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1. Introduction

Reservoirs serve as a lifeline in water management (e.g., irrigation, hydropower generation,
water supply, and flood control), especially under the ongoing fast population growth and
changing climate (Biemans et al., 2011; Cooke et al., 2016; Plate, 2002; Schewe et al., 2014;
Veldkamp et al., 2017). Globally, reservoirs supply about 40% of the total irrigation water
demand (Biemans et al., 2011) and contribute to more than 60% of renewable energy via
hydroelectricity (Murdock et al., 2019). Reservoir storage varies according to natural climate
variability as well as the human water use/demand for different sectors (i.e., domestic,
agricultural, and industrial). On one hand, near real-time reservoir storage monitoring is
essential for mitigating the negative effects of hydro-climatic extremes (droughts and floods)
(Mehran et al., 2015; Zhou, 2020). On the other hand, long term records of water retained by
global reservoirs can help to evaluate the human impacts on global and regional water cycles
(Lietal., 2023; Yigzaw et al., 2018; Zhou et al., 2016). However, because gauge observations
for reservoir storage (and/or elevation) are typically not shared, both aforementioned data needs

are difficult to satisfy at regional and global scales.

Among the reservoir water budget terms, reservoir evaporation accounts for a substantial
amount of the loss of available water—particularly for reservoirs in arid/semi-arid regions
(Friedrich et al., 2018). For example, the evaporation volume of Lake Tahoe (located in the
western U.S.) represents 40%—60% of the total reservoir output (Friedrich et al., 2018). The
annual evaporation rate of Lake Mead is ~1800 mm/year (Moreo, 2015), which greatly exceeds
the surrounding evapotranspiration rate (~50 mm/year) (Mu et al., 2011). At a regional scale,
the water losses due to evaporation for 200 reservoirs in Texas are equivalent to 20% of their
active storage value (Zhang et al., 2017). While only account for 5% of global lake storage
capacity, reservoirs contribute 16% to the evaporation volume (Zhao et al., 2022). Thus, it is
crucial to incorporate information about reservoir evaporation losses into existing water
management practices. Nonetheless, because reservoir evaporation information obtained
through reliable in situ measurements (e.g., eddy covariance, energy balance) is hard to acquire,
pan evaporation data (which is less accurate due to the lack of consideration of heat storage
and fetch effects) have been commonly used as an approximation (Friedrich et al., 2018). For
most developing countries, even data about pan evaporation (or its equivalent) are not

available.

This is the Algorithm Theoretical Basis Document (ATBD) for the Visible Infrared Imaging
Radiometer Suite (VIIRS) Collection 2 Global Water Reservoir (GWR) products from Soumi
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NPP (SNPP) and JPSS-1 (also known as NOAA-20) satellites. The GWR product data
associated with SNPP and JPSS-1 are named as VNP28 and VJ128, respectively. The reservoir
product is available at two temporal resolutions: 8-day (VNP28C2/VJ128C2) and monthly
(VNP28C3/VJ128C3). The ATBD for VIIRS is developed by keeping Moderate Resolution
Imaging Spectroradiometer (MODIS) ATBD (Zhao et al., 2021) as heritage/reference. It is
worth noting that most algorithms for VIIRS and MODIS GWR are similar, however, we
improved the VIIRS algorithm in some aspects to mitigate significant uncertainties arising
from ice/snow and/or terrain shadows (Shah et al., under review). The objectives of this ATBD
are: (1) to give a brief review of the current methods used for monitoring reservoirs using
satellite observations; (2) to describe the VIIRS GWR algorithms and the refinements, which
are used to generate the product at two temporal resolutions (i.e., 8-day and monthly); (3) to
introduce the required input datasets and parameters; (4) to show the validation results for that
reservoir area, elevation, storage, and evaporation rate; and (5) to discuss the sources of product

uncertainty.

2. Overview and Technical Background

Satellite remote sensing provides an alternative for filling in water reservoir data gaps. Since
the 1990s, satellite radar altimeters have been utilized to measure the water levels of large lakes
and reservoirs (Birkett, 1995). To date, several databases have been developed to monitor the
water levels of inland water bodies at a global scale—including the Global Reservoir and Lake
Monitor (G-REALM) (Birkett et al., 2011), the Hydroweb database (Crétaux et al., 2011), and
the Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 2015).
Meanwhile, the global surface area variations of lakes and reservoirs have been assessed from
various satellite instruments, such as the Landsat and MODIS (Donchyts et al., 2016;
Khandelwal et al., 2017; Li et al., 2023; Ling et al., 2020; Pekel et al., 2016; Yao et al., 2019;
Zhao et al., 2022; Zhao & Gao, 2018). Pekel et al. (2016) developed a Global Surface Water
(GSW) dataset using expert system classifiers based on Landsat observations obtained over the
last three decades. The more recently published Global Reservoir Surface Area Dataset
(GRSAD) provides monthly water area values for over 7000 reservoirs (Zhao & Gao, 2018)
which were generated by correcting the underestimations due to cloud contamination in the
GSW dataset. Khandelwal et al. (2017) generated 8-day composite water area time series
datasets for 94 reservoirs using MODIS multispectral data at 500 m resolution. In the
meantime, many studies have focused on generating satellite-based reservoir storage

estimations by combining elevation and area observations collected from multiple missions
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(Busker et al., 2019; Crétaux et al., 2011; Gao et al., 2012; Zhang et al., 2014). For example,
Gao et al. (2012) monitored storage values for 34 global reservoirs from 1992 to 2010 by
combining water surface areas from MODIS with water elevations from satellite radar
altimetry (which represented 15% of the total global reservoir capacity during that period). The
Hydroweb database (http://hydroweb.theia-land.fr/) estimates the storage changes for about 60

large lakes and reservoirs beginning in 1992, using multi-source satellite imagery (e.g., MODIS
and Landsat) and radar altimetry data (Crétaux et al., 2011). Busker et al. (2019) analyzed the
monthly volume variations between 1984 and 2015 for 137 lakes and reservoirs at a global
scale by combining water area values from the GSW dataset (Pekel et al., 2016) and elevation
values from DAHITI (Schwatke et al., 2015). The number of lakes with storage estimated has
increased to thousands in the recent studies by Li et al. (2023) and Yao et al. (2023).

Meanwhile, some new approaches have been recently developed to estimate evaporation rates
and losses from space. For instance, Zhang et al. (2017) estimated the monthly evaporation
volumes based on pan-derived evaporative rates and Landsat surface areas for more than 200
reservoirs in Texas. Zhao & Gao (2019) used the Penman Equation (with the heat storage and
fetch effects addressed), and generated a first long-term evaporation data record for over 700
reservoirs in the Contiguous United States. Zhao et al. (2020) further improved the calculation
of the heat storage change term by leveraging MODIS surface temperature data. Recently, Zhao
et al. (2022) developed an evaporation dataset for 1.42 million global lakes. Many other
approaches were developed and tested at individual locations (Althoff et al., 2019; Meng et al.,
2020; Mhawej et al., 2020).

