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1. Introduction 

Reservoirs serve as a lifeline in water management (e.g., irrigation, hydropower generation, 

water supply, and flood control), especially under the ongoing fast population growth and 

changing climate (Biemans et al., 2011; Cooke et al., 2016; Plate, 2002; Schewe et al., 2014; 

Veldkamp et al., 2017). Globally, reservoirs supply about 40% of the total irrigation water 

demand (Biemans et al., 2011) and contribute to more than 60% of renewable energy via 

hydroelectricity (Murdock et al., 2019). Reservoir storage varies according to natural climate 

variability as well as the human water use/demand for different sectors (i.e., domestic, 

agricultural, and industrial). On one hand, near real-time reservoir storage monitoring is 

essential for mitigating the negative effects of hydro-climatic extremes (droughts and floods) 

(Mehran et al., 2015; Zhou, 2020). On the other hand, long term records of water retained by 

global reservoirs can help to evaluate the human impacts on global and regional water cycles 

(Li et al., 2023; Yigzaw et al., 2018; Zhou et al., 2016). However, because gauge observations 

for reservoir storage (and/or elevation) are typically not shared, both aforementioned data needs 

are difficult to satisfy at regional and global scales. 

Among the reservoir water budget terms, reservoir evaporation accounts for a substantial 

amount of the loss of available water—particularly for reservoirs in arid/semi-arid regions 

(Friedrich et al., 2018). For example, the evaporation volume of Lake Tahoe (located in the 

western U.S.) represents 40%‒60% of the total reservoir output (Friedrich et al., 2018). The 

annual evaporation rate of Lake Mead is ~1800 mm/year (Moreo, 2015), which greatly exceeds 

the surrounding evapotranspiration rate (~50 mm/year) (Mu et al., 2011). At a regional scale, 

the water losses due to evaporation for 200 reservoirs in Texas are equivalent to 20% of their 

active storage value (Zhang et al., 2017). While only account for 5% of global lake storage 

capacity, reservoirs contribute 16% to the evaporation volume (Zhao et al., 2022). Thus, it is 

crucial to incorporate information about reservoir evaporation losses into existing water 

management practices. Nonetheless, because reservoir evaporation information obtained 

through reliable in situ measurements (e.g., eddy covariance, energy balance) is hard to acquire, 

pan evaporation data (which is less accurate due to the lack of consideration of heat storage 

and fetch effects) have been commonly used as an approximation (Friedrich et al., 2018). For 

most developing countries, even data about pan evaporation (or its equivalent) are not 

available. 

This is the Algorithm Theoretical Basis Document (ATBD) for the Visible Infrared Imaging 

Radiometer Suite (VIIRS) Collection 2 Global Water Reservoir (GWR) products from Soumi 
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NPP (SNPP) and JPSS-1 (also known as NOAA-20) satellites. The GWR product data 

associated with SNPP and JPSS-1 are named as VNP28 and VJ128, respectively. The reservoir 

product is available at two temporal resolutions: 8-day (VNP28C2/VJ128C2) and monthly 

(VNP28C3/VJ128C3). The ATBD for VIIRS is developed by keeping Moderate Resolution 

Imaging Spectroradiometer (MODIS) ATBD (Zhao et al., 2021) as heritage/reference. It is 

worth noting that most algorithms for VIIRS and MODIS GWR are similar, however, we 

improved the VIIRS algorithm in some aspects to mitigate significant uncertainties arising 

from ice/snow and/or terrain shadows (Shah et al., under review). The objectives of this ATBD 

are: (1) to give a brief review of the current methods used for monitoring reservoirs using 

satellite observations; (2) to describe the VIIRS GWR algorithms and the refinements, which 

are used to generate the product at two temporal resolutions (i.e., 8-day and monthly); (3) to 

introduce the required input datasets and parameters; (4) to show the validation results for that 

reservoir area, elevation, storage, and evaporation rate; and (5) to discuss the sources of product 

uncertainty. 

2. Overview and Technical Background 

Satellite remote sensing provides an alternative for filling in water reservoir data gaps. Since 

the 1990s, satellite radar altimeters have been utilized to measure the water levels of large lakes 

and reservoirs (Birkett, 1995). To date, several databases have been developed to monitor the 

water levels of inland water bodies at a global scale—including the Global Reservoir and Lake 

Monitor (G-REALM) (Birkett et al., 2011), the Hydroweb database (Crétaux et al., 2011), and 

the Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 2015). 

Meanwhile, the global surface area variations of lakes and reservoirs have been assessed from 

various satellite instruments, such as the Landsat and MODIS (Donchyts et al., 2016; 

Khandelwal et al., 2017; Li et al., 2023; Ling et al., 2020; Pekel et al., 2016; Yao et al., 2019; 

Zhao et al., 2022; Zhao & Gao, 2018). Pekel et al. (2016) developed a Global Surface Water 

(GSW) dataset using expert system classifiers based on Landsat observations obtained over the 

last three decades. The more recently published Global Reservoir Surface Area Dataset 

(GRSAD) provides monthly water area values for over 7000 reservoirs (Zhao & Gao, 2018) 

which were generated by correcting the underestimations due to cloud contamination in the 

GSW dataset. Khandelwal et al. (2017) generated 8-day composite water area time series 

datasets for 94 reservoirs using MODIS multispectral data at 500 m resolution. In the 

meantime, many studies have focused on generating satellite-based reservoir storage 

estimations by combining elevation and area observations collected from multiple missions 
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(Busker et al., 2019; Crétaux et al., 2011; Gao et al., 2012; Zhang et al., 2014). For example, 

Gao et al. (2012) monitored storage values for 34 global reservoirs from 1992 to 2010 by 

combining water surface areas from MODIS with water elevations from satellite radar 

altimetry (which represented 15% of the total global reservoir capacity during that period). The 

Hydroweb database (http://hydroweb.theia-land.fr/) estimates the storage changes for about 60 

large lakes and reservoirs beginning in 1992, using multi-source satellite imagery (e.g., MODIS 

and Landsat) and radar altimetry data (Crétaux et al., 2011). Busker et al. (2019) analyzed the 

monthly volume variations between 1984 and 2015 for 137 lakes and reservoirs at a global 

scale by combining water area values from the GSW dataset (Pekel et al., 2016) and elevation 

values from DAHITI (Schwatke et al., 2015). The number of lakes with storage estimated has 

increased to thousands in the recent studies by Li et al. (2023) and Yao et al. (2023).  

Meanwhile, some new approaches have been recently developed to estimate evaporation rates 

and losses from space. For instance, Zhang et al. (2017) estimated the monthly evaporation 

volumes based on pan-derived evaporative rates and Landsat surface areas for more than 200 

reservoirs in Texas. Zhao & Gao (2019) used the Penman Equation (with the heat storage and 

fetch effects addressed), and generated a first long-term evaporation data record for over 700 

reservoirs in the Contiguous United States. Zhao et al. (2020) further improved the calculation 

of the heat storage change term by leveraging MODIS surface temperature data. Recently, Zhao 

et al. (2022) developed an evaporation dataset for 1.42 million global lakes. Many other 

approaches were developed and tested at individual locations (Althoff et al., 2019; Meng et al., 

2020; Mhawej et al., 2020). 

Despite the development of remotely sensed reservoir datasets, consistent, comprehensive, 

long-term, and operationally monitored reservoir products are still lacking at the global scale. 

Therefore, we developed the National Aeronautics and Space Administration (NASA)'s long-

term standard GWR product suite from moderate-resolution remote sensing data such as the 

MODIS and VIIRS. Given the forthcoming end-of-life plans for the MODIS platforms, the 

issue of GWR continuity requires greater attention. Therefore, the newly developed VIIRS 

GWR (VNP28/VJ128) can serve as a viable successor to MODIS observations for ensuring 

long-term GWR continuity. More details regarding the MODIS and VIIRS GWR product 

continuity is described in Shah et al. (under review). 

