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1. Dataset Overview 

1.1. General Description 

The Multi-Source Land Surface Phenology (MS-LSP) product (Bolton et al., 2020) is designed 

to provide the land and ecological science community with open access to operational moderate spatial 

resolution land surface phenology data sets at continental scale. More specifically, the MS-LSP product  

is designed to include information related to: (1) the timing of phenological events; (2) reduced 

dimension image data sets that maximize multispectral information and minimize temporal correlation in 

image time series; and (3) identify in-season anomalies in near real-time. To achieve this goal, the MS-

LSP product is generated at 30-meter spatial resolution for North America and is delivered in a 

Universal Transverse Mercator (UTM) projection on a Military Grid Reference System (MGRS). The 

MS-LSP product includes three categories of Science Data Sets (SDSs): 

(i) MS-LSP Timing Metrics are traditional LSP metrics that indicate the timing of seasonality at each 

pixel, and include the day-of-year corresponding to 15 percent, 50 percent and 90 percent of Enhanced 

Vegetation Index-2 (EVI2) amplitude during the green-up and green-down period; an additional metric 

included in this group (“integrated greenness”) corresponds to the sum of daily interpolated EVI2 

values during each growth cycle.  

(ii) MS-LSP Reflectance Metrics provide the modeled reflectance value in each of the six Harmonized 

Landsat-Sentinel 2 (HLS) bands corresponding to each MS-LSP timing metric.   

(iii) MS-LSP Mean and Anomaly Metrics provide the mean and anomaly in weekly EVI2, along with 

the cumulative growing season anomaly in EVI2 at each pixel, and are designed to measure in-season 

departures from normal conditions associated with disturbance, drought, land cover change, and other 

sources of change in surface conditions. 

  A key feature of the full MS-LSP product is that it includes three distinct types of information 

that complement each other. SDSs included in category (i) provide traditional LSP metrics that 

characterize the timing of seasonality in land surface “greenness” at each pixel. SDSs included in 

category (ii) provide surface reflectances in each HLS band based on daily interpolated values 

estimated by the MS-LSP algorithm. These SDSs provide users with six gap-free HLS images that 

capture seasonal dynamics in surface reflectances, while at the same time dramatically reducing 

temporal correlation and data dimensionality relative to the raw HLS data. SDSs included in these first 

two categories of require a full seasonal cycle before they can be created. SDSs included in category 

(iii), on the other hand, will be generated in-season and are designed to provide near real-time data 

regarding anomalies in weekly EVI2 values relative to longer-term average conditions. These SDSs 

will support the needs of users who require timely information related to ecosystem health and 

disturbances for whom retrospective data products are less useful.  

1.2. Science Context and Background 

Land surface phenology (LSP) measurements provide critical information related to land 

surface properties and ecosystem function (De Beurs and Henebry, 2004; Melaas et al., 2016; 

Morisette et al., 2009). In natural ecosystems, the timing of phenological events has been used to 

quantify the impact of climate change on growing seasons (Körner and Basler, 2010; Peñuelas, 

https://hls.gsfc.nasa.gov/products-description/tiling-system/
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2009; Piao et al., 2019; Richardson et al., 2013), to distinguish among vegetation communities 

with different phenological triggers (Møller et al., 2008; Sherry et al., 2007), and to characterize 

the sensitivity of ecosystem processes to climate change (Friedl et al., 2014; Keenan et al., 2014b). 

In agro-ecosystems, phenology is diagnostic of management practices (e.g., sowing and harvest 

dates, irrigation), crop types, and crop yields  (Bolton and Friedl, 2013; Kucharik, 2006; Sacks et 

al., 2010). More generally, the nature, magnitude, and timing of LSP dynamics provide a wealth 

of useful information that is increasingly being used for mapping land cover, land use, and land 

cover change (Kennedy et al., 2014; Zhu and Woodcock, 2014a). 