Despite the development of remotely sensed reservoir datasets, consistent, comprehensive,
long-term, and operationally monitored reservoir products are still lacking at the global scale.
Therefore, we developed the National Aeronautics and Space Administration (NASA)'s long-
term standard GWR product suite from moderate-resolution remote sensing data such as the
MODIS and VIIRS. Given the forthcoming end-of-life plans for the MODIS platforms, the
issue of GWR continuity requires greater attention. Therefore, the newly developed VIIRS
GWR (VNP28/VJ128) can serve as a viable successor to MODIS observations for ensuring
long-term GWR continuity. More details regarding the MODIS and VIIRS GWR product

continuity is described in Shah et al. (under review).


http://hydroweb.theia-land.fr/

3. VNP28/VJ128 Algorithm Descriptions

The VNP28C2/VJ128C2 product includes the reservoir area, elevation, and storage results at
8-day temporal resolution. Figure 1 shows the flowchart for generating the C2 (8-day)
product. The algorithms corresponding to both products are explained in the following
sections. First, the 8-day reservoir area values were extracted from the 500-m Near Infrared
(NIR) band of VIIRS surface reflectance (VNPO9H1/VJ109H1) data. Then, the area values
were applied to the Area-Elevation (A-E) relationship for the given reservoir provided by the
GRBD (Li et al., 2020) to calculate the corresponding elevation values. Lastly, the reservoir

storage can be estimated after Gao et al. (2012).
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Figure 1. Flow chart of the algorithm for deriving the VNP28C2/VJ128C2 product, which
contains 8-day area, elevation, and storage results for the 164 reservoirs. The product
components are shown in green boxes.

The VNP28C3/VJ128C3 product includes the evaporation rate and volumetric evaporation loss
in addition to the area, elevation, and storage results at monthly temporal resolution. Figure 2
shows the flowchart for generating the VNP28C3/VJ128C3 monthly product. The monthly
area values were first estimated based on the composite of the 8-day area classifications, and
then converted to monthly elevation and storage results using the A-E relationship (Figure 2).
In addition, monthly evaporation rates were estimated after the Lake Temperature and
Evaporation Model (LTEM, Zhao et al., 2020) using VIIRS Land Surface Temperature (LST)
product (VNP21A2/VJ121A2) and meteorological data from the Global Land Data
Assimilation System (GLDAS) (Rodell et al., 2004). Lastly, the monthly evaporative
volumetric losses were calculated as the product of evaporation rate and reservoir open water

area values.
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Figure 2. Flow chart of the algorithm for deriving the VNP28C3/VJ128C3 product, which
contains monthly area, elevation, storage, evaporation rate, and volumetric evaporation loss

results for the 164 reservoirs. The product components are shown in green boxes.

The detailed algorithms for generating reservoir area, elevation, storage, evaporation rate, and

evaporation volume are explained in the following subsections.

3.1 Algorithms for reservoir area

3.1.1 Algorithm for VNP28C2/VJ128C2 (8-day product)

The algorithm for estimation of reservoir area has been explained in detail in MODIS ATBD
(Zhao et al., 2021). Here, we explain the VIIRS area algorithm with an example of Lake Hawea
in New Zealand (Figure 3). To ensure comprehensive coverage of the water extent, we initially
buffered the reservoir shapefile (obtained from HydroLAKES; Messager et al., 2016) by 1 km
outward. The classification and enhancement operations were performed within this buffered
area. For each 8-day period, we selected the VNPO9H1/VJ109H1 NIR image that overlapped
with the reservoir shapefile (Figure 3a). Subsequently, pixels affected by clouds, cloud
shadows, and snow/ice (identified using the Quality Assurance (QA) band of
VNPO9H1/VJ109H1) were labeled as ‘No Data’, denoting contaminated pixels. Next, the Otsu
thresholding method (Otsu, 1979) was applied to obtain the raw water area classification
(Figure 3b). However, it is evident that this raw classification underestimates the actual water
area due to various above-mentioned contaminations. To address this issue, we utilized the
enhancement algorithm developed by Zhao et al. (2020) to correct the underestimation (Figure
3c¢). This enhancement algorithm incorporates edge detection techniques and water occurrence
images provided by the Global Surface Water (GSW) dataset (Pekel et al., 2016) to correct the
raw classification. Further details regarding the enhancement algorithm can be found in Zhao

et al. (2020).



Figure 3. The VNP image collected on day 347 of 2021 over Lake Hawea (ID 131), New
Zealand. (a) The original reflectance image; (b) the raw water from Otsu classification; (c)

the improved water extraction by enhancement operation.

As compared to MODIS algorithms, the following improvements have been made with in the
VIIRS 8-day area estimations: 1) Adding contamination percentage values to the 8-day and
monthly area outputs; 2) Improving the enhancement algorithm using an edge detection

approach; and 3) Adopting the 8-day terrain shadow masks to improve the classification results.

To improve the data quality assessment for users, we have incorporated contamination
percentage values (pertaining to cloud, cloud shadow, and snow/ice) into both the 8-day and
monthly area products. These values are obtained from the composite QA bands which are
newly added to the 8-day classification images (i.e., VNP28A2/VJ128A2). These QA bands
have combined the QA information from the reflectance product (e.g., VNPOOH1/VJ109H1)



with the newly introduced fields related to classification results (i.e., raw water, enhanced
water, and not-water). Although the composite QA bands are not publicly released since they
are intermediate products, the contamination percentage values are made available to the public
through the VNP28C2/VJ128C2 and VNP28C3/VJ128C3 products. This enables users to
comprehensively understand the data quality associated with the GWR VIIRS product.

The current MODIS product incorporates an enhancement algorithm developed by Zhang et
al. (2014), whereas the VIIRS product utilizes an enhancement algorithm developed by Zhao
et al. (2020). While the enhancement algorithm employed in the current MODIS version
generally performs well for most reservoirs, it exhibits relatively larger uncertainties when
applied to reservoirs located in high latitude regions (Li et al., 2021). One challenge lies in
using a threshold to correct misclassification in both enhancement algorithms. This threshold
is estimated using percentile values derived from the edge pixels of a reservoir. Unlike MODIS,
the VIIRS enhancement algorithm is based on physical principles and is not dependent on
specific parameters. This characteristic enhances its capability to handle edge pixels in high-
latitude regions, improving performance (Zhao et al., 2020). For a detailed explanation
regarding algorithm changes, please refer to Zhao et al. (2020). Overall, the VIIRS

enhancement algorithm demonstrates enhanced stability on a global scale.

