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1 Introduction 

This document outlines the theory and methodology for generating the MEaSUREs (Making Earth System Data Records for Use 

in Research Environments) Land Surface Temperature (LST) product derived from the Geostationary Operational Satellite (GOES) 

satellite data record. The GEO-LST product will include LST produced hourly over North and South America for GOES-8 through 

GOES-15 satellites since 2000. This is version 1.0 of the ATBD and the goal is maintaining a ‘living’ version of this document with 

changes made when necessary.  

Land Surface Temperature and Emissivity (LST&E) are critical variables used in a wide range of Earth science studies. They 

are necessary inputs for surface energy balance models used in drought monitoring, soil moisture estimation, and monitoring water 

consumptive use (Anderson et al. 2011a; Hain et al. 2011; Semmens et al. 2016). They are used for the retrieval of climate variables 

such as tropospheric water vapor and air temperature (Seemann et al. 2008; Susskind and Blaisdell 2008; Yao et al. 2011). They are also 

used to monitor climate warming trends (Hall et al. 2012; Schneider and Hook 2010), measure the urban heat island effect (Dousset and 

Gourmelon 2003; Luvall et al. 2015) and heat waves (Dousset et al. 2011; Luvall et al. 2015), detect land cover and land use change 

(French et al. 2008; Hulley et al. 2014a), and map surface composition (Hook et al. 2005; Vaughan et al. 2005).  

NASA has identified LST&E data as an important Earth System Data Record (ESDR) (NASA 2005, 2011) along with other 

international organizations (e.g. Global Climate Observing System (GCOS), 2003; Climate Change Science Program (CCSP), 2006). 

LST was recently designated as an Esssential Climate Variable (ECV) by GCOS and several international initiatives have been 

established to utilize LST&E data including the EarthTemp network (http://www.earthtemp.net/), GlobTemperature 

(http://www.globtemperature.info/) and the International Land Surface Temperature and Emissivity Working Group (ILSTE-WG, 

http://ilste-wg.org/).  

LST&E products are routinely produced by NASA and NOAA from sensors in low earth orbit (LEO) from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors on board the Aqua 

(2002)/Terra (2000) and Suomi-NPP (2011) platforms respectively. LST products are also produced from sensors in geostationary Earth 
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orbit (GEO) such as the Geostationary Operational Environmental Satellites (GOES). Sensors in LEO orbits provide global coverage at 

moderate spatial resolutions (~1km) but more limited temporal coverage (up to twice-daily), while sensors in GEO orbits provide more 

frequent measurements (hourly) at lower spatial resolutions (~2-4 km) over a geographically restricted area. For example, the GOES 

sensors produce data over North America every 15 minutes and South America every 3 hours. These sensor-based LST&E products, 

however, are generated with varying accuracies depending on the input data. These input data include ancillary data such as atmospheric 

water vapor and algorithmic approaches. They are also on different space-time grids and lack full uncertainty information limiting their 

usefulness for many studies. Our current project was selected to address these limitations by creating a set of unified and coherent 

LST&E products and this follow-on work will develop and extend these products. LST&E data are used for many Earth surface related 

studies such as surface energy balance modeling (Zhou et al. 2003b) and land-cover land-use change detection (French et al. 2008), 

while they are also critical for accurately retrieving important climate variables such as air temperature and relative humidity (Yao et al. 

2011). The LST is an important long-term climate indicator, and a key variable for drought monitoring over arid lands (Anderson et al. 

2011a; Rhee et al. 2010). The LST is an input to ecological models that determine important variables used for water use management 

such as evapotranspiration and soil moisture (Anderson et al. 2011b).  

GEO LST products produced from GOES are currently available through NOAA OSPO 

(http://www.ospo.noaa.gov/Products/land/glst/) but are produced using different retrieval algorithms throughout the GOES record, e.g. 

GOES sensors 8-11 use a split-window algorithm, while GOES sensors 12-14 use a single channel algorithm (since the 11-12 micron 

band combination necessary for the split-window was not available for these sensors). This results in a discontinuity in the retrieval 

record and affects the accuracy of the GOES LST time series beginning with GOES 12. To address this issue, we developed a GEO-

LST product using a consistent single-channel GOES algorithm applicable to all GOES sensors from GOES 8-16 and onward. The 

algorithm uses a radiative transfer approach for the atmospheric correction similar to the MxD21 approach, combined with an improved 

Combined ASTER and MODIS Emissivity for Land (CAMEL) emissivity data record for the emissivity correction 
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(https://lpdaac.usgs.gov/products/cam5k30emv002/). The GEO-LST product merges six generations of GOES sensors and 

instrument characteristics.  

2 GOES Background 

The Geostationary Operational Environment Satellite (GOES) system is operated by the National Oceanic and Atmospheric 

Administration, National Environmental Satellite, Data and Information Service (NESDIS). The GOES system is mounted on a satellite 

operating at an orbit of 35,790 km above the earth, remaining stationary to a given point on the ground. The GOES provides data at high 

temporal frequency (5 minutes) with continental-scale coverage (N. and S. America). In this study observations from GOES-08  -  

GOES-15 (2000 – 2016) will be utilized [Table 1]. Typically, the GOES imager includes five spectral channels (one visible, four 

infrared). For GOES 8-10 the channels are located at 3.9, 6.75, 10.7, and 12.2 µm, whereas for GOES 11-15, the 6.75 µm channel was 

moved to 6.5 µm and the 12 µm channel was moved to 13.3 µm. The visible, mid-infrared and 11 µm band are typically used for cloud 

screening while the two thermal infra-red (TIR) bands (10.2-11.2 µm and 11.5-12.5 µm) are used in what is known as a “split-window” 

approach to retrieve LST.  