 

 

http://hydroweb.theia-land.fr/
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3. VNP28/VJ128 Algorithm Descriptions 

The VNP28C2/VJ128C2 product includes the reservoir area, elevation, and storage results at 

8-day temporal resolution. Figure 1 shows the flowchart for generating the C2 (8-day) 

product. The algorithms corresponding to both products are explained in the following 

sections. First, the 8-day reservoir area values were extracted from the 500-m Near Infrared 

(NIR) band of VIIRS surface reflectance (VNP09H1/VJ109H1) data. Then, the area values 

were applied to the Area-Elevation (A-E) relationship for the given reservoir provided by the 

GRBD (Li et al., 2020)  to calculate the corresponding elevation values. Lastly, the reservoir 

storage can be estimated after Gao et al. (2012).  

 

Figure 1. Flow chart of the algorithm for deriving the VNP28C2/VJ128C2 product, which 

contains 8-day area, elevation, and storage results for the 164 reservoirs. The product 

components are shown in green boxes. 

The VNP28C3/VJ128C3 product includes the evaporation rate and volumetric evaporation loss 

in addition to the area, elevation, and storage results at monthly temporal resolution. Figure 2 

shows the flowchart for generating the VNP28C3/VJ128C3 monthly product. The monthly 

area values were first estimated based on the composite of the 8-day area classifications, and 

then converted to monthly elevation and storage results using the A-E relationship (Figure 2). 

In addition, monthly evaporation rates were estimated after the Lake Temperature and 

Evaporation Model (LTEM, Zhao et al., 2020) using VIIRS Land Surface Temperature (LST) 

product (VNP21A2/VJ121A2) and meteorological data from the Global Land Data 

Assimilation System (GLDAS) (Rodell et al., 2004). Lastly, the monthly evaporative 

volumetric losses were calculated as the product of evaporation rate and reservoir open water 

area values. 
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Figure 2. Flow chart of the algorithm for deriving the VNP28C3/VJ128C3 product, which 

contains monthly area, elevation, storage, evaporation rate, and volumetric evaporation loss 

results for the 164 reservoirs. The product components are shown in green boxes. 

The detailed algorithms for generating reservoir area, elevation, storage, evaporation rate, and 

evaporation volume are explained in the following subsections. 

3.1 Algorithms for reservoir area 

3.1.1 Algorithm for VNP28C2/VJ128C2 (8-day product) 

The algorithm for estimation of reservoir area has been explained in detail in MODIS ATBD 

(Zhao et al., 2021). Here, we explain the VIIRS area algorithm with an example of Lake Hawea 

in New Zealand (Figure 3). To ensure comprehensive coverage of the water extent, we initially 

buffered the reservoir shapefile (obtained from HydroLAKES; Messager et al., 2016)  by 1 km 

outward. The classification and enhancement operations were performed within this buffered 

area. For each 8-day period, we selected the VNP09H1/VJ109H1 NIR image that overlapped 

with the reservoir shapefile (Figure 3a). Subsequently, pixels affected by clouds, cloud 

shadows, and snow/ice (identified using the Quality Assurance (QA) band of 

VNP09H1/VJ109H1) were labeled as ‘No Data’, denoting contaminated pixels. Next, the Otsu 

thresholding method (Otsu, 1979) was applied to obtain the raw water area classification 

(Figure 3b). However, it is evident that this raw classification underestimates the actual water 

area due to various above-mentioned contaminations. To address this issue, we utilized the 

enhancement algorithm developed by Zhao et al. (2020) to correct the underestimation (Figure 

3c). This enhancement algorithm incorporates edge detection techniques and water occurrence 

images provided by the Global Surface Water (GSW) dataset (Pekel et al., 2016) to correct the 

raw classification. Further details regarding the enhancement algorithm can be found in Zhao 

et al. (2020). 
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Figure 3. The VNP image collected on day 347 of 2021 over Lake Hawea (ID 131), New 

Zealand. (a) The original reflectance image; (b) the raw water from Otsu classification; (c) 

the improved water extraction by enhancement operation. 

As compared to MODIS algorithms, the following improvements have been made with in the 

VIIRS 8-day area estimations: 1) Adding contamination percentage values to the 8-day and 

monthly area outputs; 2) Improving the enhancement algorithm using an edge detection 

approach; and 3) Adopting the 8-day terrain shadow masks to improve the classification results. 

To improve the data quality assessment for users, we have incorporated contamination 

percentage values (pertaining to cloud, cloud shadow, and snow/ice) into both the 8-day and 

monthly area products. These values are obtained from the composite QA bands which are 

newly added to the 8-day classification images (i.e., VNP28A2/VJ128A2). These QA bands 

have combined the QA information from the reflectance product (e.g., VNP09H1/VJ109H1) 

(a) 

(b) 

(c) 
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with the newly introduced fields related to classification results (i.e., raw water, enhanced 

water, and not-water). Although the composite QA bands are not publicly released since they 

are intermediate products, the contamination percentage values are made available to the public 

through the VNP28C2/VJ128C2 and VNP28C3/VJ128C3 products. This enables users to 

comprehensively understand the data quality associated with the GWR VIIRS product. 

The current MODIS product incorporates an enhancement algorithm developed by Zhang et 

al. (2014), whereas the VIIRS product utilizes an enhancement algorithm developed by Zhao 

et al. (2020). While the enhancement algorithm employed in the current MODIS version 

generally performs well for most reservoirs, it exhibits relatively larger uncertainties when 

applied to reservoirs located in high latitude regions (Li et al., 2021). One challenge lies in 

using a threshold to correct misclassification in both enhancement algorithms. This threshold 

is estimated using percentile values derived from the edge pixels of a reservoir. Unlike MODIS, 

the VIIRS enhancement algorithm is based on physical principles and is not dependent on 

specific parameters. This characteristic enhances its capability to handle edge pixels in high-

latitude regions, improving performance (Zhao et al., 2020). For a detailed explanation 

regarding algorithm changes, please refer to Zhao et al. (2020). Overall, the VIIRS 

enhancement algorithm demonstrates enhanced stability on a global scale. 

In order to mitigate area classification errors in reservoirs surrounded by complex and steep 

terrain, a series of 8-day terrain shadow masks were generated to represent climatological 

conditions (Figure 4). For example, Figure 4 depicts the climatology of the terrain shadow area 

within Lake Hawea. The generation of these masks followed the approach developed by 

Leidman et al., (2021), which we have further improved upon by incorporating the average 8-

day zenith solar angle during satellite overpass and the Shuttle Radar Topography Mission 

(SRTM) Digital Elevation Model (DEM). Initially, the masks were created at a 30-meter 

resolution and aggregated to match the VNP09H1/VJ109H1 resolution. To implement this 

algorithm refinement, minor modifications were made to the 8-day image classification code, 

ensuring that pixels falling within the shadow mask areas were not utilized for raw 

classification. These modifications were implemented to achieve more accurate raw 

classifications and improve the representation of water surface areas, aspects that were not 

adequately addressed in the MODIS product. Consequently, the VIIRS GWR algorithms 

exhibit greater precision compared to MODIS. 
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Figure 4. The climatology of terrain shadow area within Lake Hawea (ID 131).  

3.1.2 Algorithm for VNP28C3 (monthly product) 

The monthly enhanced area values were estimated similarly as 8-day product but based on the 

composite of the 8-day area classifications. A pixel was assigned as a water pixel if this pixel 

was classified as water in any of the 8-day images within this month. This “max” composite 

approach might slightly overestimate the monthly mean water area value. However, given that 

the water area variation within a month is relatively small for large reservoirs (except when 

there is flooding), the monthly area time series can adequately represent the long-term 

dynamics of the reservoir.  

3.2 Algorithms for reservoir elevation and storage 

The enhanced area values (𝐴𝑉𝐼𝐼𝑅𝑆 ) were applied to the Area-Elevation (A-E) relationship 

(Equation (1)) to calculate the corresponding elevation values (ℎ𝑉𝐼𝐼𝑅𝑆). For each given reservoir, 

the A-E relationship function, 𝑓(), was adopted from the Global Reservoir Bathymetry Dataset 

(GRBD; Li et al. (2020)). 