In order to mitigate area classification errors in reservoirs surrounded by complex and steep
terrain, a series of 8-day terrain shadow masks were generated to represent climatological
conditions (Figure 4). For example, Figure 4 depicts the climatology of the terrain shadow area
within Lake Hawea. The generation of these masks followed the approach developed by
Leidman et al., (2021), which we have further improved upon by incorporating the average 8-
day zenith solar angle during satellite overpass and the Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM). Initially, the masks were created at a 30-meter
resolution and aggregated to match the VNPO9H1/VJ109H1 resolution. To implement this
algorithm refinement, minor modifications were made to the 8-day image classification code,
ensuring that pixels falling within the shadow mask areas were not utilized for raw
classification. These modifications were implemented to achieve more accurate raw
classifications and improve the representation of water surface areas, aspects that were not
adequately addressed in the MODIS product. Consequently, the VIIRS GWR algorithms

exhibit greater precision compared to MODIS.
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Figure 4. The climatology of terrain shadow area within Lake Hawea (ID 131).
3.1.2 Algorithm for VNP28C3 (monthly product)

The monthly enhanced area values were estimated similarly as 8-day product but based on the
composite of the 8-day area classifications. A pixel was assigned as a water pixel if this pixel
was classified as water in any of the 8-day images within this month. This “max” composite
approach might slightly overestimate the monthly mean water area value. However, given that
the water area variation within a month is relatively small for large reservoirs (except when

there is flooding), the monthly area time series can adequately represent the long-term
dynamics of the reservoir.
3.2 Algorithms for reservoir elevation and storage

The enhanced area values (Ayrs) Were applied to the Area-Elevation (A-E) relationship
(Equation (1)) to calculate the corresponding elevation values (hy;;rs). For each given reservoir,
the A-E relationship function, f (), was adopted from the Global Reservoir Bathymetry Dataset
(GRBD; Li et al. (2020)).

hyiirs = f(Aviirs) (1

The corresponding reservoir storage can be estimated using Equation (2) (after Gao et al.
(2012)):

VVIIRS = VC - (AC + AVIIRS)(hC - hVIIRS)/Z (2)
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where V., A., and h, represent storage, area, and water elevation values at capacity (see

appendix A); and Vyjrs, Aviirs, and hy s are the estimated storage, area, and water elevation

from VIIRS.

3.3 Algorithms for evaporation rate and volume

3.3.1 Calculating evaporation rate

We employed the LTEM to estimate monthly evaporation rates, which incorporates the
Penman equation while accounting for heat storage and fetch effects. To drive the LTEM
model, we obtained the 8-day day/night land surface temperature (LST) data and
meteorological forcing data from the GLDAS. The detailed algorithm for estimating the
evaporation rate (for VNP28C3/VJ128C3) is same as explained in MODIS ATBD (Zhao et al.,
2021). To get more detailed information about evaporation estimation, please refer to Zhao et

al. (2020) and (2021).
3.3.2 Calculating volumetric evaporation

After calculating the evaporation rate time series, the volumetric evaporation can be inferred
as a function of the evaporation rate and reservoir area. In the case of MODIS version (i.e.,
MOD28C3), the evaporation volume was calculated by multiplying the evaporation rate with
the enhanced surface area. However, in high-latitude regions, the enhanced surface area may
include both open water and ice-covered areas. As the evaporation loss is negligible for the ice-
covered portion, for VIIRS, we improved the estimation of evaporation volume by multiplying
the evaporation rate with only the fraction of the open water area (Equation 3). The composite
QA band, as described earlier, was used to distinguish between open-water pixels and those

covered by ice.

Where V5 is volumetric evaporation, E is the evaporation rate (mm/d) and A is the open water

area (km?).

4. Input Datasets

The input datasets include three categories: reservoir shapefiles, input variables, and reservoir

parameters. The details of these inputs can be found in the following sub-sections.
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4.1 Reservoir shapefiles

The reservoir shapefiles were adopted from HydroLAKES (Messager et al., 2016) and
OpenStreetMap (Haklay & Weber, 2008). For a given reservoir, the two shapefiles were
compared and the one with the larger area was selected. By leveraging these two shapefile
datasets, the possible underestimations from either of them can be eliminated. It should be
noted that we manually corrected some polygons that were found to have large discrepancies
from Google maps. The purposes of the shapefiles are two-fold: for extracting the

meteorological data over the reservoirs and for generating reservoir masks.

4.2 Input variables

The time varying input variables are from other VIIRS products and meteorological data, which
are summarized in Table 1.

Table 1. Summary of the input variable names, sources and purposes used in this study.

The land surface temperature contains day/night surface temperature for inland water areas.

Data Spatial Temporal Purpose Reference
resolution | resolution
VIIRS surface reflectance 500 m 8-day Water area Vermote et
(VNPO9H1/VJ109H1) extraction al., 2016
VIIRS LST 1 km 8-day WST extraction | Hulley &
(VNP21A2/VI121A2) Hook,
2018
GLDAS-2.1 0.25° I-month | Meteorological | Beaudoing
forcing data for | & Rodell,
LTEM 2020;
Rodell et
al., 2004

(1) Inputs from other VIIRS products

For VNP28C2, the 8-day surface reflectance (VNPO9HI1; Vermote et al., 2016) data were
collected for water area extraction. Specially, only the near-infrared (NIR) band was used due

to its high spatial resolution (i.e., 500 m for VIIRS). The NIR band has been commonly utilized
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for the extraction of water bodies because it is strongly absorbed by water but scarcely absorbed
by terrestrial dry soil and vegetation (McFeeters, 1996). The A-E relationships were adopted
from GRBD (Li et al., 2020), which have proven to be of high quality through validation
against in situ data. Then, the 8-day water area estimations were applied to the A-E
relationships to derive elevation and storage values. Moreover, we used the 8-day day/night
land surface temperature (LST) products (VNP21A2; Hulley & Hook, 2018) and Global Land
Data Assimilation System (GLDAS; Rodell et al., 2004) meteorological forcing data to

estimate the evaporation rates and volumes.
(2) Meteorological data

We obtained the meteorological data from the NASA GLDAS Version 2.1 (GLDAS-2.1;
Rodell et al., 2004; Beaudoing and Rodell, 2020) to drive the LTEM. In this version GLDAS
is forced with a combination of model and observation data from 2012 to present. For instance,
it was forced with National Oceanic and Atmospheric Administration (NOAA)/Global Data
Assimilation System (GDAS) atmospheric analysis fields (Derber et al., 1991), the
disaggregated Global Precipitation Climatology Project (GPCP) precipitation fields (Adler et
al., 2003), and the Air Force Weather Agency's AGRicultural METeorological modeling
system (AGRMET) radiation fields which became available for March 1, 2001 onwards. We
used monthly downward shortwave radiation (W/m?), air temperature (in K), specific humidity
(in kg/kg), and wind speed (in m/s) data from 2012 to present, with a spatial resolution of 0.25
degree to drive the LTEM. For any reservoir covering multiple GLDAS grids, the

meteorological forcings were first averaged over those grids.