The earliest studies leveraging LSP information were focused on agriculture and used time 

series of Landsat imagery (e.g., Badhwar, 1984). However, because Landsat data acquisitions are 

relatively infrequent, most LSP studies have used data from coarse spatial resolution instruments 

such as AVHRR, SPOT Vegetation, MERIS, and MODIS (de Beurs and Henebry, 2005; Delbart 

et al., 2008; Justice et al., 1985; Reed et al., 1994; White et al., 1997; Zhang et al., 2017). Over the 

last two decades, as data from coarse spatial resolution instruments in general, and from MODIS 

in particular, have become more available and easier to process, LSP algorithms, data products, 

and applications have rapidly expanded and matured (e.g., Ganguly et al., 2010; Jönsson and 

Eklundh, 2002; Zhang et al., 2003). For many applications, however, information is required at 

finer spatial resolutions than is afforded by MODIS. Newly available imagery from Sentinel-2A 

and -2B, in combination with data from Landsat 8, largely resolves this constraint. The data 

products described in this User Guide are designed to fill this gap.  

In the current context, information related to land surface phenology is recognized to be 

important for three main reasons. First, phenology “is perhaps the simplest process in which to 

track changes in the ecology of species in response to climate change” (Parry et al., 2007). 

Reflecting this, a large and growing literature has documented how the phenology of ecosystems 

is changing (Cleland et al., 2007; Parmesan and Yohe, 2003; Richardson et al., 2013). Second, 

because phenological dynamics affect numerous ecosystem functions, improved information 

related to phenology is critical to understanding how changes in phenology impact and propagate 

through the diverse array of ecosystem processes that are linked to phenology. For example, 

phenology is known to strongly influence water, carbon, and energy fluxes (Keenan et al., 2014b; 

Richardson et al., 2012; Wolfe et al., 2016), and there is increasing evidence that changes in 

phenology arising from climate change are cascading across trophic levels, leading to complex 

and poorly understood ecosystem changes (Beard et al., 2019; Møller et al., 2008; Sherry et al., 

2007; Thackeray et al., 2010). Third, information related to phenology is increasingly being used 

in applied ecosystem science and in land cover, land use, and land cover change applications 

(Miller and Morisette, 2014). In particular, information related to stand-level phenology is 

important to ecologists and land managers for whom phenology provides important diagnostics 

related to species composition, forest health, invasive species, and other ecosystem processes 

(Morisette et al., 2009). In agricultural systems, a diverse array of applications ranging from crop 

yield prediction to monitoring and mapping rangelands are affected by phenology (Butt et al., 

2011; Funk and Budde, 2009; Kumar and Goh, 1999; Sankey et al., 2013). As a result, information 
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related to phenology is identified as a critical variable required for the UN's Global Climate 

Observing System (GCOS, 2016), the IPCC’s Fifth Assessment Report (Cramer et al., 2014), and 

the United States National Climate Assessment (Melillo et al., 2014).  

A key limitation of traditionally available phenology data sets is that they are only available 

at two very different spatial scales and resolutions. Specifically, ground-based observations from 

networks such as the National Phenology Network (USA-NPN) and the PhenoCam Network 

(Richardson et al., 2018; Seyednasrollah et al., 2019)  provide point-based measurements at local 

scale (https://phenocam.sr.unh.edu/webcam/). At the other extreme, coarse spatial resolution 

remote sensing provides information at continental to global scales (e.g., Ganguly et al., 2010), 

but does not resolve ecologically important processes at landscape scale (Elmore et al., 2012; 

Fisher et al., 2006). Further, a variety of studies have demonstrated that land surface phenology 

metrics derived from coarse spatial resolution remote sensing and in situ observations of 

phenology collected at local scale provide different information. Most of this inconsistency can be 

attributed to mismatch between the spatial resolution of available remote sensing data products 

(i.e., 500-m MODIS) and the scale(s) of processes captured by ground-based measurements. In 

particular, the timing of local-scale phenological events, especially in landscapes that are 

topographically complex, fragmented, or affected by human management, is not resolved in coarse 

spatial resolution land surface phenology products. This issue limits the utility of such products 

for applications focused on questions and processes occurring at landscape scale, and points to the 

need for land surface phenology information at spatial resolutions capable of resolving landscape-

scale properties and processes. 