  ℎ𝑉𝐼𝐼𝑅𝑆 = 𝑓(𝐴𝑉𝐼𝐼𝑅𝑆)     (1) 

The corresponding reservoir storage can be estimated using Equation (2) (after Gao et al. 

(2012)): 

𝑉𝑉𝐼𝐼𝑅𝑆 =  𝑉𝑐 − (𝐴𝑐 + 𝐴𝑉𝐼𝐼𝑅𝑆)(ℎ𝑐 − ℎ𝑉𝐼𝐼𝑅𝑆) 2⁄                                 (2) 
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where 𝑉𝑐 , 𝐴𝑐 , and ℎ𝑐  represent storage, area, and water elevation values at capacity (see 

appendix A); and 𝑉𝑉𝐼𝐼𝑅𝑆, 𝐴𝑉𝐼𝐼𝑅𝑆, and ℎ𝑉𝐼𝐼𝑅𝑆 are the estimated storage, area, and water elevation 

from VIIRS.   

3.3  Algorithms for evaporation rate and volume 

3.3.1 Calculating evaporation rate 

We employed the LTEM to estimate monthly evaporation rates, which incorporates the 

Penman equation while accounting for heat storage and fetch effects. To drive the LTEM 

model, we obtained the 8-day day/night land surface temperature (LST) data and 

meteorological forcing data from the GLDAS. The detailed algorithm for estimating the 

evaporation rate (for VNP28C3/VJ128C3) is same as explained in MODIS ATBD (Zhao et al., 

2021). To get more detailed information about evaporation estimation, please refer to Zhao et 

al. (2020) and (2021). 

3.3.2 Calculating volumetric evaporation 

After calculating the evaporation rate time series, the volumetric evaporation can be inferred 

as a function of the evaporation rate and reservoir area. In the case of MODIS version (i.e., 

MOD28C3), the evaporation volume was calculated by multiplying the evaporation rate with 

the enhanced surface area. However, in high-latitude regions, the enhanced surface area may 

include both open water and ice-covered areas. As the evaporation loss is negligible for the ice-

covered portion, for VIIRS, we improved the estimation of evaporation volume by multiplying 

the evaporation rate with only the fraction of the open water area (Equation 3). The composite 

QA band, as described earlier, was used to distinguish between open-water pixels and those 

covered by ice. 

𝑉𝐸 = 𝐸 × 𝐴                                                                  (3) 

Where 𝑉𝐸 is volumetric evaporation, 𝐸 is the evaporation rate (mm/d) and 𝐴 is the open water 

area (km2). 

4. Input Datasets 

The input datasets include three categories: reservoir shapefiles, input variables, and reservoir 

parameters. The details of these inputs can be found in the following sub-sections. 



12 
 

4.1 Reservoir shapefiles 

 The reservoir shapefiles were adopted from HydroLAKES (Messager et al., 2016)  and 

OpenStreetMap (Haklay & Weber, 2008). For a given reservoir, the two shapefiles were 

compared and the one with the larger area was selected. By leveraging these two shapefile 

datasets, the possible underestimations from either of them can be eliminated. It should be 

noted that we manually corrected some polygons that were found to have large discrepancies 

from Google maps. The purposes of the shapefiles are two-fold: for extracting the 

meteorological data over the reservoirs and for generating reservoir masks.  

4.2 Input variables 

The time varying input variables are from other VIIRS products and meteorological data, which 

are summarized in Table 1. 

Table 1. Summary of the input variable names, sources and purposes used in this study. 

The land surface temperature contains day/night surface temperature for inland water areas. 

(1) Inputs from other VIIRS products 

For VNP28C2, the 8-day surface reflectance (VNP09H1; Vermote et al., 2016) data were 

collected for water area extraction. Specially, only the near-infrared (NIR) band was used due 

to its high spatial resolution (i.e., 500 m for VIIRS). The NIR band has been commonly utilized 

Data Spatial 

resolution 

Temporal 

resolution 

Purpose Reference 

VIIRS surface reflectance 

(VNP09H1/VJ109H1) 

500 m 8-day Water area 

extraction 

Vermote et 

al., 2016 

VIIRS LST 

(VNP21A2/VJ121A2) 

1 km 8-day WST extraction Hulley & 

Hook, 

2018 

GLDAS-2.1 0.25° 1-month Meteorological 

forcing data for 

LTEM 

Beaudoing 

& Rodell, 

2020; 

Rodell et 

al., 2004 
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for the extraction of water bodies because it is strongly absorbed by water but scarcely absorbed 

by terrestrial dry soil and vegetation (McFeeters, 1996). The A-E relationships were adopted 

from GRBD (Li et al., 2020), which have proven to be of high quality through validation 

against in situ data. Then, the 8-day water area estimations were applied to the A-E 

relationships to derive elevation and storage values. Moreover, we used the 8-day day/night 

land surface temperature (LST) products (VNP21A2; Hulley & Hook, 2018) and Global Land 

Data Assimilation System (GLDAS; Rodell et al., 2004) meteorological forcing data to 

estimate the evaporation rates and volumes.  

(2) Meteorological data 

We obtained the meteorological data from the NASA GLDAS Version 2.1 (GLDAS-2.1; 

Rodell et al., 2004; Beaudoing and Rodell, 2020) to drive the LTEM. In this version GLDAS 

is forced with a combination of model and observation data from 2012 to present. For instance, 

it was forced with National Oceanic and Atmospheric Administration (NOAA)/Global Data 

Assimilation System (GDAS) atmospheric analysis fields (Derber et al., 1991), the 

disaggregated Global Precipitation Climatology Project (GPCP) precipitation fields (Adler et 

al., 2003), and the Air Force Weather Agency's AGRicultural METeorological modeling 

system (AGRMET) radiation fields which became available for March 1, 2001 onwards. We 

used monthly downward shortwave radiation (W/m2), air temperature (in K), specific humidity 

(in kg/kg), and wind speed (in m/s) data from 2012 to present, with a spatial resolution of 0.25 

degree to drive the LTEM. For any reservoir covering multiple GLDAS grids, the 

meteorological forcings were first averaged over those grids. 

4.3 Reservoir parameters 

The following reservoir parameters are used for generating the products: storage at capacity, 

elevation at capacity, surface area at capacity, A-E relationship, average reservoir depth, and 

average latitude. Detailed information for each reservoir is provided in appendix A. More 

details about the algorithms for generating the A-E relationships are available in Li et al. 

(2020).  

5. Results and Uncertainties 

5.1 Validation results 

5.1.1 Comparing VIIRS water surface areas with MODIS and Landsat measurements 
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Since elevation and storage are estimated by applying A-E relationships on the surface area, 

it is crucial to first evaluate the reservoir surface area. The long-term records of the in-situ 

reservoir area are still lacking on a global scale. Therefore, we compared the monthly VIIRS 

surface area (VNP28C3/VJ128C3) with MODIS (MOD28C3) and Landsat-based Global 

Reservoir Surface Area Dataset (GRSAD; Zhao and Gao, 2018) during their overlapping 

periods (2012-2021 for MODIS and 2012-2018 for Landsat). The GRSAD dataset was 

developed after correcting the water area underestimation of the GSW dataset caused by both 

cloud/shadow/ice contamination and the Landsat-7 scan line corrector failure. 

We find VIIRS based surface area shows good agreement with the MODIS-based surface 

area with an R2 value of 0.99. The Relative Bias (RB) between the VNP and MOD as well as 

between VJ1 and MOD were found to be around -5% (Figure 5). The negative bias represents 

a slight underestimation of the VIIRS area as compared to the MODIS. This underestimation 

can be attributed to differences in the sensors (different resolutions) and algorithms 

generating surface area. The VIIRS-based product uses a different classification algorithm 

than MODIS and accounts for the terrain shadow effect that the MODIS-based product does 

not. The exclusion of the terrain shadow effect in the algorithm could overestimate the 

surface area in the lakes located in the mountainous region.  