4.3 Reservoir parameters

The following reservoir parameters are used for generating the products: storage at capacity,
elevation at capacity, surface area at capacity, A-E relationship, average reservoir depth, and
average latitude. Detailed information for each reservoir is provided in appendix A. More
details about the algorithms for generating the A-E relationships are available in Li et al.

(2020).

5. Results and Uncertainties

5.1 Validation results

5.1.1 Comparing VIIRS water surface areas with MODIS and Landsat measurements
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Since elevation and storage are estimated by applying A-E relationships on the surface area,
it is crucial to first evaluate the reservoir surface area. The long-term records of the in-situ
reservoir area are still lacking on a global scale. Therefore, we compared the monthly VIIRS
surface area (VNP28C3/VJ128C3) with MODIS (MOD28C3) and Landsat-based Global
Reservoir Surface Area Dataset (GRSAD; Zhao and Gao, 2018) during their overlapping
periods (2012-2021 for MODIS and 2012-2018 for Landsat). The GRSAD dataset was
developed after correcting the water area underestimation of the GSW dataset caused by both

cloud/shadow/ice contamination and the Landsat-7 scan line corrector failure.

We find VIIRS based surface area shows good agreement with the MODIS-based surface
area with an R? value of 0.99. The Relative Bias (RB) between the VNP and MOD as well as
between VJ1 and MOD were found to be around -5% (Figure 5). The negative bias represents
a slight underestimation of the VIIRS area as compared to the MODIS. This underestimation
can be attributed to differences in the sensors (different resolutions) and algorithms
generating surface area. The VIIRS-based product uses a different classification algorithm
than MODIS and accounts for the terrain shadow effect that the MODIS-based product does
not. The exclusion of the terrain shadow effect in the algorithm could overestimate the

surface area in the lakes located in the mountainous region.

We also find good agreement between VIIRS and Landsat-based surface area, with an R?
value of 0.99 and RB value of 1.97% (Figure 5). Most of the points centered on the
regression line (slope=1.01); however, there are a few disagreements. This could be because
the collection dates and methods to derive the monthly area from Landsat and VIIRS differ. It
could also be due to the relatively low spatial resolution of VIIRS, which makes it more
susceptible to mixed pixels in relatively small reservoirs (Li et al., 2021) Overall, the VIIRS-

based area exhibits satisfactory consistency with other satellite datasets.

a000 k 8000 T 2000 I\"—
A

y=0.95x-4.43 y=0.95%-4.58 C y=1.01%+8.61
R?=0.99 R?=0.99 R?=0.99

w

o
=3
2
=]

6000- 6000-

Area (km?)

B
=]
=]
=]

-

B
=1
=)
=]

£ 4000-

~
2
S
e
hy
S
=
=1

nN
»
b
VNP28C3-Area (km?)

VNP28C3-Area (km?)
VJ128C3

. Relative Bias (%)= -5.06 . * * Relative Bias (%)= -5.01 . Relative Bias (%)= 1.97
o 2000 4000 6000 8000 0 2000 4000 8000 8000 o 2000 4000 6000 8000
MOD28C3-Area (km?) MOD28C3-Area (km?) Landsat-Area (km?)

Figure 5. The evaluation of the monthly VIIRS reservoir surface area. (A) The comparison of

the monthly area estimations between MODIS (Terra) and VIIRS (SNPP) from 2012 to 2021
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for the 164 reservoirs, (B) same as (A) but for JPSS-1 from March 2020 to December 2021,
(C) same as (A) but between VIIRS (SNPP) and Landsat from 2012-2018. Lake Baikal is

excluded from the figure and analysis due to its extremely large values.
5.1.2. Evaluation of the VIIRS elevation and storage products

We evaluated the remotely sensed elevation and storage from VIIRS with MODIS and the in-
situ observations at twelve Indian reservoirs, for which the daily and monthly in-situ data
were obtained from the Indian Central Water Commission (CWC: http://cwc.gov.in/,
accessed on 2nd May 2022) between 2012 and 2021. To validate the 8-day product, we
considered the daily in-situ observation of the same date as VIIRS. For the evaluation of the
monthly product, we used monthly averaged in-situ observations from CWC. We selected the
Indian reservoirs for validation purposes due to their large variability, which can better

evaluate the efficiency of our algorithm.

Figures 6 and 7 show the 8-day elevation and storage validation results. We find good
consistency of VIIRS (VNP28C2) elevation with in-situ observations, with an average R?
value of 0.77, an average RMSE value of 3.34m, and an average NRMSE value of 13.53%
(Figure 6). While elevation exhibits good consistency at most locations, we noticed cases of
overestimation (i.e., Tungabhadra) and underestimation (e.g., Yeleru, Nagarjuna). These over
and underestimations could be due to mixed pixels at the reservoir edge and uncertainties in
the A-E relationship (coefficients). Moreover, we observed that VIIRS elevation was in good
agreement with MODIS (MOD28C?2), which can serve as a basis to establish the continuity
of MODIS products with VIIRS products. Similar to elevation, the in-situ storage variation
was satisfactorily captured by VIIRS, with an average R? value of 0.84, an average RMSE
value of 0.47 km3, and an average NRMSE value of 16.45% (Figure 7). Jayakwadi reservoir
showed a maximum R? value of 0.95, and Nagarjuna reservoir showed the least R? value of
0.76. With respect to the continuity perspective, we recognized substantial agreement

between MODIS and VIIRS storage estimates.
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Figure 6. Validation of VIIRS (VNP28C2) 8-day elevation (red) against the in-situ (black)
and MODIS (MOD28C2) elevation (blue) observations for twelve Indian reservoirs from
2012 to 2021.
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Figure 7. Validation of VIIRS (VNP28C2) 8-day storage (red) against the in-situ (black) and
MODIS (MOD28C2) storage (blue) observations for twelve Indian reservoirs from 2012 to
2021.