Over the period of this study, two separate operational GOES Imagers, one located at a longitude of -75° E (referred to as GOES-

East) and one located at a longitude of 135° W (referred to as GOES-West) continuously provided imagery over North and South 

America. The temporal sampling of the GOES Imager is every hour in “Northern Hemisphere Extended” mode, which covers North 

America, as well as parts of South America, as seen in Figure 1. Spectral distribution of the GOES 8-15 series are provided in NOAA 

NESDIS STAR GOES Imager LST ATBD (Version 3.0). 

https://lpdaac.usgs.gov/products/cam5k30emv002/
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Figure 1: A sample a cloud-screened GEO-LST image acquired on 4/28/2003 at 1815UTC. 
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3 Thermal Infrared Radiative Transfer 

3.1 Thermal Infrared Radiance 

As described in (Hulley et al., 2016), the at-sensor measured radiance in the TIR spectral region (7–14 µm) is a combination of 

three primary terms: the Earth-emitted radiance, reflected downwelling sky irradiance, and atmospheric path radiance. The Earth-emitted 

radiance is a function of temperature and emissivity and gets attenuated by the atmosphere on its path to the satellite. The atmosphere 

also emits radiation, some of which reaches the sensor directly as “path radiance,” while some gets radiated to the surface (irradiance) 

and reflected back to the sensor, commonly known as the reflected downwelling sky irradiance. Reflected solar radiation in the TIR 

region is negligible (Figure 1) and a much smaller component than the surface-emitted radiance. One effect of the sky irradiance is the 

reduction of the spectral contrast of the emitted radiance, due to Kirchhoff’s law. Assuming the spectral variation in emissivity is small 

(Lambertian assumption), and using Kirchhoff’s law to express the hemispherical-directional reflectance as directional emissivity (𝜌𝜆 =

1 − 𝜖𝜆), the clear-sky at-sensor radiance can be written as three terms: the Earth-emitted radiance described by Planck’s function and 

reduced by the emissivity factor, 𝜖𝜆; the reflected downwelling irradiance; and the path radiance.  

 𝐿𝜆(𝜃) = [𝜖𝜆𝐵𝜆(𝑇𝑠) +  (1 − 𝜖𝜆)𝐿𝜆
↓ ]𝜏𝜆(𝜃) + 𝐿𝜆

↑ (𝜃) (1)  
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Figure 2. Simulated atmospheric transmittance for a US Standard Atmosphere (red) and tropical atmosphere (blue) in the 3–12 µm region. Also shown 

is the solar irradiance contribution W/m2/µm2 (Hulley et al., 2016).   

Where: 

𝐿𝜆(𝜃) = at-sensor radiance; 

 𝜆 = wavelength;  

𝜃 = observation angle;  

𝜖𝜆 = surface emissivity;  

𝑇𝑠 = surface temperature;  

𝐿𝜆
↓  = downwelling sky irradiance;  

𝜏𝜆(𝜃) = atmospheric transmittance;  

𝐿𝜆
↑ (𝜃) = atmospheric path radiance 

𝐵𝜆(𝑇𝑠) = Planck function, described by Planck’s law: 
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𝐵𝜆 =
𝑐1

𝜋𝜆5
(

1

exp (
𝑐2

𝜆𝑇) − 1
) (2)  

 

𝑐1 = 2𝜋ℎ𝑐2= 3.74∙ 10−16 W∙m2 (1st radiation constant) 

h = 6.63∙ 10−34 W∙s2 (Planck’s constant) 

c2 = h∙c/k = 1.44× 104 µm∙K (2nd radiation constant) 

k = 1.38× 10−23 W∙s∙K-1 (Boltzmann’s constant) 

c = 2.99∙ 108 m∙s-1 (speed of light) 

Equation (1) gives the at-sensor radiance for a single wavelength 𝜆, while the measurement from a sensor is typically measured 

over a range of wavelengths, or band. The at-sensor radiance for a discrete band 𝑖, is obtained by weighting and normalizing the at-

sensor spectral radiance calculated by Equation (1) with the sensor’s spectral response function for each band, 𝑆𝑟𝜆, as follows: 

𝐿𝑖(𝜃) =
∫ 𝑆𝑟𝜆(i) ∙ 𝐿𝜆(𝜃) ∙ dλ 

𝑆𝑟𝜆(i) ∙ dλ
 (3)   

Using Equations (1) and (3), the surface radiance for band 𝑖 can be written as a combination of two terms: Earth-emitted 

radiance, and reflected downward irradiance from the sky and surroundings: 

 
𝐿𝑠,𝑖 = 𝜖𝑖𝐵𝑖(𝑇𝑠) + (1 − 𝜖𝑖)𝐿𝑖

↓ =
𝐿𝑖(𝜃) − 𝐿𝑖

↑(𝜃)

𝜏𝑖(𝜃)
 

(4)  

The atmospheric parameters, 𝐿𝜆
↓ , 𝜏𝜆(𝜃), 𝐿𝜆

↑ (𝜃), are estimated with a radiative transfer model such as RTTOV or MODTRAN 

(Kneizys et al. 1996) discussed in the next section, using input atmospheric fields of air temperature, relative humidity, and 

geopotential height.  
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4 Method 

Figure 2 shows that GOES radiance data for the 11 µm band are first atmospherically corrected using the Radiative Transfer for 

TOVS (RTTOV), which is a computationally efficient radiative transfer model applicable to a variety of sensors and wavelength ranges 

(Saunders et al. 1999). The model has been validated against IASI, and is efficient for full scale retrievals (Matricardi 2009). RTTOV 

v12 is the latest version, and was used in the processing of the GOES radiance images. 