We also find good agreement between VIIRS and Landsat-based surface area, with an R2 

value of 0.99 and RB value of 1.97% (Figure 5). Most of the points centered on the 

regression line (slope=1.01); however, there are a few disagreements. This could be because 

the collection dates and methods to derive the monthly area from Landsat and VIIRS differ. It 

could also be due to the relatively low spatial resolution of VIIRS, which makes it more 

susceptible to mixed pixels in relatively small reservoirs (Li et al., 2021) Overall, the VIIRS-

based area exhibits satisfactory consistency with other satellite datasets. 

 

Figure 5. The evaluation of the monthly VIIRS reservoir surface area. (A) The comparison of 

the monthly area estimations between MODIS (Terra) and VIIRS (SNPP) from 2012 to 2021 
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for the 164 reservoirs, (B) same as (A) but for JPSS-1 from March 2020 to December 2021, 

(C) same as (A) but between VIIRS (SNPP) and Landsat from 2012-2018. Lake Baikal is 

excluded from the figure and analysis due to its extremely large values. 

5.1.2. Evaluation of the VIIRS elevation and storage products  

We evaluated the remotely sensed elevation and storage from VIIRS with MODIS and the in-

situ observations at twelve Indian reservoirs, for which the daily and monthly in-situ data 

were obtained from the Indian Central Water Commission (CWC: http://cwc.gov.in/, 

accessed on 2nd May 2022) between 2012 and 2021. To validate the 8-day product, we 

considered the daily in-situ observation of the same date as VIIRS. For the evaluation of the 

monthly product, we used monthly averaged in-situ observations from CWC. We selected the 

Indian reservoirs for validation purposes due to their large variability, which can better 

evaluate the efficiency of our algorithm.  

Figures 6 and 7 show the 8-day elevation and storage validation results. We find good 

consistency of VIIRS (VNP28C2) elevation with in-situ observations, with an average R2 

value of 0.77, an average RMSE value of 3.34m, and an average NRMSE value of 13.53% 

(Figure 6). While elevation exhibits good consistency at most locations, we noticed cases of 

overestimation (i.e., Tungabhadra) and underestimation (e.g., Yeleru, Nagarjuna). These over 

and underestimations could be due to mixed pixels at the reservoir edge and uncertainties in 

the A-E relationship (coefficients). Moreover, we observed that VIIRS elevation was in good 

agreement with MODIS (MOD28C2), which can serve as a basis to establish the continuity 

of MODIS products with VIIRS products. Similar to elevation, the in-situ storage variation 

was satisfactorily captured by VIIRS, with an average R2 value of 0.84, an average RMSE 

value of 0.47 km3, and an average NRMSE value of 16.45% (Figure 7). Jayakwadi reservoir 

showed a maximum R2 value of 0.95, and Nagarjuna reservoir showed the least R2 value of 

0.76. With respect to the continuity perspective, we recognized substantial agreement 

between MODIS and VIIRS storage estimates. 
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Figure 6. Validation of VIIRS (VNP28C2) 8-day elevation (red) against the in-situ (black) 

and MODIS (MOD28C2) elevation (blue) observations for twelve Indian reservoirs from 

2012 to 2021. 
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Figure 7. Validation of VIIRS (VNP28C2) 8-day storage (red) against the in-situ (black) and 

MODIS (MOD28C2) storage (blue) observations for twelve Indian reservoirs from 2012 to 

2021. 

In a similar fashion, we validated the monthly VIIRS (VNP28C3) elevation and storage with 

the in-situ and MODIS (MOD28C3) observations. Since the monthly data is generated from 

the composite of 8-day data, they also manifest robust consistency as 8-day data (Figures 8 and 

9). VIIRS monthly reservoir area values were generated from the composited results of three 

or four 8-day area images from VNP28C2, reducing the adverse effects of cloud contamination 

at the 8-day time step and making them smoother. Regarding elevation, the VIIRS results show 

good agreement against the in-situ data with an average R2 value of 0.75, an average RMSE 

value of 2.59 m, and an average NRMSE value of 14.25% (Figure 8). As for storage, the 

validation results were also satisfactory, with an average R2 value of 0.80, an average RMSE 

value of 0.50 km3, and an average NRMSE value of 17.54% (Figure 9). The consistency 

between VIIRS and MODIS was also exceptional, highlighting that VIIRS-based reservoir 

products can replace MODIS-based reservoir products after the decommissioning of MODIS. 
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Figure 8. Validation of VIIRS (VNP28C3) monthly elevation (red) against the in-situ (black) 

and MODIS (MOD28C3, blue) observations for twelve Indian reservoirs from 2012 to 2021. 
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Figure 9. Validation of VIIRS (VNP28C3) monthly storage (red) against the in-situ (black) 

and MODIS (MOD28C3, blue) observations for twelve Indian reservoirs from 2012 to 2021. 

5.1.3. Validating the evaporation rate product against in situ observations 

We tested the VIIRS (VNP28C3) evaporation rate against the in-situ and MODIS 

(MOD28C3) evaporation rates at Lake Mead and Lake Powell in North America. The 

validation of the evaporation rate was limited by the availability of high-quality in-situ data, 

which highlights the importance of generating our operational reservoir evaporation data 

product at a global scale. We obtained the eddy covariance (EC) evaporation rate 

measurements for Lake Mead between 2012 and 2015 from the United States Geological 

Survey (USGS; Moreo, 2015) and for Lake Powell between November 2018 and December 

2021 from the Bureau of Reclamation (BoR; Holman et al., 2022).  

VIIRS captured the seasonality of the evaporation rate at both locations. At Lake Mead, the 

VIIRS evaporation rate showed good agreement with in-situ measurements with R2 value of 

0.75, RMSE value of 1.07mm/day, and NRMSE value of 18.7% (Figure 10). The evaporation 

rate from VIIRS at Lake Mead also offers good consistency with MODIS. However, at Lake 

Powell, we found low agreement of VIIRS evaporation rate with the in-situ data with R2 
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value of 0.37, RMSE value of 1.58 mm/day, and NRMSE value of 37.58% (Figure 10). This 

can be attributed to differences in the method used to obtain the evaporation rate. While in-

situ data were measured using the eddy covariance method, the VIIRS evaporation rate was 

estimated using the LTEM model that accounts for a heat storage effect. Although this can 

lead to bias in absolute values of evaporation rates, the overall seasonality was well captured 

in both cases.  

Similar to other variables, MODIS and VIIRS evaporation rate estimates show good 

consistency (Figure 10). The slight differences in MODIS and VIIRS-based evaporation rate 

values could be due to differences in sensors and LST products used in LTEM. Zhao et al. 

2020 validated the MODIS evaporation rate or water temperature profiles at eleven locations 

located in different climates, which cover a good range of sizes, depths, and elevations, and 

thus are representative for testing the robustness of LTEM. They found a satisfactory 

performance of MODIS-based evaporation rate against the in-situ observations. As most of 

those in-situ data were unavailable after 2012 (after the launch of VIIRS), we could not 

validate the VIIRS evaporation rate at more locations. However, since MODIS and VIIRS 

show good consistency for the overlapping period, we anticipate that the VIIRS evaporation 

rate should be able to offer substantial agreement at other locations. 
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Figure 10. Comparison of the VIIRS (VNP28C3) evaporation rates (red) against the in-situ 

data (black) and MODIS (MOD28C3) observations (blue) at (A) Lake Mead and (B) Lake 

Powell. In-situ data were measured using eddy covariance (EC) measurements for Lake Mead 

from 2012 to 2015 and for Lake Powell from November 2018 to December 2021. 

4.2 Sources of uncertainties 

The sources of uncertainty with regard to the VIIRS reservoir surface area are associated with 

both the raw image classification using the VIIRS reflectance product, and the classification 

enhancement algorithm. The accuracy of the Otsu classification of the VIIRS NIR images is 

affected by the mixed pixels (i.e., partially covered by water and partially covered by land) at 

the reservoir boundaries, terrain shadow pixels, as well as by ice over the lakes. The reliability 

of the enhancement algorithm depends on the data quality of both the water occurrence image 

and the raw water classification. In high latitude regions, the water occurrence image generally 
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shows small surface area dynamics (i.e., the distribution of occurrence values highly skewed 

to the left). Thus, the pixels with low occurrence values have relatively large uncertainties.  The 

accuracy of classification is heavily influenced by confounding pixels, such as clouds, snow/ice, 

and terrain shadows, therefore, the contamination percentage value provided in the product 

serve can serve as a director indicator of uncertainty.  