In a similar fashion, we validated the monthly VIIRS (VNP28C3) elevation and storage with
the in-situ and MODIS (MOD28C3) observations. Since the monthly data is generated from
the composite of 8-day data, they also manifest robust consistency as 8-day data (Figures 8 and
9). VIIRS monthly reservoir area values were generated from the composited results of three
or four 8-day area images from VNP28C2, reducing the adverse effects of cloud contamination
at the 8-day time step and making them smoother. Regarding elevation, the VIIRS results show
good agreement against the in-situ data with an average R? value of 0.75, an average RMSE
value of 2.59 m, and an average NRMSE value of 14.25% (Figure 8). As for storage, the
validation results were also satisfactory, with an average R? value of 0.80, an average RMSE
value of 0.50 km?®, and an average NRMSE value of 17.54% (Figure 9). The consistency
between VIIRS and MODIS was also exceptional, highlighting that VIIRS-based reservoir

products can replace MODIS-based reservoir products after the decommissioning of MODIS.
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Figure 9. Validation of VIIRS (VNP28C3) monthly storage (red) against the in-situ (black)
and MODIS (MOD28C3, blue) observations for twelve Indian reservoirs from 2012 to 2021.

5.1.3. Validating the evaporation rate product against in situ observations

We tested the VIIRS (VNP28C3) evaporation rate against the in-situ and MODIS
(MOD28C3) evaporation rates at Lake Mead and Lake Powell in North America. The
validation of the evaporation rate was limited by the availability of high-quality in-situ data,
which highlights the importance of generating our operational reservoir evaporation data
product at a global scale. We obtained the eddy covariance (EC) evaporation rate
measurements for Lake Mead between 2012 and 2015 from the United States Geological
Survey (USGS; Moreo, 2015) and for Lake Powell between November 2018 and December
2021 from the Bureau of Reclamation (BoR; Holman et al., 2022).

VIIRS captured the seasonality of the evaporation rate at both locations. At Lake Mead, the
VIIRS evaporation rate showed good agreement with in-situ measurements with R? value of
0.75, RMSE value of 1.07mm/day, and NRMSE value of 18.7% (Figure 10). The evaporation
rate from VIIRS at Lake Mead also offers good consistency with MODIS. However, at Lake

Powell, we found low agreement of VIIRS evaporation rate with the in-situ data with R?
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value of 0.37, RMSE value of 1.58 mm/day, and NRMSE value of 37.58% (Figure 10). This
can be attributed to differences in the method used to obtain the evaporation rate. While in-
situ data were measured using the eddy covariance method, the VIIRS evaporation rate was
estimated using the LTEM model that accounts for a heat storage effect. Although this can
lead to bias in absolute values of evaporation rates, the overall seasonality was well captured

in both cases.

Similar to other variables, MODIS and VIIRS evaporation rate estimates show good
consistency (Figure 10). The slight differences in MODIS and VIIRS-based evaporation rate
values could be due to differences in sensors and LST products used in LTEM. Zhao et al.
2020 validated the MODIS evaporation rate or water temperature profiles at eleven locations
located in different climates, which cover a good range of sizes, depths, and elevations, and
thus are representative for testing the robustness of LTEM. They found a satisfactory
performance of MODIS-based evaporation rate against the in-situ observations. As most of
those in-situ data were unavailable after 2012 (after the launch of VIIRS), we could not
validate the VIIRS evaporation rate at more locations. However, since MODIS and VIIRS
show good consistency for the overlapping period, we anticipate that the VIIRS evaporation

rate should be able to offer substantial agreement at other locations.
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Figure 10. Comparison of the VIIRS (VNP28C3) evaporation rates (red) against the in-situ
data (black) and MODIS (MOD28C3) observations (blue) at (A) Lake Mead and (B) Lake
Powell. In-situ data were measured using eddy covariance (EC) measurements for Lake Mead

from 2012 to 2015 and for Lake Powell from November 2018 to December 2021.

4.2 Sources of uncertainties

The sources of uncertainty with regard to the VIIRS reservoir surface area are associated with
both the raw image classification using the VIIRS reflectance product, and the classification
enhancement algorithm. The accuracy of the Otsu classification of the VIIRS NIR images is
affected by the mixed pixels (i.e., partially covered by water and partially covered by land) at
the reservoir boundaries, terrain shadow pixels, as well as by ice over the lakes. The reliability
of the enhancement algorithm depends on the data quality of both the water occurrence image

and the raw water classification. In high latitude regions, the water occurrence image generally
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shows small surface area dynamics (i.e., the distribution of occurrence values highly skewed
to the left). Thus, the pixels with low occurrence values have relatively large uncertainties. The
accuracy of classification is heavily influenced by confounding pixels, such as clouds, snow/ice,
and terrain shadows, therefore, the contamination percentage value provided in the product

serve can serve as a director indicator of uncertainty.

The reservoir elevation and storage estimation uncertainties include reservoir surface area
uncertainties (see above), A-E relationship uncertainties, and the reservoir configuration
uncertainties. According to Equation (2), the estimated storage will be biased if the
characteristics at capacity (storage, area, and elevation) are not accurate. Even when these
factors have been correctly documented, the storage capacity may have changed due to
sedimentation over time. Since the reservoir elevations are inferred only from areas and A-E

relationships, they are not affected by reservoir configuration uncertainties.

Sources of evaporation rate uncertainty mainly include forcing data uncertainty and model
structure/parameter uncertainty. Specifically, the forcing data used in this study (i.e. GLADS-
2) is a land-based meteorological record. Although the increased humidity on the lake surface
is represented by the wind function (McJannet et al., 2012; Zhao & Gao, 2019), differences in
the wind speeds between lake and land regions are ignored—which might introduce some
uncertainties (Schwab & Morton, 1984). In addition, the LTEM and its parameters can also
produce uncertainties. For example, the formulation of the light attenuation coefficient
(A_PAR) is simplified in Zhao et al. (2020). However, A_PAR is affected by suspended solids,
phytoplankton concentration level, and spectral distribution of solar radiation, and thus is

constantly changing (Lee et al., 2005; Pinhassi et al., 2016).

The reservoir volumetric evaporation uncertainties can be attributed to evaporation rate and

surface area uncertainties, which have been discussed above.
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Appendix-A

Table A1l. List of the 164 reservoirs and their attributes

D gRD‘i‘ Hy.Ia Pl g Sl Contine ab storag | area | elevatio | Capacity lon,lat
D k id nt enew | new | nnew | _source

I | 5058 11 Baikal Russia Asia ;ig gé;é(l)72,6 2336 91 > 3526216 456.88 | GRanD ! g ; 235’
2 | 3667 | 156 Volta Ghana Africa 2502 g 56 65é 148 | 8502 | 86.65 | wikipedia 06036 ’