Given an atmospheric profile of temperature, water vapor and optionally other trace gases together with view angle geometry, 

RTTOV will compute the atmospheric transmittance and path radiances required for atmospheric correction in each of the channels of 

the sensor being simulated. 

Numerical Weather Prediction (NWP) models use current weather conditions, observed from various sources (e.g., radiosondes, 

surface observations, and weather satellites) as input to dynamic mathematical models of the atmosphere to predict the weather. The 

Modern Era Retrospective-analysis for Research and Applications (MERRA) product provided by the Goddard Earth Observing System 

Data Assimilation System Version 5.2.0 (GEOS-5.2.0) produces near-real time atmospheric products, which are used as input to RTTOV 

to perform the atmospheric correction. The MERRA profiles are first interpolated in time to the GOES observation using the [00 06 12 

18] UTC analysis observation hours before input into RTTOV.  
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Figure 2: GOES data is converted to radiance and brightness temperature, and then processed for LST and cloud masks. The LST algorithm uses RTTOV 

and MERRA-2 data for atmospheric correction and accepts CAMEL emissivity as input. 

 

4.1 LST Retrieval 

GOES radiance data are available from the CLASS servers (www.class.ncdc.noaa.gov) in GVAR format, which is converted to 

radiance using the scaling described in Weinreb et al. (1997). The observed radiances are then atmospherically corrected using RTTOV 

with input from MERRA-2, as described above, and corrected for emissivity using the CAMEL ESDR rescaled and spectrally adjusted 

to GOES spatial resolution and bandpass. Once the surface emitted radiance is determined, the LST can be retrieved by simply inverting 

http://www.class.ncdc.noaa.gov)/
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the Planck function and using a look-up-table approach to convert radiance into temperature. Theoretically, any band used should 

retrieve the same temperature, but uncertainties in the atmospheric correction will result in subtle differences as different bands have 

stronger atmospheric absorption features than others that may be imperfectly corrected for atmospheric absorption. For example, a band 

near 8 µm will have larger dependence on water vapor, while the 9–10-µm region will be more susceptible to ozone absorption. Jimenez-

Munoz and Sobrino (2010) applied this method to ASTER data by using atmospheric functions (AFs) to account for atmospheric effects. 

The AFs can be computed by the radiative transfer equation or empirically given the total water vapor content. The clearest ASTER 

band (13 or 14) was used to retrieve the temperature, with the emissivity determined using a normalized difference vegetation index 

(NDVI) fractional vegetation cover approach. A similar procedure has been proposed to retrieve temperatures from the Landsat TIR 

band 6 on ETM+ and TM sensors (Li et al. 2004). Because of the changes in band designations across the GOES time series, we use a 

single band inversion on Band 4 in the 11 micron window region to generate the GEO-LST product, as done in Malakar et al. (2018).  

As in (Hulley et al., 2016), from eq. 4 we can rearrange terms to compute the surface emitted radiance: 

 

𝐿𝑠 = 𝐵(𝑇𝑠)  =

𝐿 −  𝐿↑

𝜏 − (1 − 𝜖 ) 𝐿↓

𝜖 
 

 

(5)  

where 𝐵(𝑇𝑠) is the Planck function at temperature 𝑇𝑠:  

 
𝐵(𝑇𝑠) =  

𝑐1 𝜆−5

(𝑒
𝑐2

𝜆𝑇𝑠 − 1)

 
(6)  

where 𝑐1 = 1.19 × 10-16 W m-2 sr-1, and 𝑐2 = 1.44 × 104 µm K.  

The surface temperature can then be retrieved by inverting the Planck function with the emitted radiance as follows: 
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 𝑇𝑠 =  
𝑐2

𝜆𝑐  ln (1 +
𝑐1𝜆𝑐

−5

𝐿𝑠
)

 
(7)  

where 𝑇𝑠 is the retrieved LST, and 𝜆𝑐 is the sensor’s central wavelength equivalent to a delta function response. This formulation, 

however, will become increasingly inaccurate for a sensor’s spectral response that deviates from delta function behavior. Instead we 

use a look up table (LUT) approach to compute expected radiances for each respective GOES sensors’ spectral response over a range 

of temperatures in 0.01 K intervals that encompass the full range of expected Earth-like temperatures (typically 150 to 380 K). This 

results in a table of radiance versus temperature values for each given sensor. The table can then simply be ‘inverted’ by interpolating 

to get the retrieved temperature (LST), given the estimated surface emitted radiance. 