The reservoir elevation and storage estimation uncertainties include reservoir surface area 

uncertainties (see above), A-E relationship uncertainties, and the reservoir configuration 

uncertainties. According to Equation (2), the estimated storage will be biased if the 

characteristics at capacity (storage, area, and elevation) are not accurate. Even when these 

factors have been correctly documented, the storage capacity may have changed due to 

sedimentation over time. Since the reservoir elevations are inferred only from areas and A-E 

relationships, they are not affected by reservoir configuration uncertainties.  

Sources of evaporation rate uncertainty mainly include forcing data uncertainty and model 

structure/parameter uncertainty. Specifically, the forcing data used in this study (i.e. GLADS-

2) is a land-based meteorological record. Although the increased humidity on the lake surface 

is represented by the wind function (McJannet et al., 2012; Zhao & Gao, 2019), differences in 

the wind speeds between lake and land regions are ignored—which might introduce some 

uncertainties (Schwab & Morton, 1984). In addition, the LTEM and its parameters can also 

produce uncertainties. For example, the formulation of the light attenuation coefficient 

(λ_PAR) is simplified in Zhao et al. (2020). However, λ_PAR is affected by suspended solids, 

phytoplankton concentration level, and spectral distribution of solar radiation, and thus is 

constantly changing (Lee et al., 2005; Pinhassi et al., 2016).  

The reservoir volumetric evaporation uncertainties can be attributed to evaporation rate and 

surface area uncertainties, which have been discussed above. 
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Appendix-A 

Table A1. List of the 164 reservoirs and their attributes 

ID 

GRA

ND_

ID 

Hyla

k_id 

 

Res_name Country 
Contine

nt 
a,b 

storag

e new 

area 

new 

elevatio

n new 

Capacity

_source 
lon,lat 

1 5058 11 
 

Baikal Russia Asia 
0.00447, 

312.77026 

23615.

39 

3226

5.61 
456.88 GRanD 

104.32, 

52.24 

2 3667 156 
 

Volta Ghana Africa 
0.00365, 

55.58562 
148 8502 86.65 wikipedia 

0.06, 

6.3 

3 4478 152 
 

Nasser Egypt Africa 
0.00469, 

152.81994 
162 6500 183.28 literature 

32.89, 

23.97 

4 4056 172 
 

Kariba Reservoir Zambia Africa 
0.01119, 

424.98467 
180 5400 485.41 wikipedia 

28.76, -

16.52 

5 5055 110 
 

Bratsk Reservoir Russia Asia 
0.00657, 

367.92163 
169.27 5470 403.85 wikipedia 

101.78, 

56.29 

6 4787 122 
 

Zaysan Kazakhstan Asia 
0.00465, 

370.20585 
49.8 5490 395.74 GRanD 

83.35, 

49.66 

7 2294 73 
 

Guri Reservoir Venezuela 
South 

America 

0.0144, 

217.16716 
135 4250 278.38 wikipedia 

-63, 

7.77 

8 1995 43 
 Caniapiscau 

Reservoir 
Canada 

North 

America 

0.01218, 

488.99841 
53.79 4275 541.08 GRanD 

-69.78, 

54.85 

9 1394 46 
 Robert Bourassa 

Reservoir 
Canada 

North 

America 

0.0111, 

143.99061 
61.7 2905 176.24 

Hydro-

Québec 

-77.45, 

53.79 

10 2516 77 
 Sobradinho 

Reservoir 
Brazil 

South 

America 

0.00571, 

375.26816 
34.1 

3017

.9 
392.5 GRanD 

-40.82, -

9.42 

11 712 51 
 

Cedar Canada 
North 

America 

0.00217, 

250.49224 
9.64 

2668

.46 
256.29 GRanD 

-99.29, 

53.16 

12 1396 47 
 La Grande 3 

Reservoir 
Canada 

North 

America 

0.02539, 

195.25843 
60 2451 257.48 

Hydro-

Québec 

-75.96, 

53.73 
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13 2365 76 
 Tucurui 

Reservoir 
Brazil 

South 

America 

0.01322, 

40.95573 
45.5 2606 75.4 GRanD 

-49.65, -

3.83 

14 4375 128 
 Tsimlyanskoye 

Reservoir 
Russia Euro 

0.01177, 

7.63989 
23.86 2702 39.44 literature 

42.11, 

47.61 

15 5834 115 
 Zeyskoye 

Reservoir 
Russia Asia 

0.02065, 

266.43675 
68.4 2420 316.41 wikipedia 

127.31, 

53.77 

16 5180 96 
 

Vilyuy Reservoir Russia Asia 
0.02852, 

182.74156 
35.9 2170 244.62 wikipedia 

112.48, 

63.03 

17 4783 93 
 Khantayskoye 

Reservoir 
Russia Asia 

0.00445, 

49.76375 
23.5 

2221

.61 
59.64 GRanD 

87.81, 

68.16 

18 4505 171 
 Cahora Bassa 

Reservoir 
Mozambique Africa 

0.01542, 

286.9568 
55.8 2739 329.18 wikipedia 

32.7, -

15.58 

19 6 40 
 

Williston Canada 
North 

America 

0.0529, 

580.99344 
39.47 1773 674.79 literature 

-122.2, 

56.02 

20 4472 144 
 Buhayrat ath 

Tharthar 
Iraq Asia 

0.03955, -

19.46261 
85.59 

2135

.54 
65 literature 

43.46, 

33.69 

21 5056 112 
 Krasnoyarsk 

Reservoir 
Russia Asia 

0.03863, 

162.77316 
73.3 2000 240.04 wikipedia 

92.29, 

55.93 

22 4623 106 
 

Kama Reservoir Russia Euro 
0.00744, 

96.07894 
12.2 1915 110.32 wikipedia 

56.34, 

58.12 

23 1957 69 
 

Okeechobee 
United States of 

America 

North 

America 

0.00617, -

5.57499 
3.546 

1536

.8 
3.9 wikipedia 

-81.1, 

26.94 

24 5295 145 
 

Hungtze China Asia 
0.00749, 

1.45816 
13.5 

2074

.61 
17 literature 

118.73, 

33.09 

25 4474 146 
 

Razazah Iraq Asia 
0.01457, 

11.06852 
25.75 1621 34.69 literature 

43.89, 

32.7 

26 2023 60 
 

Gouin Reservoir Canada 
North 

America 

0.00068, 

402.90611 
8.57 1570 403.98 GRanD 

-74.1, 

48.36 

27 4789 135 
 Qapshaghay 

Bogeni Reservoir 
Kazakhstan Asia 

0.00897, 

467.10974 
28.1 1850 483.71 GRanD 

77.1, 

43.92 

28 753 62 
 Fort Berthold 

Reservoir 

United States of 

America 

North 

America 

0.02467, 

528.64792 
29.38 

1477

.4 
565.1 wikipedia 

-101.43, 

47.51 
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29 2445 83 
 

Aperea Reservoir Paraguay 
South 

America 

0.02242, 

48.84199 
21 1600 84.71 literature 

-56.63, -

27.39 

30 870 65 
 

Oahe 
United States of 

America 

North 

America 

0.02172, 

462.72715 
28.35 

1429

.57 
493.78 wikipedia 

-100.4, 

44.46 

31 2390 80 
 Ilha Solteira 

Reservoir 
Brazil 

South 

America 

0.03237, 

290.94542 
21.17 1200 329.78 GRanD 

-51.38, -

20.37 

32 4629 118 
 

Saratov Reservoir Russia Euro 
0.02563, -

0.27741 
12.9 

1117

.7 
28.36 GRanD 

47.76, 

52.05 

33 4350 94 
 

Imandra Russia Euro 
0.18726, -

62.86735 
10.8 

1062

.37 
136.07 GRanD 

32.55, 

67.41 

34 3640 155 
 

Kainji Reservoir Nigeria Africa 
0.03997, 

93.99579 
15 

1071

.23 
136.81 wikipedia 

4.61, 

9.87 

35 4785 113 
 

Novosibirskoye Russia Asia 
0.01419, 

98.78019 
8.8 1070 113.97 wikipedia 

83, 

54.84 

36 4625 111 
 

Cheboksary Russia Euro 
0.02447, 

39.29789 
13.85 

1080

.38 
65.73 literature 

47.46, 

56.14 

37 4359 1163 
 

Ilmen Russia Euro 
0.0083, 

9.98411 
12 1120 19.28 wikipedia 

31.28, 

58.46 

38 4480 1527 
 Jebel Aulia 

Reservoir 
Sudan Africa 

0.00624, 

375.01032 
3.5 

861.