3 | 4478 | 152 Nasser Egypt Africa 1(;5 %169%’ 4 162 | 6500 | 183.28 | literature 323297’
4 | 4056 | 172 Kariba Reservoir Zambia Africa 4(;219;2%’7 180 | 5400 | 485.41 | wikipedia 2? 67562 i
5 | 5055 | 110 | Bratsk Reservoir Russia Asia 3%;’%6251763 169.27 | 5470 | 403.85 | wikipedia 12612798
6 | 4787 | 122 Zaysan Kazakhstan Asia 3%8%‘(‘)65%5 498 | 5490 | 395.74 | GRanD i393656
7 | 2204 | 73 Guri Reservoir Venezuela A?;)::IIZ . 2?;_)112‘;‘1 o | 135 | 4250 | 27838 | wikipedia 76737

g8 | 1995 | 43 Caniapiscau Canada aorth [ O ey | 5379 | 4275 | 54108 | GRanD | o) 7%
o o] ao | b g b 00 s | s | I | 714
o si0| 7 | S || Souh [0S0 s | | 082
1| 712 | s Cedar Canada aorth [ 0002, | osa | P02 | 25629 | GRanD | 2%
R A - AR D A
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13 | 2365 | 76 pou Brazil oouth | 00032 | 455 | 2606 | 754 | GRanD | )0
14 | 4375 | 128 TSiRmelsy;I\lfi)lisye Russia Euro %%2197879, 23.86 | 2702 | 39.44 | literature 1271611,
15 | 5834 | 115 ﬁzz:fs(-‘)fli Russia Asia 2%2386657’5 68.4 | 2420 | 316.41 | wikipedia 15237 ;71
16 | 5180 | 96 Vilyuy Reservoir Russia Asia 1(2)3327?15125’6 359 | 2170 | 244.62 | wikipedia 1613? 338 ’
17 | 4783 | 93 Kh;::zzvsi‘gye Russia Asia 29(_)%;1% 23.5 2%%1 59.64 | GRanD 86;?6
18 | 4505 | 171 Canora Bassa Mozambique | Africa | Do)ot% | 558 | 2739 | 329.18 | wikipedia | Oz 20
19 6 40 Williston Canada All(:ﬂrtil(lza 5 g 0095 923941 4 3947 | 1773 | 674.79 | literature | ; 220; ’
20 | 4472 | 144 B‘?gg&;;‘th Iraq Asia 01'8_34965256’1' 85.59 2_1515 65 | literature ‘%_169’
21 | 5056 | 112 Kf{issr;‘ziffk Russia Asia 1%337%2316 733 | 2000 | 240.04 | wikipedia 95252993
22 | 4623 | 106 Kama Reservoir Russia Euro g 60(())77 g 341 12.2 | 1915 | 110.32 | wikipedia 55 %31‘;,
23 | 1957| €0 | Okeeshobee | UME EROT | enca | s.sragp | 2346 | Uy | 39| wikipedia| o)
24 | 5295 | 145 Hungtze China Asia (1(4)1223196’ 13.5 2%714 17 literature 131 ;g g 3 ’
25 | 4474 | 146 Razazah Iraq Asia ? 105g§ 575 25.75 | 1621 | 34.69 | literature 433 2879 ’
26 | 2023 60 Gouin Reservoir Canada Aiq()el;tilza 4%3 %%6681’1 8.57 1570 | 403.98 GRanD ;1784316’
27 | 4789 | 135 Bogjgfgaeg;;g i Kazakhstan Asia 4%;)2%9977’ , | 28.1 | 1850 | 48371 | GRanD 137 "915
] v | | g | s o T 0 e |7 s v | 8
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29 | 2445 | 83 Aperea Reservoir Paraguay A?r(l)::iléa 4(1)8052;1 92 é 21 1600 | 84.71 literature -5267' 6339’ i
30 | 70 | 65 Ohe | s | Ameriea | adararis | 2835 | sy | 49378 | wikipedia | Ty
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34 | 3640 | 155 Kainji Reservoir Nigeria Africa g 30399 59 77§ 15 12731 136.81 | wikipedia 1217’
35 | 4785 | 113 Novosibirskoye Russia Asia g 8071 g (} 19 é 8.8 1070 | 113.97 | wikipedia 5§3é 4
36 | 4625 | 111 Cheboksary Russia Euro é) 9022 ;;1 g g | 1385 1_(;?30 65.73 | literature ‘}5764;3,
37 | 4359 | 1163 Ilmen Russia Euro Sﬁgffi 12| 1120 | 19.28 | wikipedia 352286
38 | 4480 | 1527 febel Aulia Sudan Afiica | 000 |35 | %00 | 38039 | FAO | S5
39 | 1397 | 623 opinaca Canada aonh [ O 1 85 | 1040 | 2161 | wikipedia | 1020
40 | 2392 | 943 Furnas Brazil oouth | e 2259 | 12T ] 76932 | wikipedia | 0L
41 | 2368 | 922 | SeradaMesa Brazil oouth [ 0RO | 544 | 1784 | 47007 | wikipedia | 3o,
42 | 4624 | 1169 yotiansi Russia Buo | Soaiie | 94 | 50| 8625 | wikipedia | g o
43 | 6201 | 1632 Argyle Reservoir Australia Oceania 260238 216 % 10.76 928 11 "1 93.97 | wikipedia ljzzg’
| 0| Rainy Cansds | povesiea | 33008674 | 099 | 5 | 33673 | GRanD | G
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#5307 | 71| Forpeek | MR | aeriea | sassneon | 2277 | g | 68576 | wikipedia | Uit
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49 | 4626 | 1175 Nﬁgggrkvffk Russia Euro 5%%1733% , | 138 | 1084 | 6534 | wikipedia > 52525 ’
50 | 2456 | 966 Negro Reservoir Uruguay A?l(n)(lalrti}::a 6%.(())1)97‘;’7 8.8 | 1070 | 82.77 | wikipedia -5362.%823’ )
51 | 2343 | 981 Chocon Reservoir Argentina A?l(i)(lalrti}::a 3%2 17229;’3 22 820 378.2 GRanD _6389’.7267’ )
52 | 4442 | 1348 Ataturk Dam Turkey Asia 4(;;_%65‘(1)1’2 487 | 817 | 5412 | GRanD :;%3‘29
53 | 2513 | 915 paparica Brazil oo e | 107 | TPl ] 3054 | wikipedia | 070
54 | 4464 | 1365 Assad Syria Asia 2%2‘5692‘;22’9 117 | 610 | 302.87 | wikipedia 3335%56
55 | 3650 | 1558 Lagdo Reservoir Cameroon Africa 1 g Ooi?) 57;12‘2 7.7 619 21 ' 216 FAO lgg 2 ’
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61 | 610 | 509 Mead | PR e | Amerioa | 28876088 | 407 | 3| 3746 | UsBR | T
62 | 5087 | 1473 Yamdrok China Asia 4232133 57 55 él 14.6 638 | 4443.49 | literature 9;)92? ’
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64 | 4991 | 1524 ;?Sjiifr India Asia gég?gfa 8.29 53;‘ | 269.75 | CcwC 17 68"&
65 | 2455 | 964 Grande Reservoir Argentina A?l(n)(lalrti}::a ? 60§ 396 gg 5 589 32 " | 35.08 | wikipedia -537i _9247’ )
66 | 4843 | 1484 Gﬁzgggﬁa‘r India Asia 3(;'8_%%33’9 6.83 68199 "] 3999 | cwc 725 f75 ’
67| 2397|946 | oo Bzl | ymerien | 3a27i67 | 74 | 39 | 3% | GRad [T
8 | 232 | o8 Artow Comda | ynerca | 35106068 | 103 | g2 | 4993 | USACE | gl
69 | 2382 | 934 | Aent Vermelha Brazil oouth | 00020 11103 | 0 | 3833 | wikipedia | e
70 | 4898 | 1502 ;Ieisr;‘rkv‘;‘}r India Asia 1%;)-2226%‘(1)’2 5.38 66629 119202 | cwcC 82318552
71 | 3041 | 1568 peossour Ivory Coast Afiica | 00 | 2768 | 1% | 206 | GRanD | D97
72 | 4784 | 1058 Kureiskaya Russia Asia | 00| 996 | 558 | 95.63 | literature | S0
73 | 3071 | 1104 Storsjon Sweden Euro 392035725 0.5 45;4' 293.13 | GRanD 133437 ’
75 | 2004 | 661 Kempt Comda | ynerca | azsiortz | 222 | 4q | 4418 | GRaD | G
76 | 6700 | 1123 Kolyma dam Russia Asia | o008 1508 | B a5y | wikipedia | )0y
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77 | 4501 | 1612 Mtera Reservoir Uniteﬁ;;:grlllizhc of Africa 6%2?%)11%36,2 32 487 ?? ) 698.5 literature 35791% )
78 | 4686 | 1320 Kayrakkumskoye Tajikistan Asia 3(:)3;) 22{;;39’7 4.2 513 346.23 | wikipedia ?1%228,
79 | 250 | 628 Kinbasket Canada Aljn‘:rtiléa 6%23.17761773’8 24.76 | 430 | 759.15 | wikipedia '1512%587’
80 | 4634 | 1313 Mingechaurskoye Azerbaijan Asia é(l)zog 12 é g % 15.73 59677 ’ &3 wikipedia 41003 ’
81 | 2431 | 956 La%{ogﬁzlzgio Paraguay Ai‘l’élrti . 2%'2_‘51273’2 847 | 620 | 231.14 | wikipedia '5245‘_9377’ )
82 | 4858 | 1487 Govmgﬁ‘uabah India Asia 23'?_6725%%7 5.65 43266' 268.22 | CWC | 83,24.2
83 | 4422 | 1332 Keban Baraji Turkey Asia 7(;2”5%)%26’ 4 30.6 675 | 848.79 | wikipedia 12261’
84 | 2340 | 978 |  Los Barreales Argenting | OOUP | DSOT 1 997 | 413 | 41701 | diterature | 05002
85 | 4859 | 1488 |  Bansagar Lake India asia | 0708 1 sar | 4T D saes | cwe | L0
g6 | 1275 | 89 | PR | america | America | 3sesti | 355 | ‘ea | 3011 | TWDB | Ty
87 | 2414 | 953 Barra Bonita Brazil A?l(n);l:i}éa 5%2 g%ég} 7.01 542 | 566.48 GRanD _4293'_223 1’ i
88 | 4739 | 1504 Ukal India Asia | g et | es2 | g0 | 1016 | cwe | o
2 T vl P R R R R
0 R T e N A S R P e
91 | 4994 | 1526 Tungabhadra India Asia 4%3 ?32629’9 3.28 3229 " | 497.74 CWC 7165?;;’
92 | 4461 | 1355 Mosul Dam Lake Iraq Asia 2(;31 223;27’5 11.1 315 63 330 wikipedia 4;2686?;,
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93 | 4470 | 1392 Habbaniyah Iraq asia | 002 0 ga | 48 14443 | diterature | 320
94 | 4946 | 1509 Sﬁzinriﬁ‘r India Asia 32'8.‘;3%57’5 23 3315? | 33254 | cwce 718839‘;
95 | 2376 | 929 Lago das Brisas Brazil A?r(l)::iléa 4(;? %213%8 17 5569. 520.38 | wikipedia _41295411,1_
96 | 2356 | 720 Meelpacg Canada aonh [ s | 216 | bt | 27065 | GRanD | 3075
97 | 4260 | 1678 V}iigvireﬂ;d South Africa Afiica | OO0 534 | 374 | 126193 | wikipedia | %>
o oo | v | e | T T e |
99 | 1379 | 861 Inhernillo Mexico aorth | QIS | 12| 400 | 17313 | wikipedia | 01
100 | 4184 | 1657 Vaaldam South Africa Africa | - 29338 1 61 | 320 | 148427 | wikipedia | 2512