 

4.2 Radiative Transfer Model 

 With the next generation’s state-of-the-art, mid- and long-wave infrared (IR) hyperspectral sensors due for launch in the next 

decade, there has been greater demand for higher resolution and quality radiative transfer modeling. The current choice of radiative 

transfer model for atmospherically correcting GOES TIR data is the latest version of the radiative transfer model called RTTOV. It is a 

very fast radiative transfer model for nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and 

interferometers (Saunders et al. 1999). RTOV is written in FORTRAN-90 code, for simulating satellite radiances, designed to be 

incorporated within users' applications. RTTOV was originally developed at ECMWF in the early 90's for TOVS (Eyre and Woolf 

1988). Subsequently, the original code has gone through several developments (Matricardi et al. 2001; Saunders et al. 1999), more 

recently within the EUMETSAT NWP Satellite Application Facility (SAF), of which RTTOV v11 is the latest version. It is actively 
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developed by ECMWF and UK Met Office. RTTOV has been sufficiently tested and validated and is conveniently fast for full scale 

retrievals (Matricardi 2009). A number of satellite sensors are supported from various platforms  

(e.g. https://nwpsaf.eu/deliverables/rtm/rttov_description.html). Given an atmospheric profile of temperature, water vapor and 

optionally other trace gases (for example ozone and carbon dioxide) together with satellite and solar zenith angles and surface 

temperature, pressure and optionally surface emissivity and reflectance, RTTOV will compute the top of atmosphere radiances in each 

of the channels of the sensor being simulated. Users can also specify the selected channels to be simulated. Mathematically, in vector 

notation, given a state vector, x, which describes the atmospheric/surface state as a profile and surface variables the radiance vector, y, 

for all the channels required to be simulated is given by (Saunders et al. 1999): 

 y = H(x) (8)  

Where H is the radiative transfer model, i.e. RTTOV (also referred to as the observation operator in data assimilation parlance). This is 

known as the 'direct' or 'forward' model. 

An important feature of the RTTOV model is that it not only performs the fast computation of the forward (or direct) clear-sky 

radiances but also the fast computation of the gradient of the radiances with respect to the state vector variables for the input state vector 

values. The Jacobian matrix H which gives the change in radiance δy for a change in any element of the state vector δx assuming a 

linear relationship about a given atmospheric state x0: 

 Δy = H(x0)δx (9)  

The elements of H contain the partial derivatives 
𝜕𝑦𝑖

𝜕𝑥𝑗
(

𝑑𝑦𝑖

𝑑𝑥𝑗
) where the subscript i refers to channel number and j to position in state vector. 

The Jacobian gives the top of atmosphere radiance change for each channel from each level in the profile given a unit perturbation at 

any level of the profile vectors or in any of the surface/cloud parameters. It shows clearly, for a given profile, which levels in the 

atmosphere are most sensitive to changes in temperature and variable gas concentrations for each channel.  

https://nwpsaf.eu/deliverables/rtm/rttov_description.html
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In RTTOV the transmittances of the atmospheric gases are expressed as a function of profile dependent predictors. This parameterization 

of the transmittances makes the model computationally efficient. The RTTOV fast transmittance scheme uses regression coefficients 

derived from accurate Line by Line computations to express the optical depths as a linear combination of profile dependent predictors 

that are functions of temperature, absorber amount, pressure and viewing angle (Matricardi and Saunders, 1999). The regressio n 

coefficients are computed using a training set of diverse atmospheric profiles chosen to represent the range of variations in temperature 

and absorber amount found in the atmosphere (Matricardi and Saunders, 1999; Chevallier, 2000; and Matricardi, 2008, 2009). The 

selection of the predictors is made according to the coefficients file supplied to the program.   

Table 1: Geophysical data available in the MERRA analysis product. Columns under Mandatory specify if the variables is needed for determining 

atmospheric correction parameters. Data are output in 6hr analysis for 42 pressure levels at 0.5 degree x 0.625 degree spatial resolution. 

MERRA Analysis Data (inst6_3d_ana_Np) 

Geophysical fields Required? Available? Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  

nlev nLevel Yes Yes  

p Pressure Yes Yes  

t Air Temperature Yes Yes  

q Specific Humidity Yes Yes  

sp Surface Pressure Yes Yes  

skt Surface Temperature Yes No T value at the first valid level above 

surface is used. 

t2 Temperature at 2 m Yes No T value at the first valid level above 

surface is used 
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q2 Specific Humidity at 2 

m 

Yes No Q value at the first valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

el Elevation Yes No Auxiliary database 

 

4.3 Atmospheric Profiles 

4.3.1 MERRA-2 

MERRA-2 is a follow-on product to the original MERRA project for the modern satellite era (1979-2015). It has been expanded to 

use new observations including GOES, MODIS, AVHRR, GPS Radio Occultation, OMI, and MLS. The latest enhancement includes 

improved water vapor assimilation resulting in a balance between precipitation and evaporation. Consequentially, one of the major 

advancements is the addition of land surface forcing by observed precipitation. The GEO-LST algorithm uses the MERRA-2 analysis 

data for its standard atmospheric correction. MERRA-2 data are output in 6hr analysis for 42 pressure levels at 0.5 degree x 0.625 degree 

spatial resolution. The MERRA-2 profiles are first interpolated in time to the GOES observation using the [00 06 12 18Z] analysis 

observation hours before ingesting into RTTOV. Table 1 shows MERRA-2 geophysical data available in the MERRA-2 analysis product 

and the variables required for the input data into RTTOV for the atmospheric correction.  

Table 2: Geophysical data available in the NCEP GFS analysis product. Columns under Mandatory specify if the variables is needed for determining 

atmospheric correction parameters. Data are output in 3hr analysis for 26 pressure levels at 0.5 degree spatial resolution. 