19 
380.39 FAO 

32.48, 

15.24 

39 1397 623 
 Opinaca 

Reservoir 
Canada 

North 

America 

0.02118, 

194.07727 
8.5 1040 216.1 wikipedia 

-76.58, 

52.21 

40 2392 943 
 

Furnas Brazil 
South 

America 

0.0437, 

720.07262 
22.59 

1127

.07 
769.32 wikipedia 

-46.31, -

20.67 

41 2368 922 
 Serra da Mesa 

Reservoir 
Brazil 

South 

America 

0.03356, 

410.19963 
54.4 1784 470.07 wikipedia 

-48.3, -

13.84 

42 4624 1169 
 Votkinsk 

Reservoir 
Russia Euro 

0.03892, 

53.1356 
9.4 

850.

82 
86.25 wikipedia 

54.08, 

56.8 

43 6201 1632 
 

Argyle Reservoir Australia Oceania 
0.02806, 

66.43617 
10.76 

981.

21 
93.97 wikipedia 

128.74, 

-16.12 

44 731 710 
 

Rainy Canada 
North 

America 

0.00078, 

336.08674 
0.69 

829.

45 
336.73 GRanD 

-93.36, 

48.62 
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45 307 721 
 

Fort Peck 
United States of 

America 

North 

America 

0.04376, 

643.31691 
22.77 

969.

86 
685.76 wikipedia 

-106.41, 

48 

46 2375 928 
 Tres Marias 

Reservoir 
Brazil 

South 

America 

0.03553, 

539.11233 
21 1040 576.06 wikipedia 

-45.27, -

18.21 

47 2012 697 
 Pipmuacan 

Reservoir 
Canada 

North 

America 

0.0498, 

360.46403 
13.9 978 409.16 wikipedia 

-69.77, 

49.36 

48 4679 1307 
 

Chardarinskoye Kazakhstan Asia 
0.01786, 

238.24413 
5.7 

800.

66 
252.54 wikipedia 

67.96, 

41.25 

49 4626 1175 
 Nizhnekamsk 

Reservoir 
Russia Euro 

0.0138, 

50.37324 
13.8 1084 65.34 wikipedia 

52.28, 

55.7 

50 2456 966 
 

Negro Reservoir Uruguay 
South 

America 

0.0194, 

62.00777 
8.8 1070 82.77 wikipedia 

-56.42, -

32.83 

51 2343 981 
 

Chocon Reservoir Argentina 
South 

America 

0.01519, 

365.74893 
22 820 378.2 GRanD 

-68.76, -

39.27 

52 4442 1348 
 

Ataturk Dam Turkey Asia 
0.10643, 

454.25042 
48.7 817 541.2 GRanD 

38.32, 

37.49 

53 2513 915 
 Itaparica 

Reservoir 
Brazil 

South 

America 

0.03337, 

279.33376 
10.7 

781.

21 
305.4 wikipedia 

-38.31, -

9.14 

54 4464 1365 
 

Assad Syria Asia 
0.05942, 

266.62629 
11.7 610 302.87 wikipedia 

38.55, 

35.86 

55 3650 1558 
 

Lagdo Reservoir Cameroon Africa 
0.0374, 

190.15542 
7.7 

691.

12 
216 FAO 

13.69, 

9.06 

56 1269 838 
 Toledo Bend 

Reservoir 

United States of 

America 

North 

America 

0.02039, 

39.45546 
5.52 

636.

18 
52.43 wikipedia 

-93.57, 

31.18 

57 6922 624 
 Eastmain 

Reservoir 
Canada 

North 

America 

0.06785, 

245.91598 
6.94 

602.

9 
286.82 literature 

-75.89, 

52.19 

58 2009 688 
 Outardes 4 

Reservoir 
Canada 

North 

America 

0.19049, 

239.61011 
24.5 640 361.53 

Hydro-

Québec 

-68.91, 

49.71 

59 4349 1036 
 

Kovdozero Russia Euro 
0.00193, 

78.17686 
11.52 745 79.62 GRanD 

31.76, 

68.6 

60 2380 931 
 Sao Simao 

Reservoir 
Brazil 

South 

America 

0.0523, 

369.16877 
12.5 703 405.94 wikipedia 

-50.5, -

19.02 
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61 610 809 
 

Mead 
United States of 

America 

North 

America 

0.13619, 

288.76038 
34.07 

659.

3 
374.6 USBR 

-114.73, 

36.02 

62 5087 1473 
 

Yamdrok China Asia 
0.01275, 

4435.35521 
14.6 638 4443.49 literature 

90.38, 

29.1 

63 1391 866 
 Angostura 

Reservoir 
Mexico 

North 

America 

0.08079, 

478.95889 
18.2 640 530.67 wikipedia 

-92.78, 

16.4 

64 4991 1524 
 Srisailam 

Reservoir 
India Asia 

0.03079, 

253.3044 
8.29 

534.

05 
269.75 CWC 

78.9, 

16.09 

65 2455 964 
 

Grande Reservoir Argentina 
South 

America 

0.03068, 

16.88963 
5 

592.

83 
35.08 wikipedia 

-57.94, -

31.27 

66 4843 1484 
 Gandhisagar 

Reservoir 
India Asia 

0.03366, 

379.03449 
6.83 

619.

89 
399.9 CWC 

75.55, 

24.7 

67 2397 946 
 Promissao 

Reservoir 
Brazil 

South 

America 

0.08038, 

342.73167 
7.41 

513.

39 
384 GRanD 

-49.78, -

21.3 

68 282 698 
 

Arrow Canada 
North 

America 

0.17477, 

351.0668 
10.3 

504.

82 
439.3 USACE 

-117.78, 

49.34 

69 2382 934 
 Agua Vermelha 

Reservoir 
Brazil 

South 

America 

0.05626, 

351.61681 
11.03 

563.

15 
383.3 wikipedia 

-50.35, -

19.87 

70 4898 1502 
 Hirakud 

Reservoir 
India Asia 

0.02204, 

177.26302 
5.38 

669.

62 
192.02 CWC 

83.85, 

21.52 

71 3041 1568 
 Kossour 

Reservoir 
Ivory Coast Africa 

0.03423, 

169.77945 
27.68 

1058

.2 
206 GRanD 

-5.47, 

7.03 

72 4784 1058 
 

Kureiskaya Russia Asia 
0.04971, 

67.89284 
9.96 558 95.63 literature 

88.29, 

66.95 

73 3071 1104 
 

Storsjon Sweden Euro 
0.00422, 

291.0872 
0.5 

484.

6 
293.13 GRanD 

14.47, 

63.3 

74 316 730 
 

Flathead Lake 
United States of 

America 

North 

America 

0.13239, 

816.09051 
23.2 510 883.61 wikipedia 

-114.23, 

47.68 

75 2004 661 
 

Kempt Canada 
North 

America 

0.03312, 

478.60112 
2.22 

470.

44 
494.18 GRanD 

-70.53, 

50.66 

76 6700 1123 
 

Kolyma dam Russia Asia 
0.13658, 

390.9085 
15.08 

454.

6 
453 wikipedia 

150.23, 

62.05 
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77 4501 1612 
 

Mtera Reservoir 
United Republic of 

Tanzania 
Africa 

0.02183, 

688.04662 
3.2 

478.