1472.81742 26.88
101 | 5062 | 1358 | Longyangxia China Asia | 0n S| 247 | 383 | 2589.15 | wikipedia | 'y
102 | 3727 | 1111 Hoytiainen Finland Buo | o 000b | 239 | 203 | 8805 | GRanD | 2%
103 | 1423 | 741 Baskatong Canada aorh [ 09560 | 2.63 | 280 | 22314 | GRanD | 705
104 | 5803 | 1549 | Tri An Lake Vietnam asia | 90 | 276 | 323 | 6279 | wikipedia | 1))
105 | 2007 | 680 Peribonka Canada Aﬁ"eﬁa £i1195631§§ 5.18 2773 44026 | GRanD -7419..295,
106 | 4942 | 1507 Jayakwadi India asin | 00000 |27 | 8 Laeor | cwe | AT
107 | 3638 | 1554 Shiroro Nigeria Aftica 3%88869%262 + |31 377713 | Fao 69894;
108 | 4379 | 1289 | Tshchikskoye Russia Buo | ooy | 305 | 0| 3368 | FAO | Sri%
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110 | 5796 | 1528 Noi Thailand asia | 000 | 197 | 288 | 145.94 | wikipedia | )25
111 | 4483 | 1543 Roseires Sudan Africa | 0000 | 7.4 | 450 | 487.12 | wikipedia | 10"
112 | 4675 | 1306 Toktogul'skoye Kyrgyzstan Asia 7(313555111)’9 19.5 224' 901.24 | wikipedia 1216658,
113 | 6698 | 1700 Gordon Australia Oceania | 031000 | 124 | 278 | 31142 | wikipedia | 127
114 | 4964 | 1513 Ujani India Asia | o000 sy | 0% aoess | cwe | I
115 | 2312 | 959 Hondo Argenting | OOUP | DOZRS 1194 ] 330 | 27636 | WLDB | O
117 | 4702 | 1398 Tarbela Pakistan Asia | 0000 | 13,69 | 250 | 48355 | wikipedia | Lo 0>
118 | 4985 | 1519 Nagarjuna India asia | 030 | esa | 2] 17983 | wikipedia | 10
119 | 3070 | 1102 Kallsjon Sweden Euro 3%3257281235 0.45 lfj' 3928 | GRanD 16331‘;
120 | 4431 | 1337 Karakaya Turkey asia | 0P| 95 | 298 | 697.54 | wikipedia | 30 0%
121 | 4792 | 1423 Beas India asia | P9 ene | 28 | aser | cwe | DO
122 | 4047 | 1622 Tshangalele R;irgﬁgrs?ghe Afiica | o0 1267 | 220 | 112603 | GRanD | 2%
Congo
123 | 4485 | 1555 Finchaa Ethiopia Afiica | JOS0 1 0es | U0 220026 | FAO | 2>
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124 | 4989 | 1521 Almati India asia | 00l | 22 ] s196 | cwe | PO
125 | 4707 | 1408 Mangla Pakistan Asia ;) 2%)011 é) 19 é 9.12 251 370.6 | wikipedia ;33611’
126 | 4836 | 1481 Rana Pratap India Asia (;2129;2, 1.44 ! 69 67 " | 352.81 CwcC 72259%
127 | 3014 | 1545 Bagre Burkina Faso Africa 232 ?5;1699’3 1.7 255 | 238.12 | literature _101 5457’
128 | 1991 | 916 Junin P | ameriea | aooaros | MO8 | 7y | 408462 | WLDB | 7 p”
129 | 4881 | 1496 %‘;Sg;r?;rf India Asia 4%'?_35515%8 3.18 2232' 42276 | CWC 7292'.9935’
130 | 6686 | 1699 Great Lake Australia Oceania 9%; (,)5%;;65’7 3.36 176 | 1040.54 | GRanD 1_2?;;’
131 | 6800 | 1704 Hawea New Zealand Oceania 3(;31 4}53%;’5 2.18 150 | 34549 | GRanD 1_23?;’
132 | 3676 | 1619 A&‘ﬁﬁlga Angola Afiica | il 20| 156 | 1000|5193 | GRanD | 13T
133 | 6629 | 1695 Eucumbene Australia Oceania 1(());;??2?67 4.8 1225 " | 1165.24 | wikipedia 1§§?§
134 | 1320 | 855 | FalconReservoir | " xoowtesof  North | 000978 3 g | 30| 9348 | TwpB | )17
155 | 597 | so2 | LakePowell | PME R | merien | toars | 30 | 3y | 112776 | wikipedia | Ty
136 | 4463 | 1362 Dukan Iraq Asia 26128579 s é 6.97 270 | 513.69 | wikipedia 4;4;9966’
7] 0| s | gk | OmeiSmeor | Sorh | 00 | og | G| s | won | 2007
138 | 4041 | 1551 Lake Maga Cameroon Africa 3%8 16923;3;’1 0.68 1;1 28 ) 312.5 literature 11%%53’
139 | 5157 | 1530 Pasak Chonlasit Thailand Asia 2? 3055 g 7965§ 0.79 1;' 78 ) 42 literature 1? ié) ? ’
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140 | 6594 | 1650 Fairbairn Australia Oceania 182..41;.;)95 2.29 1139 " | 20981 | wikipedia 1-42‘222’
141 | 6628 | 1694 Hume Australia Oceania 1%11583196%3 3.04 2%1' 192 | wikipedia l_gz(ﬁ’
142 | 4500 | 1605 Kikuletwa | CMSORPUNCOT | g | Db 106 | 20| 689.65 | wikipedia | 2130
143 | 4958 | 1511 Nizam sagar India Asia 4?90559;’(’)9 0.5 925'7 428.24 CWC 7178923 ’
144 | 6606 | 1690 Victoria Australia Oceania (;1562565885’ 0.68 122 27.73 GRanD 1_43141‘%)3,
l45 | 1869 | w26 | GremdaLake | VO RO | e | doaoos | M| 0| 655 | ouine | S
b6 | 138 | 190 | camyon | PR | ameen | 130003547 | L1 | o | 137342 | wikipedia | "y
147 | 4638 | 1329 Aras Dam Lake Azerbaijan Asia 0.11845, 1.35 145 | 779.94 | wikipedia 454,