NCEP GSF  Data (NCEP-GFS-03HR-ANC) 

Geophysical fields Required? Available? Remarks 

time Time Yes Yes  

lat Latitude Yes Yes  

lon Longitude Yes Yes  
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nlev nLevel Yes Yes  

p Pressure Yes Yes  

t Air Temperature Yes Yes  

q Specific Humidity Yes Yes  

sp Surface Pressure Yes Yes  

skt Surface Temperature Yes Yes  

t2 Temperature at 2 m Yes No T value at the first valid level above 

surface is used 

q2 Specific Humidity at 2 

m 

Yes No Q value at the first valid level above 

surface is used 

lsm Land Sea Mask Yes No Auxiliary database 

el Elevation Yes No Auxiliary database 

 

 The RTTOV output data of transmittance, path radiance, and sky irradiance are then gridded to the GOES swath at 4-km 

resolution using a bicubic interpolation approach. It should be noted that the data interpolation could potentially introduce errors, 

especially in humid regions where atmospheric water vapor can vary on smaller spatial scales than the native resolution of the input 

MERRA data at 0.5°. The propagation of these atmospheric correction errors would result in band-dependent surface radiance errors in 

both spectral shape and magnitude, which in turn could result in errors of retrieved Level-2 products such as surface emissivity and 

temperature. This is one of the main reasons that we implemented a Water Vapor Scaling (WVS) approach to help mitigate these errors.  
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4.4 Emissivity 

The CAMEL emissivity product is generated by combining the MODIS UWBF and ASTER GEDv4 emissivity products, each 

produced by different methods/algorithms. The total uncertainty (see Figure 3) comprises 3 independent components of variability—a 

temporal, spatial, and algorithm variability. Each measure of uncertainty is provided for all 13 channels and every latitude-longitude 

point. A quality flag is provided for the total uncertainty as 0 if the pixel is over the sea or no CAMEL data is available, 1 if it is good 

quality data and 2 if the uncertainty values are unphysical. The total uncertainty is calculated as a root square sum of the three 

components. The spatial uncertainty component is calculated as the standard deviation of the surrounding 5x5 pixel emissivity, which 

is equivalent to a 0.25°×0.25° latitude-longitude region. This uncertainty represents the variability of the surrounding landscape (ocean 

is not included) and is only provided where the CAMEL emissivity quality flag is not zero. The temporal uncertainty is defined by the 

standard deviation of the 3 surrounding months (e.g. Oct. uncertainty = standard deviation (Sept., Oct., Nov.)) Algorithm uncertainty is 

Figure 3: Total CAMEL emissivity uncertainty for January 2007 for the CAMEL emissivity 8.6 micron channel. The total uncertainty includes both 

spatial, temporal and algorithmic components. 



 MEASURES GEO-LAND SURFACE TEMPERATURE ATBD 

 

20 

 

estimated by the differences between the two CAMEL emissivity inputs: the ASTER GEDv4 and UWBF MODIS products. The 

CAMEL User Guide (Borbas et al., 2017) details the ASTER, and UWBF channel wavelengths, the method for combing the ASTER 

and UWBF emissivity to create the CAMEL product, and the method for determining the CAMEL emissivity algorithm uncertainty. 



 MEASURES GEO-LAND SURFACE TEMPERATURE ATBD 

 

21 

 

5 Uncertainty Analysis 

NASA has identified a major need to develop long-term, consistent products valid across multiple missions, with well-defined 

uncertainty statistics addressing specific Earth-science questions. These products are termed Earth System Data Records (ESDRs), and 

LST&E has been identified as an important ESDR. Currently a lack of understanding of LST&E uncertainties limits their usefulness in 

land surface and climate models. In this section we present results from an LST&E uncertainty simulator that has been developed to 

quantify and model uncertainties for a variety of TIR sensors and LST algorithms (Hulley et al. 2012). Using the simulator, uncertainties 

were estimated for the GEO-LST product, including WVS. These uncertainties are parameterized according to view angle and estimated 

total column water vapor for application to real GOES data. 

5.1 The Temperature and Emissivity Uncertainty Simulator 

A Temperature Emissivity Uncertainty Simulator (TEUSim) has been developed for simulating LST&E uncertainties from 

various sources of error for the TES and SW algorithms in a rigorous manner for any appropriate TIR sensor. These include random 

errors (noise), systematic errors (calibration), and spatio-temporally correlated errors (atmospheric). The MODTRAN 5.2 radiative 

transfer model is used for the simulations with a global set of radiosonde profiles and surface emissivity spectra representing a broad 

range of atmospheric conditions and a wide variety of surface types. This approach allows the retrieval algorithm to be easily evaluated 

under realistic but challenging combinations of surface/atmospheric conditions. The TEUSim is designed to separately quantify error 

contributions from the following potential sources: 

• Noise  

• Model  

• Atmospheric correction  

• Undetected cloud  

• Calibration 
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The results presented in this study will focus on the first three of these error sources: noise, model, and atmosphere.  

5.2 Atmospheric Profiles 

The TEUSim uses a global set of atmospheric radiosoundings constructed from the University of Wyoming Atmospheric Science 

Department’s CLAR database (Galve et al. 2008). CLAR contains 382 globally distributed radiosoundings for both day and night in 65 

layers from the surface to 100 km. The CLAR database includes a wide range of TCW estimates up to 7 cm and surface air temperature 

ranging from −20º C to 40º C. Radiosondes acquired from 2003 to 2006 were distributed over three latitude ranges (40% from 0º–30º, 

40% from 30º–60º, 20% above 60º) and screened for cloud and fog contamination using a procedure described by Francois et al. (2002).  