83 
698.5 literature 

35.98, -

7.14 

78 4686 1320 
 

Kayrakkumskoye Tajikistan Asia 
0.02143, 

335.23897 
4.2 513 346.23 wikipedia 

69.82, 

40.28 

79 250 628 
 

Kinbasket Canada 
North 

America 

0.31717, 

622.76738 
24.76 430 759.15 wikipedia 

-118.57, 

52.08 

80 4634 1313 
 

Mingechaurskoye Azerbaijan Asia 
0.07215, 

42.01887 
15.73 

567.

97 
83 wikipedia 

47.03, 

40.8 

81 2431 956 
 Lago del Río 

Yguazú 
Paraguay 

South 

America 

0.04517, 

203.13232 
8.47 620 231.14 wikipedia 

-54.97, -

25.37 

82 4858 1487 
 Govind Ballabah 

Pant 
India Asia 

0.06208, 

241.75327 
5.65 

426.

36 
268.22 CWC 83, 24.2 

83 4422 1332 
 

Keban Baraji Turkey Asia 
0.11302, 

772.50564 
30.6 675 848.79 wikipedia 

38.76, 

38.81 

84 2340 978 
 

Los Barreales Argentina 
South 

America 

0.30759, 

290.07305 
27.7 413 417.11 literature 

-68.69, -

38.58 

85 4859 1488 
 

Bansagar Lake India Asia 
0.05088, 

317.64432 
5.17 

471.

6 
341.64 CWC 

81.29, 

24.19 

86 1275 839 
 Sam Rayburn 

Reservoir 

United States of 

America 

North 

America 

0.0355, 

35.65711 
3.55 

455.

64 
50.11 TWDB 

-94.11, 

31.07 

87 2414 953 
 

Barra Bonita Brazil 
South 

America 

0.00228, 

565.24837 
7.01 542 566.48 GRanD 

-49.23, -

23.21 

88 4739 1504 
 

Ukal India Asia 
0.04229, 

83.59772 
6.62 

509.

85 
105.16 CWC 

73.6, 

21.26 

89 479 788 
 

Utah Lake 
United States of 

America 

North 

America 

0.02307, 

1359.51211 
1.07 380 1368.28 wikipedia 

-111.89, 

40.36 

90 305 719 
 

Pend Oreille Lake 
United States of 

America 

North 

America 

0.22845, 

541.65792 
54.2 

381.

47 
628.8 wikipedia 

-117, 

48.18 

91 4994 1526 
 

Tungabhadra India Asia 
0.04122, 

483.33699 
3.28 

349.

42 
497.74 CWC 

76.33, 

15.27 

92 4461 1355 
 

Mosul Dam Lake Iraq Asia 
0.16032, 

273.38375 
11.1 

353.

16 
330 wikipedia 

42.83, 

36.63 
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93 4470 1392 
 

Habbaniyah Iraq Asia 
0.07125, 

114.61642 
8.2 

418.

4 
144.43 literature 

42.35, 

34.21 

94 4946 1509 
 Sriramsagar 

Reservoir 
India Asia 

0.04005, 

319.94975 
2.3 

314.

38 
332.54 CWC 

78.34, 

18.97 

95 2376 929 
 

Lago das Brisas Brazil 
South 

America 

0.08818, 

471.03368 
17 

559.

6 
520.38 wikipedia 

-49.1, -

18.41 

96 2356 720 
 

Meelpaeg Canada 
North 

America 

0.0041, 

269.35893 
2.16 

314.

9 
270.65 GRanD 

-56.78, 

48.17 

97 4260 1678 
 Hendrik 

Verwoerd 
South Africa Africa 

0.06907, 

1236.10289 
5.34 374 1261.93 wikipedia 

25.5, -

30.62 

98 1387 864 
 

Malpaso Mexico 
North 

America 

0.30032, 

89.06386 
9.17 

309.

45 
182 literature 

-93.6, 

17.18 

99 1379 861 
 

Inhernillo Mexico 
North 

America 

0.14118, 

116.65544 
12 400 173.13 wikipedia 

-101.89, 

18.27 

100 4184 1657 
 

Vaaldam South Africa Africa 
0.0358, 

1472.81742 
2.61 320 1484.27 wikipedia 

28.12, -

26.88 

101 5062 1358 
 

Longyangxia China Asia 
0.18321, 

2518.97907 
24.7 383 2589.15 wikipedia 

100.92, 

36.12 

102 3727 1111 
 

Hoytiainen Finland Euro 
0.0064, 

86.17122 
2.39 293 88.05 GRanD 

29.48, 

62.83 

103 1423 741 
 

Baskatong Canada 
North 

America 

0.05663, 

207.28526 
2.63 280 223.14 GRanD 

-75.98, 

46.72 

104 5803 1549 
 

Tri An Lake Vietnam Asia 
0.07216, 

39.48203 
2.76 323 62.79 wikipedia 

107.04, 

11.11 

105 2007 680 
 

Peribonka Canada 
North 

America 

0.10611, 

411.5385 
5.18 

270.

72 
440.26 GRanD 

-71.25, 

49.9 

106 4942 1507 
 

Jayakwadi India Asia 
0.03201, 

451.67121 
2.17 

382.

39 
463.91 CWC 

75.37, 

19.49 

107 3638 1554 
 

Shiroro Nigeria Africa 
0.08602, 

350.89662 
7 312 377.73 FAO 

6.84, 

9.97 

108 4379 1289 
 

Tshchikskoye Russia Euro 
0.06161, 

16.03972 
3.05 

286.

28 
33.68 FAO 

39.12, 

44.99 
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109 710 589 
 

Tobin Canada 
North 

America 

0.00897, 

311.22766 
2.2 

263.

86 
313.59 GRanD 

-103.4, 

53.66 

110 5796 1528 
 

Noi Thailand Asia 
0.05709, 

129.50217 
1.97 288 145.94 wikipedia 

105.43, 

15.21 

111 4483 1543 
 Roseires 

Reservoir 
Sudan Africa 

0.02506, 

475.84407 
7.4 450 487.12 wikipedia 

34.39, 

11.8 

112 4675 1306 
 

Toktogul'skoye Kyrgyzstan Asia 
0.55471, 

743.53409 
19.5 

284.

3 
901.24 wikipedia 

72.65, 

41.68 

113 6698 1700 
 

Gordon Australia Oceania 
0.37007, 

208.53588 
12.4 278 311.42 wikipedia 

145.98, 

-42.73 

114 4964 1513 
 

Ujani India Asia 
0.05453, 

482.16622 
1.52 

268.

91 
496.83 CWC 

75.12, 

18.07 

115 2312 959 
 

Hondo Argentina 
South 

America 

0.02922, 

266.72004 
1.74 330 276.36 WLDB 

-64.89, -

27.52 

116 4362 1171 
 Ivankovo 

Reservoir 
Russia Euro 

0.01794, 

119.50914 
1.17 

220.

57 
123.47 GRanD 

37.12, 

56.73 

117 4702 1398 
 

Tarbela Pakistan Asia 
0.52839, 

351.45663 
13.69 250 483.55 wikipedia 

72.69, 

34.09 

118 4985 1519 
 

Nagarjuna India Asia 
0.29044, 

100.77784 
6.84 

272.

18 
179.83 wikipedia 

79.31, 

16.57 

119 3070 1102 
 

Kallsjon Sweden Euro 
0.02782, 

387.52135 
0.45 

189.

74 
392.8 GRanD 

13.34, 

63.43 

120 4431 1337 
 

Karakaya Turkey Asia 
0.22073, 

631.76449 
9.5 298 697.54 wikipedia 

39.14, 

38.23 

121 4792 1423 
 

Beas India Asia 
0.20473, 

371.49329 
6.16 

254.

85 
423.67 CWC 

75.95, 

31.97 

122 4047 1622 

 

Tshangalele 

Democratic 

Republic of the 

Congo 

Africa 
0.03102, 

1119.03312 
1.267 

225.

65 
1126.03 GRanD 

27.24, -

10.75 

123 4485 1555 
 

Finchaa Ethiopia Africa 
0.01891, 

2216.55235 
0.65 

196.

