) 
lpj.r[lpj.r>0.7] <- NA # remove permanent snow features 
lpj.r[lpj.r==0] <- NA # set zero values to NA 
names(lpj.r) <- paste0('band', seq(400,2500,10)) 
 
# Examine the data 
ggplot() + 
    geom_spatraster(data = lpj.r, aes(fill = band650)) + 
    scale_fill_gradientn(colours = rev(brewer.pal(11, 'Spectral')), limits = 
c(0,0.5), na.value = 'transparent') + 
    theme_void() + 
    labs(title = 'Wavelength = 700 nm') 

 
Apply the coefficients 

coeffs <- read_csv(coefficients) 
head(coeffs) 
## # A tibble: 6 × 5 
##   coeff        lma      n       p    sla 
##   <chr>      <dbl>  <dbl>   <dbl>  <dbl> 
## 1 Intercept 0.300  18.5    1.23   11.4   
## 2 400       0.0100 -0.486 -0.0182 -0.296 
## 3 410       0.0102 -0.497 -0.0202 -0.292 
## 4 420       0.0103 -0.501 -0.0220 -0.295 
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Figure 10. Example of apply PLSR model coefficients to LPJ PROSAIL data. This is an 

example of what a LPL3SVI product might look like in the future. 

## 5 430       0.0104 -0.504 -0.0236 -0.298 
## 6 440       0.0105 -0.508 -0.0251 -0.303 
# A simple LMA map made using a PLSR between TRY data and LPJ-prosail data 
# In this dataset, the intercept is the first coefficient 
lma <- trait.map(raster = lpj.r, coeffs = coeffs$lma[-1], intercept = coeffs$lma[1]) 
 
ggplot() + 
    geom_spatraster(data = lma) + 
    scale_fill_gradientn(colors = c("wheat2", "darkgreen"), limits = c(0.25, 0.4), 
na.value = 'transparent') + 
    theme_void() + 
    labs(title = 'LPJ-PROSAIL estimated LMA (g/g)') 

 

 

More examples of how to use this data can be found here: https://github.com/Green-

Currey/Global_trait_PLSRs  
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