5.3 Radiative Transfer Model 

In TEUSim the latest version of MODTRAN (v5.2) was used for the radiative transfer calculations. MODTRAN 5.2 uses an 

improved molecular band model, termed the Spectrally Enhanced Resolution MODTRAN (SERTRAN), which has a much finer 

spectroscopy (0.1 cm-1) than previous versions (1–2 cm-1). This results in higher accuracy in modeling of band absorption features in 

the longwave TIR window regions, and comparisons with line-by-line models has shown good accuracy (Berk et al. 2005).  

5.4 Surface End-Member Selection 

A selection of emissivity spectra from the ASTER Spectral Library v2.0 (ASTlib) (Baldridge et al. 2009a) were used to define 

the surface spectral emission term in MODTRAN. A total of 59 spectra were chosen based on certain criteria and grouped into four 

surface classifications: rocks (20), soils (26), sands (9), and graybodies (4). The doublets between 8–9.5 µm and 12.5–13 µm are the 

result of Si-O stretching, and the exact position of the feature at 11.2 µm is dependent on the size of the cation paired with the carbonate 

(CO3) molecule. Spectra were chosen to represent the most realistic effective emissivities observed at the remote sensing scales of 

ASTER (90 m) and GOES (4 km) using the following methodology.  
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For rocks, certain spectra were removed prior to processing based on two considerations. First, samples that rarely exist as 

kilometer-scale, sub-aerial end-member exposures on the Earth’s surface such as pyroxenite or serpentinite were eliminated. Second, 

and in parallel, spectrally similar samples were eliminated. Spectral similarity was defined by the location, shape, and magnitude of 

spectral features between 7 and 13 µm. All eliminated samples are represented in the final selection through spectrally-similar end-

member types. The final rock set included 20 spectra.  

ASTlib includes 49 soil spectra classified according to their taxonomy, such as Alfisol (9), Aridisol (14), Entisol (10), Inceptisol 

(7) and Mollisol (9). Filtering in this case was based solely on spectral similarity between each taxonomy type. The final soils set 

included 26 soil spectra.  

A set of nine emissivity spectra collected in separate field campaigns during 2008 over large homogeneous sand dune sites in 

the southwestern United States in support of validation for the NAALSED v2.0 (Hulley et al. 2009b) were used for sands. The sand 

samples consist of a wide variety of different minerals including quartz, magnetite, feldspars, gypsum, and basalt mixed in various 

amounts, and represent a broad range of emissivities in the TIR as detailed in Hulley et al. (2009b).  

To represent graybody surfaces, spectra of distilled water, ice, snow, and conifer were chosen from ASTlib. Four spectra were 

sufficient to represent this class since graybody surfaces exhibit low contrast and high emissivities. It should be noted that certain types 

of man-made materials were not included, such as aluminum roofs that do not occur at the spatial resolution of these sensors but should 

be included for higher-spatial-resolution data sets such as those provided by airborne instruments. 

5.5 Radiative Transfer Simulations 

In the TEUSim, each CLAR radiosonde profile for each set of end-member spectra was used as an input to MODTRAN 5.2. A 

seasonal rural aerosol was assumed with standard profiles for fixed gases within MODTRAN. For GOES, five viewing angles were 

used, representing the Gaussian angles proposed by Wan and Dozier (1996): 0°, 11.6°, 26.1°, 40.3°, and 53.7°. In the WVS simulation 

model, the downward sky irradiance, 𝐿𝜆(𝜃), can be modeled using the path radiance, transmittance, and view angle. To simulate the 

downward sky irradiance in MODTRAN, the sensor target is placed a few meters above the surface, with surface emission set to zero, 
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and view angle set at the prescribed angles above. In this configuration, the reflected downwelling sky irradiance is estimated for a given 

view angle. The total sky irradiance contribution for band i is then calculated by summing the contribution of all view angles over the 

entire hemisphere: 

 

𝐿𝑖
↓ = ∫ ∫ 𝐿𝑖

↓(𝜃) ∙ 𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜃 ∙ 𝑑𝜃 ∙ 𝑑𝛿

𝜋/2

0

2𝜋

0

 
(10)  

where 𝜃 is the view angle and 𝛿 is the azimuth angle. To minimize computational time, the downward sky irradiance is first modeled as 

a non-linear function of path radiance at nadir view using (1) (Tonooka 2001): 

 𝐿𝑖
↓(𝛾) = 𝑎𝑖 + 𝑏𝑖 ∙ 𝐿𝑖

↑(0, 𝛾) + 𝑐𝑖𝐿𝑖
↑(0, 𝛾)2 (11)  

where 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are regression coefficients, and 𝐿𝑖
↑(0, 𝛾) is computed by: 

 
𝐿𝑖

↑(0, 𝛾) = 𝐿𝑖
↑(𝜃, 𝛾) ∙

1 − 𝜏𝑖(𝜃, 𝛾)𝑐𝑜𝑠𝜃

1 − 𝜏𝑖(𝜃, 𝛾)
 

(12)  