13 
2220.26 FAO 

37.36, 

9.56 
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124 4989 1521 
 

Almatti India Asia 
0.05275, 

504.12335 
3.11 

293.

42 
519.6 CWC 

75.89, 

16.33 

125 4707 1408 
 

Mangla Pakistan Asia 
0.20109, 

320.1312 
9.12 251 370.6 wikipedia 

73.64, 

33.15 

126 4836 1481 
 

Rana Pratap India Asia 
0.1391, 

324.74 
1.44 

197.

66 
352.81 CWC 

75.58, 

24.92 

127 3014 1545 
 

Bagre Burkina Faso Africa 
0.05719, 

223.53693 
1.7 255 238.12 literature 

-0.55, 

11.47 

128 1991 916 
 

Junin Peru 
South 

America 

0.02312, 

4079.83703 
1.08 

206.

71 
4084.62 WLDB 

-76.19, -

10.98 

129 4881 1496 
 Bargi Dam 

Reservoir 
India Asia 

0.08518, 

401.51078 
3.18 

236.

24 
422.76 CWC 

79.93, 

22.95 

130 6686 1699 
 

Great Lake Australia Oceania 
0.40346, 

969.53157 
3.36 176 1040.54 GRanD 

146.73, 

-41.98 

131 6800 1704 
 

Hawea New Zealand Oceania 
0.14631, 

323.54085 
2.18 150 345.49 GRanD 

169.25, 

-44.61 

132 3676 1619 
 Albufeira da 

Quiminha 
Angola Africa 

0.13121, 

34.99206 
1.56 

129.

05 
51.93 GRanD 

13.79, -

8.96 

133 6629 1695 
 

Eucumbene Australia Oceania 
0.46484, 

1097.64507 
4.8 

145.

42 
1165.24 wikipedia 

148.62, 

-36.13 

134 1320 855 
 

Falcon Reservoir 
United States of 

America 

North 

America 

0.06972, 

71.73912 
3.88 

311.

84 
93.48 TWDB 

-99.17, 

26.56 

135 597 802 
 

Lake Powell 
United States of 

America 

North 

America 

0.1406, 

1047.2 
30 

609.

38 
1127.76 wikipedia 

-111.49, 

36.94 

136 4463 1362 
 

Dukan Iraq Asia 
0.18893, 

462.6788 
6.97 270 513.69 wikipedia 

44.96, 

35.96 

137 1230 835 
 Cedar Creek 

Reservoir 

United States of 

America 

North 

America 

0.09423, 

85.91971 
0.8 

133.

03 
98.15 TWDB 

-96.07, 

32.18 

138 4041 1551 
 

Lake Maga Cameroon Africa 
0.01933, 

309.62551 
0.68 

148.

72 
312.5 literature 

15.05, 

10.83 

139 5157 1530 
 

Pasak Chonlasit Thailand Asia 
0.05295, 

33.58769 
0.79 

158.

87 
42 literature 

101.08, 

14.85 
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140 6594 1650 
 

Fairbairn Australia Oceania 
0.13, 

186.48395 
2.29 

179.

43 
209.81 wikipedia 

148.06, 

-23.65 

141 6628 1694 
 

Hume Australia Oceania 
0.15399, 

161.81633 
3.04 

201.

9 
192 wikipedia 

147.03, 

-36.11 

142 4500 1605 
 

Kikuletwa 
United Republic of 

Tanzania 
Africa 

0.1, 

677.01366 
0.6 

126.

33 
689.65 wikipedia 

37.47, -

3.82 

143 4958 1511 
 

Nizam sagar India Asia 
0.0893, 

419.95709 
0.5 

92.7

5 
428.24 CWC 

77.93, 

18.2 

144 6606 1690 
 

Victoria Australia Oceania 
0.16558, 

7.52685 
0.68 122 27.73 GRanD 

141.28, 

-34.04 

145 1869 826 
 

Grenada Lake 
United States of 

America 

North 

America 

0.12614, 

49.34905 
1.54 

128.

29 
65.53 

Lakes 

Online 

-89.77, 

33.82 

146 138 790 
 

Canyon 
United States of 

America 

North 

America 

0.68749, 

1300.93547 
1.61 

108.

39 
1373.12 wikipedia 

-121.09, 

40.18 

147 4638 1329 
 

Aras Dam Lake Azerbaijan Asia 
0.11845, 

762.76554 
1.35 145 779.94 wikipedia 

45.4, 

39.09 

148 4481 1529 
 

Khashm el-Girba Sudan Africa 
0.09342, 

463.08227 
1.3 125 474.76 wikipedia 

35.9, 

14.93 

149 370 8978 
 

Lake Cascade 
United States of 

America 

North 

America 

0.16232, 

1455.02068 
0.85 

101.

98 
1471.57 wikipedia 

-116.05, 

44.52 

150 3695 
1166

3 

 
Seitevare Sweden Euro 

0.62918, 

419.1852 
1.68 81 470.15 GRanD 

18.57, 

66.97 

151 4484 
1582

7 

 
Yardi Ethiopia Africa 

0.33044, 

533.59442 
2.32 

104.

87 
568.25 GRanD 

40.54, 

10.23 

152 119 9138 
 Clear Lake 

Reservoir 

United States of 

America 

North 

America 

0.19968, 

1345.80215 
0.65 

100.

36 
1365.84 wikipedia 

-121.08, 

41.93 

153 5196 
1455

1 

 
Guanting Shuiku China Asia 

0.10764, 

465.09336 
4.16 130 479.09 GRanD 

115.6, 

40.23 

154 2953 
1510

2 

 Barrage Al 

Massira 
Morocco Africa 

0.33916, 

241.40761 
2.76 80 268.54 wikipedia 

-7.64, 

32.47 

155 1319 9634 
 Venustiano 

Carranza 
Mexico 

North 

America 

0.09456, 

252.29236 
1.31 

150.

56 
266.53 literature 

-100.62, 

27.51 



38 
 

156 4471 
1500

1 

 
Lake Hamrin Iraq Asia 

0.11963, 

80.22516 
4.61 228 107.5 literature 

44.97, 

34.12 

157 4826 
1549

0 

 
Matatila India Asia 

0.10028, 

297.22136 
0.71 

112.

07 
308.46 CWC 

78.37, 

25.1 

158 1263 9503 
 

Twin Buttes 
United States of 

America 

North 

America 

0.49517, 

576.78181 
0.23 

29.4

7 
591.37 TWDB 

-100.52, 

31.37 

159 4997 
1574

8 

 
Somasila India Asia 

0.17144, 

74.32045 
1.99 

153.

17 
100.58 CWC 

79.3, 

14.49 

160 5183 
1438

9 

 Hongshan 

Reservoir 
China Asia 

0.23268, 

422.07692 
2.56 66.9 437.64 GRanD 

119.7, 

42.75 

161 6583 
1624

2 

 
Lake Ross Australia Oceania 

0.11178, 

32.60497 
0.417 82 41.77 wikipedia 

146.74, 

-19.41 

162 4978 
1569

7 

 
Yeleru Reservoir India Asia 

0.58856, 

57.51076 
0.51 

49.3

6 
86.56 CWC 

82.08, 

17.3 

163 4696 
1473

0 

 South Surkhan 

Reservoir 
Uzbekistan Asia 

0.33795, 

397.79868 
0.8 

40.2

6 
411.41 GRanD 

67.63, 

37.83 

164 5287 
1501

9 

 Zhaopingtai 

Reservoir 
China Asia 

0.35804, 

157.62551 
0.71 46.5 174.27 GRanD 

112.77, 

33.73 

 

*The 164 reservoirs include 13 regulated natural lakes, whose IDs are 1, 6, 20, 23, 33, 37, 44, 62, 73, 102, 131, 150, and 151.  

1a and b are the coefficients used in the A-E relationship equation: h=a*A + b, where h and A are elevation (m) and area (km2), respectively.  

Vc, Ac, and Ec represent storage, area, and elevation values at capacity, respectively. 

 

 