762.76554 39.09
148 | 4481 | 1529 |  Khashm el-Girba Sudan Africa 4%3%38‘;22’7 1.3 | 125 | 474.76 | wikipedia 13:993
149 | 370 | 8978 | LakeCascade | VRO | e | 1as0o0as | 085 | log | 14717 | wikipedia | "
150 | 3695 | 110 Seitevare Sweden Euro ffffgé 168 | 81 | 470.15 | GRanD 16865977
151 | 4484 15782 Yardi Ethiopia Africa 5(;;35%11’2 2.32 lé);‘ "] 568.25 | GRanD 1%524;’
2] 110 [ | ol | Owdsmmo | N | 0006 T o | 00| g et | 00
153 | 5196 14155 Guanting Shuiku China Asia 4%51%796;;’6 4.16 130 | 479.09 GRanD 1&)5263’
154 | 2053 | 1210 Bamage Al Morocco Africa | 9010 | 276 | 80 | 268.54 | wikipedia | 150
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o 15100 Lake Hamrin Itaq Asia 5(3)(')%212956136 461 | 228 | 107.5 | literature 4;1..9172,
157 | 4826 15(;‘9 Matatila India Asia 2%7122212’6 0.71 1372' 308.46 | CWC 75517 ’
] 20 || e | OSSN 00 o | o | s | 0
159 | 4997 15874 Somasila India Asia ;)4%3721323 1.99 11573 100.58 | CWC fj"jé
160 | 5183 14938 i(;:egrsv}ﬁ? China Asia 4(;'22%2766%2 256 | 669 | 437.64 | GRanD 212%75’
D 16224 Lake Ross Australia Oceania 22615298; 0417 | 82 | 41.77 | wikipedia 1_‘1‘3:1‘1‘,
162 | 4978 15769 Yeleru Reservoir India Asia 2;;?3% 0.51 496'3 86.56 CWC 8127038 ’
163 | 4696 | 47 | South Surkhan Uzbekistan asia | o108 | 407 a4l | GRanD | 9§00
164 | 5287 | )" Ahaopingtal China asin | 000 1071 | 465 | 17427 | GRanD | 277

*The 164 reservoirs include 13 regulated natural lakes, whose IDs are 1, 6, 20, 23, 33, 37, 44, 62, 73, 102, 131, 150, and 151.

'a and b are the coefficients used in the A-E relationship equation: h=a*A + b, where h and A are elevation (m) and area (km?), respectively.

Ve, Ac, and Ec represent storage, area, and elevation values at capacity, respectively.
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