Equations (27) and (28) were used to estimate the downwelling sky irradiance in the TEUSim results using pre-calculated regression 

coefficients for GOES band 4. The reflected sky irradiance term is generally smaller in magnitude than the surface-emitted radiance, 

but needs to be taken into account, particularly on humid days when the total atmospheric water vapor content is high. The simulated 

LST is based on the surface air temperature in the CLAR database as follows:  

 𝐿𝑆𝑇𝑠𝑖𝑚 = 𝑇𝑎𝑖𝑟 + 𝛿𝑇 (13)  

where 𝐿𝑆𝑇𝑠𝑖𝑚 and 𝑇𝑎𝑖𝑟 are the simulated LST and surface air temperature. Galve et al. (2008) found a mean 𝛿𝑇 of +3 K and standard 

deviation of 9 K from a global study of surface-air temperature differences over land in the MODIS MOD08 and MOD11 products. We 

therefore defined 𝛿𝑇 as a random distribution with a mean of 3 K and a standard deviation of 9 K for each profile input to MODTRAN. 

A full LST retrieval requires atmospheric transmittance 𝜏𝜆(𝜃), TOA radiance 𝐿𝜆(𝜃), path radiance 𝐿𝜆
↑ (𝜃), and downward sky 

irradiance 𝐿𝜆
↓ (𝜃). To calculate the various sources of error in LST retrievals, these variables were simulated for the following conditions:  
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1. Perfect atmosphere (i.e., exact inputs): 𝐿𝜆(𝜃) and atmospheric parameters 𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), and 𝐿𝜆

↓ (𝜃) calculated using a given profile, 

surface type and viewing angle;  

2. 𝐿𝜆(𝜃) and adjusted atmosphere (i.e., imperfect inputs): 𝜏𝜆
′  (𝜃), 𝐿𝜆

′↑(𝜃), and 𝐿𝜆
′↓(𝜃) calculated using perturbed temperature and 

humidity profiles to simulate real input data;  

The above conditions were run for ‘perfect’ 𝐿𝜆(𝜃) and also with adding random noise to the radiances based on the sensor’s noise 

equivalent delta temperature NET. 

5.6 Error Propagation 

The total LST uncertainty is based on model, atmospheric and measurement noise contributions can be written as: 

 𝛿𝐿𝑆𝑇𝑇𝐸𝑆 = [𝛿𝐿𝑆𝑇𝑀 + 𝛿𝐿𝑆𝑇𝐴 + 𝛿𝐿𝑆𝑇𝑁]1/2 (14)  

where 𝛿𝐿𝑆𝑇𝑀 is the model error, 𝛿𝐿𝑆𝑇𝐴 is the atmospheric error, and 𝛿𝐿𝑆𝑇𝑁 is the error associated with measurement noise. These errors 

are assumed to be independent. 

To calculate the separate contributions from each of these errors let us first denote the simulated atmospheric parameters as x 

= [𝜏𝜆(𝜃), 𝐿𝜆
↑ (𝜃), 𝐿𝜆

↓ (𝜃)] and simulated observed radiance parameter as 𝑦 = 𝐿𝜆(𝜃). Both 𝑥 and 𝑦 are required to estimate the surface 

radiance. In reality, however, the input parameters 𝑥 are not known explicitly, but are associated with some error, 𝛿𝑥, which we write 

as �̂� = 𝑥 + 𝛿𝑥. Similarly, the observed radiances have an associated noise based on the NET of the specific sensor, which we will 

denote by �̂�. To characterize the model error, we express the retrieval algorithm as a function based on perfect input parameters 𝑥 and 

𝑦 such that 𝐿𝑆𝑇𝑇𝐸𝑆 = 𝑓(𝑥, 𝑦). The model error, 𝛿𝐿𝑆𝑇𝑀, can then be written as: 

 𝛿𝐿𝑆𝑇𝑀 = E[(𝑓(𝑥, 𝑦) − LSTsim)2 |𝑥, 𝑦]1/2 (15)  

where LSTsim  is the simulated LST used in the MODTRAN simulations, and 𝐸[|𝑥, 𝑦] denotes the mean-square error between the 

retrieved and simulated LST for inputs 𝑥 and 𝑦. The atmospheric error can be written as the difference between single-band inversion 

using perfect atmospheric inputs, 𝑥 and imperfect inputs, �̂�: 
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𝛿𝐿𝑆𝑇𝐴 = E [(𝑓(�̂�, 𝑦) − 𝑓(𝑥, 𝑦))

2
 |𝑥, 𝑦]

1/2

 (16)  

And lastly the error due to measurement noise can be written as the difference between single-band inversion with perfect simulated 

TOA radiances, 𝑦 and TES with noisy radiances, �̂�: 

 
𝛿𝐿𝑆𝑇𝑁 = E [(𝑓(𝑥, �̂�) − 𝑓(𝑥, 𝑦))

2
 |𝑥, 𝑦]

1/2

 (17)  

 

5.7 Parameterization of Uncertainties  

A key requirement for generating an LST ESDR from either multiple sensors or algorithms is accurate knowledge of uncertainties 

from the contributing products. Uncertainties for each input product must be rigorously estimated for a variety of different conditions 

on a pixel-by-pixel basis before they can be merged and incorporated into a time series of measurements of sufficient length, consistency, 

and continuity to adequately meet the science requirements of an ESDR. Current LST&E datasets are available with quality control 

information, but do not include a full set of uncertainty statistics. For example, the standard ASTER and MODIS LST product QC data 

planes specify qualitative uncertainty information, and MODIS includes a rough estimate of LST error, but no uncertainty data-planes 

exist on a pixel-by-pixel basis dependent upon factors such as land cover type, view angle, and total column water vapor.  