To address this need, the LSP community has increasingly focused on moderate spatial 

resolution imagery from Landsat for mapping and monitoring phenology. Fisher et al. (2006) and 

Elmore et al. (2012) demonstrated that long term average land surface phenology can be accurately 

estimated from multi-year time series of Landsat imagery, and established that landscape-scale 

patterns in phenology (which cannot be detected in coarse spatial resolution instruments such as 

MODIS) are clearly discernible in Landsat imagery. More recently, Melaas et al. (2013, 2016) 

developed a method that estimates the timing of leaf emergence and fall senescence at annual time 

steps from Landsat, and used data from several data sources to demonstrate the accuracy and 

realism of their Landsat-based LSP retrievals across a range of sites. A key limitation of the 

approach described by Melaas et al. (2013), however, is that it requires long time series (i.e., >10 

years) and is best suited for retrospective analysis in “side-lap” regions between adjacent Landsat 

scenes where data density high. Recently, Jonsson et al. (2018) demonstrated the feasibility of 

retrieving interannual variation in phenology from Sentinel-2, thereby overcoming limitations 

imposed by Landsat’s 16-day repeat period. Building on this, the data sets described in this User 

Guide build upon the legacy of existing LSP algorithms developed for MODIS and Landsat to 

provide continental-scale estimates of LSP metrics from a combination Landsat 8 and Sentinel 2 

imagery at 30-meter spatial resolution.  
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2. Dataset Characteristics 

2.1. Description and Format of SDS 

 

Table 1. MS-LSP product table 

Layer Name Description Units 
Scale 

Factor 

Valid 

Range 

Fill 

value 

NumCycles 
Number of phenological cycles detected in 

target year 
Number of cycles 1 0 – 6 32767 

First Vegetation Cycle:  Largest EVI2 amplitude cycle      

Phenology Timing Metrics 

OGI 
Onset Greenness Increase (Date of 15% 

greenness increase) 

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

50PCGI 
50 Percent Greenness Increase (Date of 50% 

greenness increase)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

OGMx 
Onset Greenness Maximum (Date of 90% 

greenness increase)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

OGD 
Onset Greenness Decrease (Date of 10% 

greenness decrease)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

50PCGD 
50 Percent Greenness Decrease (Date of 50% 

greenness decrease)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

OGMn 
Onset Greenness Minimum (Date of 85% 

greenness decrease)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

Vegetation Indices 

EVImax Maximum EVI2 during vegetation cycle - 0.0001 0–10000 32767 

EVIamp EVI2 Amplitude during vegetation cycle - 0.0001 0–10000 32767 

EVIarea Integrated EVI2 during vegetation cycle  - 0.01 0–32766 32767 

Second Vegetation Cycle: Second Largest EVI2 amplitude cycle 

Phenology Timing Metrics 

OGI_2 
Onset Greenness Increase (Date of 15% 

greenness increase) 

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

50PCGI_2 
50 Percent Greenness Increase (Date of 50% 

greenness increase)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

OGMx_2 
Onset Greenness Maximum (Date of 90% 

greenness increase)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

OGD_2 
Onset Greenness Decrease (Date of 10% 

greenness decrease)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

50PCGD_2 
50 Percent Greenness Decrease (Date of 50% 

greenness decrease)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

OGMn_2 
Onset Greenness Minimum (Date of 85% 

greenness decrease)  

Day of year   

(January 1 of target year = 1) 
1 -181–548 32767 

Vegetation Indices 

EVImax_2 EVI2 maximum during vegetation cycle - 0.0001 0–10000 32767 

EVIamp_2 EVI2 Amplitude during vegetation cycle - 0.0001 0–10000 32767 

EVIarea_2 EVI2 area during vegetation cycle - 0.01 0–32766 32767 

Quality Assurance (QA) 

gupQA Quality Assurance for Greenup Segment - 1 1–7 - 

gdownQA Quality Assurance for Greendown Segment - 1 1–7 - 

gupQA_2 
Quality Assurance for Second Greenup 

Segment 
- 1 1–7 - 

gdownQA_2 
Quality Assurance for Second Greendown 

Segment 
- 1 1–7 - 
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2.2. QA Layers 

 

Table 2. MS-LSP quality assurance values 

Quality Assurance Values 

QA value Description  

1 High quality 

2 Moderate quality  

3 Poor quality with successful fill from alternate years 

4 Poor quality with unsuccessful fill from alternate years 

5 No cycle detected 

6 Water, algorithm not run 

7 Border pixels masked in 2016 due to HLS processing issue 

 

Note that a QA value of 5 can arise for multiple reasons including insufficient observation 

density, insufficient amplitude, or errors from pre-processing that lead to unrealistic EVI2 values 

or amplitudes.  