The next logical step is to apply the uncertainty statistics produced from the TEUSim to real data from GEO-LST retrievals. To 

achieve this the total uncertainty, taken as the RMSE of the differences between simulated (truth) and retrieved LST including 

atmospheric error, was modeled according to view angle (SVA), and total water vapor column amount (TCW) using a least-squares 

method fit to a quadratic function.  

 𝛿𝐿𝑆𝑇𝐺𝑂𝐸𝑆 = 𝑎𝑜 + 𝑎1𝑇𝐶𝑊 + 𝑎2SVA + 𝑎3𝑇𝐶𝑊 ∙ 𝑆𝑉𝐴 + 𝑎4𝑇𝐶𝑊2 + 𝑎5𝑆𝑉𝐴2 (18)  

where 𝛿𝐿𝑆𝑇 is the LST uncertainty (K) calculated as the difference between the simulated and retrieved LST, and 𝑎𝑖 are the LST and 

emissivity regression coefficients.  
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A sensitivity study showed that the parameterizations given by equations 10–13 provided the best fit to the simulation results in 

terms of RMSE, with fits of ~0.1 K. Once the coefficients are established they can be applied on a pixel-by-pixel basis across any scene 

given estimates of TCW from either a retrieval (e.g., from MERRA-2), and the SVA from the product metadata.  

 

 

 

Figure 3: Cloud-masked land surface temperature (left) along with the associated uncertainty (right). 
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6 Validation  

The GEO-LST data have been validated against the MOD11 Version 6 LST product, and against ground data (Pinker et al, 2019). 

The MODIS LST data products are produced as a series of nine products. The sequence begins as a swath at a nominal pixel spat ial 

resolution of 1 km at nadir and a nominal swath coverage of 2030 or 2040 lines along track by 1354 pixels per line in the daily LST 

product (Collection-6 MODIS Land Surface Temperature Products Users' Guide, Z. Wan ERI, University of California, Santa Barbara, 

2013) (DOI: 10.5067/MODIS/MOD11_L2.006). There are two algorithms used in the daily MODIS LST processing: the generalized 

split-window LST algorithm (Wan and Dozier, 1996) and the day/night LST algorithm. New refinements made to these two algorithms 

are described in (Wang, 2014). The MOD11_L2 version 6 swath product provides per-pixel land surface temperature (LST) and 

emissivity. It is produced daily in 5-minute temporal increments of satellite acquisition and has a pixel size of 1 km. The MOD11C3 

Version 6 product provides monthly land surface temperature (LST) and emissivity values in a 0.05 (5600 m x 5600 m) degree 

latitude/longitude climate modeling grid (CMG), which has a Geographic grid with 7200 columns and 3600 rows representing the entire 

globe. The MOD11C3 granule consists of day and night LST and their corresponding quality indicator (QC) layers. 

NOAA established the Surface Radiation Budget Network (SURFRAD) in 1993 [40] to support climate research by providing 

accurate, continuous, long-term measurements of the surface radiation budget over the United States. These became the continental U.S. 

contingent of the International Baseline Surface Radiation Network (BSRN) [41] as described in [42]; the general information about the 

instrumentation strategy can be found at: https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html. Specifically, we used the 

following sites: Desert Rock, Nevada (DRA: 36.62o N, 116.02o W); Fort Peck, Montana (FPK: 48.32° N, 105.10° W); Bondville, 

Illinois (BON: 40.06° N, 88.37° W) and Goodwin Creek, Mississippi (GCM: 34.25° N, 89.87° W). BSRN sites provide data at 1 - or 3-

min frequency, which makes them suitable for generating information that matches well the satellite observations.  

 

https://www.esrl.noaa.gov/gmd/grad/surfrad/overview.html
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A homogeneous six-year product of LST at 0.05° spatial resolution at hourly time scale was produced with the record of GOES 

observations and evaluated for the period of 2004-2009. A six-year climatology at monthly time scales was also derived and used to 

construct representative diurnal cycles for selected surface type. 

The results show that there is a close agreement between the GEO and MOD11 products (see Figure 4; Pinker et al., 2019). The 

averaged correlation coefficient between them is over 0.9. The averaged difference is less than 2 K and the averaged discrepancy is less 

than 3.5 K. It was also found that the derived LST has very close correlation with ground-based observations (see Figure 5; Pinker et 

al., 2019). In most cases, the correlation coefficients are greater than 0.9. The mean bias between the satellite LST and the station LST 

are less than 1% and over 80% of the bias falls within 1 std. The performance of retrieved LST for daytime and nighttime are comparable 

to each other. It was also demonstrated that the derived LSTs are of known quality and can be used for a wide range of applications that 

require a realistic representation of the diurnal cycle. 
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Figure 4. Example case of GOES_RTTOV_LST, MOD11_L2 LST and their difference and its distribution at June, 11 2004 UTC 17:15. (Pinker et al., 2019). 
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Figure 5. Evaluation of instantaneous GOES based LST estimates at hourly intervals against 4 SURFRAD/BSRN stations, independently for daytime (left 

panel) and nighttime (right panel) using observations from 2004-2009. (Pinker et al., 2019)
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