3. Dataset knowledge 

3.1. FAQ’s 

3.2. Known Issues 

1. The algorithm is designed to capture seasonal phenology in vegetation indices. Hence, by 

definition, uncertainty in MS-LSP data is higher in areas with lower seasonality in 

vegetation, such as evergreen forests or arid and semi-arid systems. These effects should 

be captured by the QA data. 

2. In regions where data density is low, due to for e.g., cloud cover, the quality of MS-LSP 

data will be lower. This is compounded by the fact that gap filling based on historical 

imagery tends to be more challenging in these regions. As the time series of HLS data 

becomes longer, this latter issue will be mitigated. These effects should be captured by 

the QA data. 

3. Areas with disturbance, e.g., from fires, may result in low quality MS-LSP data. These 

effects should be captured by the QA data. 

4. The MS-LSP product only allows for 2 cycles per year. While locations with more than 

two cycles are rare, they do exist (e.g., alfalfa) but are not capture in the product. Note 

however, that these locations are flagged in the number of cycles SDS layer. 

5. Regions with seasonal snow are likely to have lower quality values because of challenges 

associated with screening for and removing the effects of snow contamination on EVI2 

values. These effects should be captured by the QA data.  
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4. Dataset Access 

The following tools offer options to search the LP DAAC data holdings and provide access to 
the Multi-Source Land Imaging Land Surface Phenology Yearly North America 30 meter 

(MSLSP30NA) data: 
 

Bulk download: LP DAAC Data Pool and DAAC2Disk 

Search and Browse: NASA Earthdata Search 

5. Contact Information 

LP DAAC User Services 

U.S. Geological Survey (USGS) 
Center for Earth Resources Observation and Science (EROS) 

47914 252nd Street 
Sioux Falls, SD 57198-0001 

 
Phone Number: 605-594-6116 

Toll Free: 866-573-3222 (866-LPE-DAAC)  
Fax: 605-594-6963 

Email: LPDAAC@usgs.gov 

Web: https://lpdaac.usgs.gov 
 

For the Principal Investigators, please contact Mark Friedl at friedl@bu.edu or Minkyu Moon 
at mkmoon@bu.edu. 

 
Project web site: MS-LSP 

 

6. Data Citation 

The recommended citation in APA or Chicago style is available on the Digital Object Identifier 

(DOI) Landing page (https://doi.org/10.5067/Community/MuSLI/MSLSP30NA.001).  

 

An example of a citation using the Chicago style format for the MS-LSP dataset is provided 

below. 

 

Bolton, D.K, Gray, J.M, Melaas, E.K., and M. Moon, MuSLI Multi-Source Land Surface 

Phenology Yearly North America 30 m V001. 2020, distributed by NASA EOSDIS Land 

Processes DAAC, https://doi.org/10.5067/Community/MuSLI/MSLSP30NA.001. Accessed 

YYYY-MM-DD. 

7. Publications 

Bolton, D. K., Gray, J.M, Melaas, E.K., Moon, M., Eklundh, L. and M.A. Friedl (2020). 

Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 

imagery, Remote Sensing of Environment, 240, https://doi.org/10.1016/j.rse.2020.111685. 
 

https://lpdaac.usgs.gov/tools/data-pool/
https://lpdaac.usgs.gov/tools/daac2diskscripts/
https://search.earthdata.nasa.gov/
https://lpdaac.usgs.gov/
mailto:friedl@bu.edu
https://lcluc.umd.edu/projects/operational-multisource-land-surface-phenology-product-landsat-and-sentinel-2
https://doi.org/10.5067/Community/MuSLI/MSLSP30NA.001
https://doi.org/10.1016/j.rse.2020.111685
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